Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Исходный химический состав

Вакуумно-дуговой переплав осуществляется под вакуумом, поэтому нельзя забывать о возможных потерях элементов с высокой упругостью пара. Однако многие из этих элементов представляют собой "сорные примеси", способные, если при-. сутствуют в достаточных количествах, оказывать пагубное влияние на свойства сплава иными словами, удаление таких элементов, как свинец, висмут, олово, мышьяк и цинк, является благоприятным событием. Но опасность потерь в таких летучих элементах, как марганец и медь в сплавах, где их содержание строго определено, требует некоторых изменений в практике вакуумно-дугового переплава. В этих случаях плавку ведут под некоторым парциальным давлением азота или аргона, либо заблаговременно оптимизируют исходный химический состав электрода. Важно понимать, что вакуумно-дуговой переплав не был предназначен для удаления летучих элементов. Следует помнить и то, что эти элементы, даже если они полезны в том или ином отношении, понижают стабильность дуги. Когда же они образуют мощный конденсат на стенках изложницы, происходит серьезное ухудшение качества поверхности слитков.  [c.139]


Радиационная стойкость материала - это способность материала сохранять исходный химический состав, структуру и свойства в процессе облучения и/или после воздействия ионизирующих излучений. Количественно она характеризуется максимальным значением поглощенной дозы, при которой материал становится непригодным для конкретных условий применения. Радиационная стойкость конструкционной стали имеет значение около 510 Гр. Предварительная радиационно-термическая обработка - облучение и отжиг - позволяет увеличить радиационную стойкость в 10-15 раз.  [c.165]

При химико-термической обработке стальных деталей в газовых средах покрытия являются незаменимым средством, предохраняющим отдельные участки поверхности деталей от науглероживания, азотирования, сохраняют исходный химический состав поверхностных слоев и соответствующие ему свойства стали.  [c.141]

Вообще зона высоконагретого твердого металла при сварке сохраняет свой исходный химический состав. Однако в узкой зоне вблизи границы сплавления может иметь место диффузионное проникновение некоторых элементов из металла шва в твердый основной металл. Обычно для элементов, обладающих значительной диффузионной подвижностью, в твердом металле (например, углерод в железе) ширина зоны такого диффузионного проникновения даже при очень больших погонных энергиях и замедленном охлаждении свариваемого металла не превышает 0,2-i-0,3 мм. Другие элементы (в частности большинство легирующих) проникают в эту зону на глубину не более 0,03-f-0,05 мм.  [c.334]

Исходный химический состав  [c.168]

Ионизация, 153 167 Ионные топлива, 65 Испарение капель, 408—411 Испарительное охлаждение, 457—461 Испытательный стенд, 523—532 Исходная температура, 168 Исходное давление, 168 Исходный химический состав, 168  [c.786]

В литературе опубликовано большое количество диаграмм рекристаллизации для наиболее широко используемых металлов и сплавов. Для некоторых важных сплавов и сталей, в основном конструкционного назначения, построено по несколько диаграмм для разных условий деформации и нагрева, разного исходного, структурного и фазового состояния и т. д. Связано это с тем, что указанные факторы существенно влияют на характер структуры после рекристаллизации и потому при построении диаграмм рекристаллизации все факторы (кроме степени деформации и температуры отжига), влияющие на величину зерна, должны во всех образцах, по которым строится диаграмма, сохраняться постоянными и сведения о них должны быть приложены к диаграмме. К этим сведениям относятся химический состав и фазовое состояние сплава, для высоко чистых металлов — степень чистоты и содержание примесей, исходная величина зерна и текстура, схема и скорость деформации скорость нагрева и охлаждения, продолжительность изотермической выдержки и т. д.  [c.357]


Наличие локализованных состояний в запрещенной зоне и их распределение по энергиям существенно влияют на электрофизические, оптические и другие свойства некристаллических полупроводников. В свою очередь, количество, а также распределение локализованных состояний по энергиям определяются взаимным расположением атомов, или атомной (молекулярной) структурой материала. Отсутствие дальнего порядка в расположении атомов некристаллических полупроводников приводит к тому, что при одном и том же химическом составе материала его структура (взаимное расположение атомов), а следовательно, и свойства могут быть различными. Эта особенность некристаллических полупроводников, с одной стороны, позволяет управлять при неизменном химическом составе свойствами материала, изменением его структуры в процессе изготовления образцов, а с другой стороны, делает необходимым при производстве приборов на основе некристаллических полупроводников контролировать не только химический состав, но и атомную структуру исходного материала.  [c.11]

