Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Температура плавления газов

Химическое соединение характеризуется определенным соотношением чисел атомов элементов (стехиометрической пропорцией) и кристаллической решеткой с упорядоченным расположением атомов компонентов, отличной от решетки составляющих компонентов, а также определенной температурой плавления (диссоциацией) и неравномерным изменением свойств в зависимости от изменения состава (сингулярностью). При химическом соединении металлов в узлах решетки находятся положительно заряженные ионы, удерживаемые электронным газом . Металлическая связь не является жесткой и в зависимости от условий концентрация компонентов может не соответствовать стехиометрическому соотношению. Так, соединение РеСг может существовать при концентрации Сг от 20 до 60%.  [c.32]


Межмолекулярные связи действуют между любыми атомами и молекулами, но они очень малы (порядка Ю Дж/моль). Поэтому молекулярные кристаллы, обусловленные этими силами (твердые инертные газы, молекулы кислорода, азота и др.), отличаются весьма низкой температурой плавления (Не— 1,8 К, Аг — 40 К). Образование прочных структур обусловлено главным образом сильными типично химическими связями, например ковалентной, а силы Ван-дер-Ваальса служат лишь небольшой добавкой . Силами Ван-дер-Ваальса обусловлены обычно адгезионные связи при склеивании, смачивании твердых тел жидкостями и т. п.  [c.10]

В зоне сварки металлы, жидкие или нагретые до температуры, близкой к температуре плавления, встречаются не только с кислородом, но и со сложными газами, такими, как СО СО2 Н2О С Нт, получающимися в результате диссоциации карбонатов или газов  [c.331]

Заметим, что чем выше масса атома (атомный номер), тем больше энергия сцепления и температура плавления молекулярных кристаллов (табл. 2.3). Это связано с тем обстоятельством, что с повышением атомного номера элемента число электронов возрастает, электронная оболочка становится более рыхлой и легко деформируемой при взаимодействии атомов друг с другом, а это означает, что дипольные моменты увеличиваются, что и приводит к возрастанию энергии сцепления. При одной и той же температуре и давлении разные вещества с различными атомными номерами в силу указанного обстоятельства могут находиться в различных агрегатных состояниях. Так, при комнатной температуре фтор (2=9)—газ, бром (2 = 35)—жидкость, а иод (2=53) — кристалл.  [c.69]

В табл. 2.3 представлены рассчитанные по указанным формулам и экспериментальные данные для о, уд.п а В, а также Тал-Приведенные данные показывают, что для сравнительно тяжелых атомов экспериментальные и теоретические значения Ro, f/удл и В различаются очень мало. Различие между расчетом и экспериментом растет с уменьшением атомного номера элементов и объясняется пренебрежением кинетической энергией нулевых колебаний, вклад которой относительно больше для атомов малой массы. Другой важный вывод низкие значения энергии связи (удельные полные энергии кристаллов) объясняют низкие температуры плавления кристаллов инертных газов.  [c.24]

Если исходить из молекулярной структуры вещества, то очевидно, что кристаллическая фаза, будучи самой упорядоченной, должна иметь наименьшую энтропию по сравнению с жидкостью и газом. Жидкая фаза, особенно вблизи температуры плавления, сохраняя некоторые элементы так называемого ближнего порядка, обладает меньшей энтропией, чем вполне неупорядоченная газообразная фаза.  [c.206]


На рис. 3.28 приведена схема установки выращивания монокристаллов бинарных соединений полупроводников из газовой фазы методом взаимодействия исходных компонентов. Выращивание монокристалла производится в потоке нейтрального газа или водорода. Печь применяют трехсекционную, причем две крайние секции используют для испарения компонентов. Средняя печь предназначена для поддержания необходимой температуры в реакторе, где происходит смешивание паров компонентов и их реакция. Температура в реакторе ниже, чем температура плавления образующегося соединения. Это вызывает конденсацию соединения на стенках реактора в виде кристаллов.  [c.84]

Межмолекулярная связь наблюдается у благородных газов, переведенных в твердое состояние при низких температурах (Ne, Аг, Кг, Хе). Низкие температуры плавления и кипения этих газов указывают на то, что силы притяжения между атомами у них малы и обусловлены поляризационными силами или силами Ван-дер-Ваальса.  [c.14]