Высокие защитные свойства хромового покрытия при толщине слоя 40-45 мкм достигаются за счет низкой водопроницаемости карбидного слоя, а также малой чувствительности к водородному охрупчиванию обезуглероженного слоя, образующегося под карбидной зоной. Цинковые покрытия обладают, также высокой защитной способностью. Важную роль в повышении защитного зффекта цинковых покрытий играет химический состав цинкового слоя, зависящий от состава исходного сырья.  [c.89]

Сжиганию топлива чаще всего предшествует та или иная его подготовка. Каменные и бурые угли, а также антрациты дробят и просеивают, так как в слое наилучшим образом уголь можно сжечь при более или менее равномерной кусковатости. Заготовленные дрова подвергают естественной сушке. Иногда сплавную древесину при помощи особых машин разделывают на щепу с последующей искусственной ее сушкой. Часто каменные, бурые угли, а также фрезерный торф перед сжиганием превращают в пылевидное топливо, весьма удобное для использования в котельных установках. Превращение каменноугольного кускового топлива в пылевидное представляет собой пример механической его переработки, при которой химический состав топлива не меняется. В промышленности широко применяют также химическую переработку топлива (коксование каменных углей, полукоксование бурых углей, газификацию топлива и др.), в результате которой получают производные (искусственные) топлива, по составу сильно отличающиеся от исходных.  [c.221]

Химический состав поверхности графитовых волокон, которая содержит кислорода больше, чем водорода и азота, определяется природой исходного волокна (вискоза или полиакрилонитрил) и  [c.243]

Технический у г л е р о д — искусственно получаемый пигмент, содержащий от 88,0 до 99,9% углерода, а также примеси кислорода и водорода. Химический состав и свойства пигментов различных марок зависят от исходного сырья и способов их получения.  [c.65]

Полимеризация в простейшем ее виде заключается в том, что молекулы мономеров соединяются между собой с образованием длинных цепочек молекул полимера. Если хотят указать, что молекулы полимера имеют очень большие относительно молекул мономера размеры, то продукты полимеризации называют высокополимерами. При полимеризации химический состав полимера соответствует химическому составу исходного мономера. Современное состояние химии высокополимеров позволяет получать полимеры с заданными свойствами или предопределять свойства получаемого полимера.  [c.44]

S J и 3 Распыление Распыление жидкого (расплавленного) металла газом или водой Любые металлы с температурой плавления не выше 1700—1750° С Сохраняется почти полностью химический состав исходного материала, форма частиц преимущественно сферическая. Метод высокопроизводителен Металлы, предназначенные для массовой продукции  [c.322]

Зависимость пористости, структуры и свойств спечённых металлов от структуры и свойств исходных порошков. При прочих равных условиях (одинаковые химический состав исходных порошков, пористость прессования и режим спекания) имеют место следующие зависимости свойств спечённых изделий от качества исходных порошков.  [c.542]


Для исследования структуры и свойств металла в исходном состоянии от одного конца трубы отрезают кусок длиной ЭО О—500 мм. Определяют химический состав по элементам, указываемым в сертификате, и производят карбидный анализ. Твердость измеряют на приборе Бри-нелля на поперечном сечении. Испытания на растяжение производят при комнатной и рабочей температурах, ударную вязкость определяют только при комнатной температуре. Затем исследуют микроструктуру и определяют количество неметаллических включений. Схема вырезки образцов показана на рис. 6-14,6. Если труба тонкостенная и поперечные образцы по указанной схеме вырезать нельзя, то испытания проводят на продольных образцах. При этом образцы должны быть удалены от среза конца трубы не менее чем на 50 мм, что необходимо для исключения зоны термического влияния газовой резки. Образцы следует вырезать на металлорежущих станках.  [c.278]

Эти исследования показали, что химический состав воды практически не меняется, а качество ее с точки зрения санитарно-гигиенических требований практически не ухудшается. Изменения качества химически очищенной воды и конденсата при подогреве в контактном газовом экономайзере изучались на специальной опытной установке на Киевской ТЭЦ-2. Плотность орошения изменялась от 1,5 до 15,8 м (м -ч). Вода с температурой на входе 35,5—38 °С нагревалась при разной плотности орошения до 45—52 °С. Подробные результаты теплохимических и санитарно-гигиенических анализов приведены в работе [42]. Опытами установлено, что практически неизменными остаются такие показатели, как цветность, прозрачность, наличие взвешенных веществ. Изменение ионного состава химически очищенной воды и конденсата настолько мало, что отклонение содержания отдельных ионов в исходной и нагретой воде можно отнести за счет погрешности анализов. Жесткость изменяется незначительно. Заметно увеличивается концентрация СОг в нагретой воде. Следствием этого является существенное понижение pH в конденсате. Если эту воду довести до кипения, то вследствие падения растворимости газа практически полностью удаляется СОг, а pH нагретой воды становится примерно равным pH исходной. Таким образом, при дальнейшем нагреве воды после контактного экономайзера, например в термических деаэраторах, возможно полное удаление из воды Oj. Изменения состава и качества воды при ее контакте с дымовыми газами исследовались также на многих промышленных установках контактных экономайзеров.  [c.128]