Газовая сварка реализуется за счет оплавления газовым пламенем частей соединяемых деталей и прутка присадочного металла, она используется для соединения деталей из металлов и сплавов с различными температурами плавления при небольшой толщине (до 30 мм), а также для сварки неметаллических деталей. Для ее реализации не требуется источника электроэнергии. Широкое распространение имеет электродуговая сварка, при которой оплавленный (за счет электрической дуги) металл соединяемых элементов вместе с металлом электрода образует прочный шов. Для защиты от окисления шва электрод обмазывают защитным покрытием часто сварку производят под слоем флюса или в защитной среде инертных газов (аргона, гелия). Электродуговой сваркой на сварочных автоматах, полуавтоматах, а также вручную соединяют детали из конструкционных сталей, чугуна, алюминиевых, медных и титановых сплавов. Последние сваривают в среде аргона или гелия.  [c.469]

При жидком шлакоудалении температура в топочной камере должна поддерживаться на уровне, превышающем температуру плавления шлаков и гарантирующем их удаление из топки в жидком состоянии. Достоинство жидкого шлакоудаления состоит в том, что при этом способе золы улавливается значительно больше, чем при твердом шлакоудалении, когда существенная доля золы уносится дымовыми газами.  [c.253]

Рассеянная пористость возникает при уменьшении растворимости газов в материале покрытия при охлаждении последнего. Причины появления такой пористости рассмотрены в работе [93]. Известно, что при большинстве применяемых методов напыления частицы порошка оплавляются. Это обусловливает повышенную растворимость кислорода, азота и других газов в жидком материале при температуре плавления по сравнению с комнатной температурой. При охлаждении и кристаллизации наблюдается выход растворенных газов из кристаллической решетки растворителя благодаря процессу диффузии. Если выход в атмосферу затруднен, то газы остаются в покрытии, образуя мельчайшие поры сферической формы. Такие микропоры могут располагаться в покрытии как по границам частиц, так и внутри их.  [c.77]

Методом вакуумного плавления (с оловом) достигается практически полное выделение водорода из кристаллической решетки и микропустот. Для выполнения этой операции вначале из расплавленного в кварцевом тигле олова путем создания вакуума удаляются газы. Применение олова позволяет понизить температуру плавления железа с 1535 до 1100 С.  [c.80]

Температура плавления, °С Температура кипения, °С Плотность газа по отношению к воздуху  [c.121]

Весьма актуальными также являются проблемы криогенной техники, связанные с созданием сверхпроводящих материалов и использованием различного криогенного оборудования резервуаров для хранения сжиженных газов и других емкостей, миниатюрных холодильных газовых машин, криогенных насосов, рабочие поверхности которых, охлаждаемые хладагентами (жидкие азот, водород, гелий), позволяют вымораживать практически все газы из откачиваемого объема и получать вакуум выше 10 мм рт. ст. Важны также низкотемпературные исследования материалов, используемых в ракетно-космических системах, элементы которых, подвергающиеся во время службы действию статических и динамических нагрузок, вибраций, изгибных колебаний и т. д., работают в весьма широком диапазоне температур, начиная с очень низких и включая температуры, близкие к температуре плавления материала.  [c.187]


Установлено, что при увеличении содержания хрома в сплавах с железом или никелем повышается их устойчивость к действию серусодержащих газов. Устойчивость повышается при введении вместо хрома алюминия, а также при алитировании— термодиффузионном покрытии поверхности деталей в расплаве алюминия или газовой фазе. Защитное действие алюминия хорошо проявляется при введении его в сплавы с никелем и кобальтом, хотя сульфид алюминия имеет сравнительно низкую температуру плавления (ИОО°С).  [c.87]

В полимерах наблюдается так называемое набухание, состоящее в проникновении в них газа или жидкости, находящихся в контакте с ними. В набухшем полимере возрастает объем, понижается прочность, но эластические и пластические деформации возрастают. При увеличении степени набухания происходит ослабление межмолекулярных связей и начинается растворение полимера в растворителе, ничем не ограниченное в случае, если полимер имеет аморфную структуру. Полимеры с высокой степенью кристалличности растворимостью обладают лишь при температуре, близкой к температуре плавления кристаллов.  [c.339]