Химический состав шлака отличается от состава золы исходного топлива тем, что в гранулированном шлаке, с одной стороны, отсутствуют возгоняемые составные части золы, с другой — сконцентрированы те части, которые лег-  [c.239]

Паропроводы, работающие при температуре 450°С и выше, подвергаются, кроме того, контролю за структурными изменениями и механическими свойствами металла. Для этого на главных паропроводах предусматривается устройство контрольных участков (по одному на каждую магистраль), выполненных из того же материала, что и основной паропровод. Контрольный участок должен быть прямым и длиной не менее 4 м. Перед монтажом контрольного участка трубы тщательно исследуются микроструктура, химический состав и свойства металла в исходном состоянии. Результаты испытаний и исследований заносят в паспорт трубы контрольного участка. На трубе контрольного участка в трех сечениях также приваривают бобышки. Наблюдения за остаточными деформациями на контрольном участке ведутся в те же сроки, что и на остальных участках паропровода.  [c.145]

Электрическое сопротивление нагревателя изменяется со временем. В результате окисления, ползучести, возгонки компонентов сплава уменьшатся токопроводящее сечение нагревателя, изменяется химический состав и структура металла. Допустимая норма изменения исходного электросопротивления нагревателей, установленная в практике электротермии, составляет 20 %  [c.8]

Материалы на основе тугоплавких металлоподобных соединений . Потребление электродов из таких материалов непрерывно расширяется в связи с возрастающими потребностями новой техники и машиностроения. Основные операции при их производстве - приготовление смеси исходных компонентов, прессование стержней, спекание, обмазка и контроль готовых электродов. Химический состав этих электродов, получаемых методом порошковой металлургии, может быть любым.  [c.132]

В массовом производстве магнитной керамики главной проблемой была и остается воспроизводимость свойств далеко не всегда удается изготовить материалы с повторяющимися параметрами, пользуясь одними и темн же технологическими приемами. Причина этого кроется в чрезвычайно сложном сочетании факторов, влияющих на свойства ферритов исходный химический состав и физико-химическое состояние шихты, характер превращений, происходящих в процессе предварительной обработки И окончательной стадии спекания. Многие магнитные свойства ферритов к тому же являются структурно-чувствительными и реагируют на малейшие изменения керамической структуры, которая может быть вызвана как присутствием микропримесей, так и окислительно-восстановительными процессами, происходящими в ферритах при их термической обработке.  [c.4]

Если у потребителя сталь подвергается сварке, то в зоне теплового влияния сварного шва свойства металла изменяются и для потребителя важно знать химический состав стали, так как именно он будет определять свойства стали в этой зоне. Одновременно потребителю необходимо знать и исходные ме-ланнчсскне свойства металла, так как те части изделий, которые не подвергали тепловому влиянию сварного шва, сохраняют свои свойства. Металл в этом случае поставляется и по хи-  [c.195]

Поэтому на типе текстур рекристаллизации менее от четливо проявляется кристаллография скольжения. Су щественными оказываются химический состав, примес и особенно частицы нерастворенных фаз, их дисперс ность, характер распределения и способность в ряде слу чаев избирательно взаимодействовать с границами раз ного типа, локальная неоднородность плотности дисло каций, исходная величина зерна, а также текстура де формации, в том числе в локальных объемах, т. е. пре дыстория образца, температура и длительность отжига атмосфера, в которой проводится отжиг, толщина изде ЛИЯ и т. д.  [c.404]


Радиокерамические материалы с зависимости от назначения изготовляются следующих типов А — высокомастотные для конденсаторов Б — низкочастотные для конденсаторов В — высокочастотные для установочны.х изделий н других радиоте.хннчески.х деталей. Для каждою типа изготовляют материалы различны.х классов и групп с определенными техническими показателями. Химический состав и исходные сырьевые материалы не предусматриваются.  [c.172]