Наконец, надежно доказано, что границы зерен становятся очень склонными к нарушению сплошности, если на них попадает жидкая фаза, как в случае охрупчивания при контакте с жидким металлом [89, 166]. Этот эффект дол кен быть особенно заметен в таких горячих агрессивных средах, в которых эвтектики с низкой температурой плавления не будут разнородными (например, N 382—N1 и Сг5—Сг [91]). Кроме того, известно, что газы, адсорбированные на границах и способные., например, преимущественно диффундировать вдоль них в глубь сплава при низких температурах (когда образование коррозионных продуктов маловероятно), могут понижать поверхностную энергию и, вероятно, силы сцепления на границе [167, 168]. Этот эффект может усиливать проскальзывание по границам зерен и растрескивание.  [c.34]

S J и 3 Распыление Распыление жидкого (расплавленного) металла газом или водой Любые металлы с температурой плавления не выше 1700—1750° С Сохраняется почти полностью химический состав исходного материала, форма частиц преимущественно сферическая. Метод высокопроизводителен Металлы, предназначенные для массовой продукции  [c.322]

Тугоплавкие бескислородные соединения обладают высокими температурами плавления (2500—3500° С), однако их сопротивление окислению при температуре выше 1000° С является уже недостаточным. Поэтому наиболее полное использование ценных свойств этих соединений при высоких температурах возможно в атмосфере нейтральных газов, в восстановительной среде или в вакууме.  [c.410]

Перечисленные недостатки консольных насосов с гидродинамическими подшипниками исключаются, если встроить в насос замерзающее уплотнение, конструкция которого описана в гл. 3. Для нормальной работы этого уплотнения важно поддерживать температурный реи им его на необходимом (достаточно низком) уровне, определяемом температурой плавления теплоносителя. Прекращение подачи охлаждающей среды может привести к прорыву металла через уплотнение, что совершенно недопустимо. Чтобы уменьшить вероятность выброса металла в помещение или подсос газа в полость насоса при аварийном размораживании уплотнения, насос желательно располагать в точке контура с высотной отметкой, равной максимальному уровню теплоносителя в реакторе, в целях обеспечения наименьшего перепада давления на уплотнении.  [c.42]

Таким образом, температура выпускаемого металла зависит от температуры его плавления и от степени его перегрева выше этой температуры. Присутствие стали в шихте ведёт к повышению температуры выплавляемого чугуна,поскольку температура плавления стали значительно выше. Перегрев капли жидкого металла будет зависеть от максимума температур газов (точка Р) и от длины пути капли в зоне максимальных температур. Максимум в свою очередь зависит от полноты горения топлива, а длина пути капли жидкого металла определяется высотой холостой колоши. Следовательно, повышению температуры чугуна содействуют многорядная система фурм и увеличение (в определённых пределах) расхода топлива и воздуха. Кроме того, достижению высоких температур способствуют хороший разогрев вагранки и тщательная разделка шихты.  [c.177]

ПИЯ ИХ температура газов при входе в пучок должна быть на 30—50° С ниже температуры плавления золы. Между тем оптимальное значение температуры газов при выходе из топки, определяемое минимальными размерами радиационных и конвективных поверхностей нагрева, находится обычно в пределах 1200 — 1300° С, т. е. значительно выше температуры  [c.56]

Из табл. 15 видно, что разрушение начинается при температуре, близкой к температуре плавления окисла. Это является типичным признаком воспламенения металла, когда при плавлении окисла и доступе газа-окислителя непосредственно к нагретой металлической поверхности реакция окисления резко изменяет свою скорость и тепло реакции становится важным источником нагрева металла.  [c.119]

Теплоносители. Для активного теплообмена в ядерных реакторах применяют металлические теплоносители, имеющие более высокую теплопронодиость, чем вода или газы. В качестве теплоносителей следует применять металлы с низкой температурой плавления. В зависимости от принципа действия реактора в качестве теплоносителя можно применять висмут (н его сплавы) пли натрий.  [c.559]

Вольфрам, нагреваясь от дуги до температур, близких к температурам плавления, становится весьма восприимчивым к действию активных газов. Поэтому в целях экономии электродов и для обеспечения стабилизации процесса обычно при сварке W-элек-тродом используют инертные газы.  [c.99]

Нами рассматриваются неметаллические материалы, имеющие температуру плавления более 1600°С. Эти материалы представляют софй согласно [31] кристаллические структуры, которые Можно представить в виде множества структурных единиц причем взаимодействие внутри такой единицы значительно сильнее, чем между ними. Поэтому сложные соединения, состоящие из нескольких сортов атомов, разбивают на структурные ком плексы и рассматривают взаимодействие внутри полу ченных комплексов, причем структурная группа должна быть симметричной. Последнее требование хорощо со гласуется с опытами по исследованию инфракрасньп спектров поглощения при частотах до 1000 см [32] Действительно, колебания симметричных комплексов цо добны колебаниям молекулы идеального газа такой же симметрии. Следовательно, симметричный комплекс мож но рассматривать как молекулу, состоящую из двух разных или одинаковых ядер, связь в которой осуществляется исключительно за счет взаимодействия валентных электронов обоих атомов.  [c.51]


Электроны в этом случае ведут себя как обычные классические частицы идеального газа. Таким образом, при условии ехрХ X [ (f— f)/( вТ )] 1 вырождение электронного газа полностью снимается. Снятие вырождения происходит при температуре 7 р = рМв = 5-10 К. Отсюда становится понятным, почему поведение электронного газа в металлах в отношении многих свойств резко отличается от свойств обычного молекулярного газа. Это обусловлено тем, что электронный газ остается вырожденным вплоть до температуры плавления и его распределение очень мало отличается от распределения Ферми — Дирака при О К.  [c.178]

Наряду с газами и капельными жидкостями в качестве теплоносителей применяют жидкие (расплавленные) металлы, такие, как ртуть, натрий, калий, литий, висмут, галлий, свинец. Достоинством этих теплоносителей является то, что они имеют высокую теплопроводность, малую вязкость, высокую температуру кипения коррозионное воздействие на материал стенок каналов, по которым они перемещаются, незначительное. Благодаря высокой теплопроводности жидкие металлы могут очень интенсивно отводить теплоту от поверхности нагрева. Их можно использовать при высоких температурах (700—800°С) и в то же время при низких давлениях. Потери давления при движении жидких металлов в каналах находятся в приемлемых пределах. Многие из них имеют невысокую температуру плавления (для натрия, например, л —97,5°С) и могут без особых трудностей переводии.ся в жидкое состояние. Все эти  [c.196]

Сера. Как и фосфор, сера попадает в металл из руд, а также из печных газов - продукт горения топлива (502). Сера весьма ограниченно растворима в феррите и практически любое ее количество образует с железом сернистое соединение - сульфид железа Ре5, который входит в состав эвтектики, имеющей температуру плавления 988 С. Она располагается преимущественно по границам зерен. При нагреве стали до температуры прокатки, ковки (1000. 1200 °С) эвтектика расплавляется, нарушая связь между зернами. В процессе деформации в этих местах образуются надрывы и трешины. Это явление носит название красноломкости. Введение марганца в сталь уменьшает вредное влияние ееры, так как при введении его в жидкую сталь идет образование сульфида марганца, имеющего температуру плавления 1620 С  [c.81]

Ts-д и а г р а м м а. Как и в случае газов, в термодинамике паров находит широкое применение Ts-диаграмма, в которой площадь под кривой процесса дает количественное выражение теплоты процесса. На рис. 1.14 в системе координат Т, s представлен изобарный процесс превращения 1 кг воды при температуре плавления в перегретый пар заданной температуры перегрева, соо1ветствующей состоянию в точке d. Кривая аЬ представляет изобарный процесс нагрева воды от То = = 273 К до Т при данном давлении р поэтому площадь под кривой процесса будет представлять q . В процессе подогрева жидкости зависимость s = p(T) выражается уравнением (1.128), откуда следует, что кривая аЬ в первом приближении есть логарифмическая линия. Площадь под кривой Ьс есть теплота парообразования г. В соответствии с уравнением = s"x -Ь s (l — х) = s -t- rx/Tn в процессе парообразования. 5, — s = rxjTn и, следовательно, площадь под прямой be есть гх. Очевидно, площадь под кривой d есть теплота перегрева q e. Процесс перегрева описывается уравнением (1.130), которое приближенно можно представить в виде s e - s" In T IT ). Следовательно, в первом приближении линия d есть логарифмическая кривая.. Так как для воды Срж > Ср, то кривая перегрева пара d идет круче кривой нагрева воды аЬ. Степень сухости влажного пара давлением р в точке е определится как отношение отрезков be к Ьс, так как Ье Ьс = (rxjT (г/Тп) = х. Как видно из рис. 1.14, 1.15, при увеличении давления точки hue, оставаясь в каждом отдельном случае на горизонтали, сближаются и при критическом давлении сливаются в одну точку к. Соединив между собой точки hi, hi, Ьз и т. д., соответствующие состоянию кипящей жидкости при различных давлениях, получим пограничную кривую жидкости. X = 0. Аналогичным образом получим пограничную кривую пара X = 1, соединив между собой точки с, Сь С2 и т. д., соответствующие состоянию сухого насыщенного пара при различных давлениях. Подобно пограничным линиям ри-диаграммы, пограничная кривая  [c.36]

В настоящем издании справочника приведены основные физические характеристики металлов атомная масса, атомный радиус, число электронов в атоме (атомный номер) и их строение по сравнению со строением благородных газов (гелия — is , неона—[He]2s 2p , аргона — [Ме]3з 3/) криптона— [Ar]Зii °45 4p ксенона— [Kr]4d 5s25pe р . дона [Xe]4/ 5d 6s 6p ), электроотрицательность, ионизационный потенциал, плотность, температуры плавления и кипения. Дополнительно приведены краткие сведения о ресурсах металлов, точности и достоверности определения свойств материалов, сверхиластичностн и электропластичности металлов.  [c.6]

Припои для электровакуумных приборов должны помимо общих характеристик иметь температуру плавления выше (примерно на 100° С) температуры прогрева при откачке. Давление паров при температуре прогрева прибора (Тпрог = 500—700° С) не должно быть выше 10 мм рт. ст. Применяют среднеплавкие (Гпл = 500 -н 1100° С), высоко-плавкие (Тпл = 1150 1850° С) и тугоплавкие (Т л > 1850° С) припои. В электровакуумной технике пайку осуществляют без флюсов, так как окислы и остатки флюса загрязняют вакуумную полость прибора. Пайку ведут в защитном газе или в вакууме не менее мм рт. ст. Припои подразделяют на две группы для приборов с Тпрог = 700° С и для приборов с Тпрог порядка 450° С.  [c.303]

Диэлектрическая проницаемость твердых тел зависит от структурных особенностей твердого диэлектрика. В 1вердых телах возможны все виды поляризации. Для твердых неполярных диэлектриков характерны те же закономерности, что и для неполярных жидкостей и газов. Это подтверждается данными табл. 1-5 и зависимостью е, (/) для парафина, показанной на рис. 1-5. При переходе парафина из твердого состояния в жидкое (температура плавления около  [c.25]

Выше показано, что хромоникелевая аустенитная сталь 12Х18Н12Т имеет в продуктах сгорания мазута относительно низкую коррозионную стойкость и в широком интервале температур газа ее сопротивляемость к коррозии ниже, чем у низколегированных перлитных сталей. Причиной этого является образование при взаимодействии золы мазута с компонентами металла соединений, температура плавления которых ниже рабочих температур труб. Таким компонентом в хромоникелевых сталях является никель. Материалами, где отсутствует в существенных количествах никель и которые должны иметь более высокую коррозионную стойкость в продуктах сгорания мазута, считаются аустенитные хромомарганцевые стали.  [c.183]

Гаа Давлевве паров прв температуре плавления. гПа Температура кипения при нормальном давлении °С Удельная теплота парообразования, кДж/кр Относи- тельная плот- ность ежнжен- ВОРО газа при нормальных условиях  [c.52]

В результате воздействия излучения ОКГ на поверхности материала в месте фокусировки образуется окисная пленка темного цвета (при обработке нечерненной поверхности), имеющая коэффициент поглощения намного выше, чем исходная поверхность. В этих случаях при воздействии серии последовательных единичных импульсов излучения ОКГ, зоны которого смещены относительно друг друга на величину шага обработки, в каждой последующей зоне после первой наблюдается неравномерный нагрев. Та часть излучения, которая попадает на окисленную под действием предыдущего импульса поверхность, нагревает материал до более высокой температуры (вплоть до температуры плавления), чем излучение, которое воздействует на исходную поверхность. Вследствие этого формирование упрочненного слоя по глубине происходит неравномерно. Во избежание этого упрочнение целесообразно производить в среде защитного газа, например, аргона. При этом также улучшается внешний вид обработанной поверхности.  [c.108]


Вал<ной областью использования композиционных материалов, как указывалось, являются теплонагруженные детали газотурбинных двигателей для транспортных и энергетических установок. К наиболее теплонагруженным деталям газовых турбин относятся рабочие и сопловые лопатки турбины, так как они принимают на себя удар горячих газов, температура которых часто превышает температуру плавления современных жаропрочных сплавов [141 ]. Наиболее жаропрочные стареющие никелевые сплавы могут работать при температуре только до 1050° С. Для них температура 1100° С составляет 0,8 и является, по-видимому, предельной, тогда как дисперсноупрочненпые композиционные материалы при температуре 1200°С способны длительно и эффективно противостоять значительным нагрузкам [46].  [c.238]

Применение присадок к топливу. Положительное влияние присадок, выражающееся в снижении скорости высокотемпературной коррозии, основывается на использовании нескольких эффектов связывание коррозионно-активных компонентов, содержащихся в продуктах сгорания топлива, в неагрессивные соединения повышение температуры плавления золовых отложений изменение структуры золовых отложений, их разрыхление, вследствие чего они легко удаляются. Кроме того, некоторые присадки (так называемые многофункциональные) способствуют снижению скорости низкотемпературной сернокислотной коррозии (из-за связывания оксида серы (VI) и снижения точки росы дымовых газов), улучшению работы системы топливоприготовле-ния, повышению теплообмена, снижению загрязнения поверхностей в высокотемпературной зоне и хвостовых поверхностей.  [c.246]

Для пайки нержавеющих сталей типа 18-8 с Ti рекомендуют припой ВПр1, содержащий 27—30% Ni 1,5—2,0 Si 0,10—0,3% В g l,5% Fe, остальное медь, с температурой плавления 1080—1120 С [6]. Пайку соединений проводят при 1150— 1200° С в любых условиях нагрева (пламенем ацетилено-кислородиой и плазменной горелки, т. в. ч., в печах и соляных ваннах) с применением флюсов 200, 201 или плавленой буры. В атмосфере инертных газов и вакууме флюсы при пайке не применяют. Этот припой обеспечивает высокую прочность сварным соединениям при комнатной и высоких температурах.  [c.230]

Нафталин технический i H, (ГОСТ 1703—51). Ароматический углеводород, получаемый из каменноуг ольной смолы, коксового газа и при пиролизе нефти. Нерастворим в воде, растворим в спирте, эфире, бензоле. Температура плавления - -81° С, кипения +217° С. Делят на кристаллический в плитах весом 20—25 кг, брусках 4—5,5 кг или в виде стружки, выпускают 1-го и 2-го сортов нафталин в порошке с величиной зерен не  [c.287]

Кальций хлористый (хлорид кальция, хлор — кальпий) КаСЬ, молекулярная масса 110.90. Побочный продукт производства соды, бесцветные кристаллы. Плотность 2,51 г/см (расплава 2,03 г/см ). Температура плавления 772° С, температура кипения 1600° С. Применяется при термохимической обработке металлов, изготовления кальциевых баббитов, охлаяодающих смесей (58,8"/о КаС1 6ПгО-Ь42,2% льда) до —55° С, обезвоживания спирта, эфира и других жидкостей и газов. Хорошо растворим в воде 42,7% при 20° С, 61,4% при 100° С. Водные растворы замерзают 20% при —J8,6° , 30 /о при —48°С. Применяют для пропитки древесины и тканей, для придания огнестойкости.  [c.425]

Никель и богатые никелем снлавы принадлежат к числу тугоплавких металлов. Данные о температурах плавления и разливки никеля и его сплавов приведены в табл. 183. Плавку ведут в отапливаемых мазутом или газом тиглях, индукционных печах типа Аякс и в высокочастотных электропечах. Особенно хорошие результаты даёт плавка в высокочастотных электропечах, снабжённых вакуумной установкой, последняя предотвращает поглощение газов жидким металлом. Ввиду высокой температуры плавления медно-нике-левых сплавов графитовые тигли непригодны, так как их материал разъедается расплавленным металлом, причём образуются карбиды  [c.193]


Смотреть страницы где упоминается термин Температура плавления газов : [c.385]    [c.384]    [c.201]    [c.154]    [c.90]    [c.273]    [c.43]    [c.177]    [c.131]   
Справочник машиностроителя Том 2 (1955) -- [ c.39 ]

Справочник машиностроителя Том 6 Издание 2 (0) -- [ c.2 , c.39 ]



ПОИСК



Плавление

Сыр плавленый

Температура газа

Температура газов

Температура плавления



© 2025 Mash-xxl.info Реклама на сайте