Исходным этапом является конкретный химически состав Xi (предмет патентования) сплава на основе же леза Хз, т. е. среднелегированной стали Хд с компози цией элементов х Мп—Сг—Мо—V. Промежуточны решения выявляются из описания формулы изобрете ния дополнительное легирование (Хб) элементами груп пы As, Sn,. .., Pb, Se, Те (Xj). Выполнение этапов х  [c.238]

Проверенные заготовки шлифуют и полируют, доводят их размеры до заданных. Затем заготовки снова поступают в печь, где их подвергают термообработке по заданному режиму. В состав стекольной шихты вводят одно или несколько веществ (нук-леаторов), способных образовывать зародыши кристаллов. Их кристаллическая решетка подобна решетке выделяющихся при термообработке из стекла кристаллических фаз. Для успешного осуществления процесса необходимо правильно выбрать химический состав исходного стекла и нуклеаторы кристаллизации, а также режимы термической обработки изделий.  [c.106]

В качестве исходного материала для изготовления металлокерамических фильтров используют бронзовую луженую дробь (ТУ 601—62) с частицами различной сферической формы диаметром до 0,3 мм (в зависимости от требуемой тонкости фильтрования). Химический состав бронзы медь 90,5—92,5%, олово 7,5— 9,5%. Форма фильтров в виде цилиндрических стаканов (может быть и любая другая форма). Бронзовый порошок насыпают в пресс-форму и спекают. Спекание производится в пресс-формах, изготовленных из стали 1X13, качество обработки внутренних поверхностей — 9-й класс шероховатости.  [c.282]

X X о S Вихревой размол Измельчение в вихревой мельнице. Исходным продуктом служит мелкая металлическая крупка, сечка или стружка Любые металлы Сохраняется полностью химический состав исходного металла. Форма частиц блюдцеобразная, в отдельных случаях сферическая Порошки-сплавы  [c.322]

Исследование влияния электрического разряда на состояние суспензий (исходная крупность зерна 3-5 мм, соотношение Т Ж = 1 10) проведено методом сравнения количества и состава газообразных, растворимых и нерастворимых в воде продуктов. На рис.5.4 представлены количественные характеристики объема газообразных продуктов, вьщелившихся при электроимпульсной обработке воды и минеральных суспензий импульсами с энергией 175 Дж, а в табл.5.1 - их химический состав. При электроимпульсном измельчении минералов и руд образование газа происходит главным образом за счет разложения воды. Только при измельчении термически неустойчивого кальцита /124/ и руды, содержащей кальцит, в составе проб газа обнаруживаются продукты разложения минерала. Присутствие азота в пробах связано с его растворимостью в воде. Исходя из этого, различие в объеме газообразных продуктов, выделяющихся при электроимпульсном измельчении минералов и обработке воды, можно объяснить изменением условий формирования канала разряда в воде и суспензиях минералов с разными электро- и теплофизическими свойствами /125,126/.  [c.206]

Специальные исследования по выбору химического состава стали для проволоки сеток грохотов горнорудной и угольной промышленности, работающих в особо тяжёлых условиях эксплоатации, показали, что сопротивление износу проволоки (диаметром 6 мм) увеличивается с увеличением и содержания углерода в углеродистой стали. Намлучшие результаты испытаний (по сравнению с сетками из высокоуглеродистой стальной проволоки) по казали сетки из марганцовистой стали Гад-фильда [48]. Наряду с этим установлено, что прочие факторы (конструкции сеток, температурный решим, атмосферные условия, влажность, кислотность, удельная нагрузка, состав и свойства просеиваемого материала и др.) влияют на качество проволоки больше, чем химический состав исходной стали.  [c.417]

Особое место среди искусственных материалов заняли материалы, получившие название синтетических . Они появились в результате более глубокого преобразования вещества. Первые искусственные полимерные материалы получали в результате химической переработки лишь некоторых природных полимеров (целлюлоза, белки). Химический состав искусственных полимеров, представляющих модифицированные природные материалы, предрешается составохм исходных полимеров.  [c.192]

Распределительные валы (табл. 39). Тенденция к замене стальных распределительных валов литыми чугунными связана с высокими служебными свойствами низколегированного чугуна по сравнению со сталью, которые определяются особенностями структуры. Наличие графита в чугунных кулачках способствует удержанию смазки, что само по себе уменьшает износ кулачков. Меньший модуль упругости чугуна обусловливает и меньшие контактные напряжения в нем. Наилучшей износостойкостью обладают распределительные валы из низколегированного чугуна, в структуре которого содержатся первичные карбиды в виде игл, строчек или ячеек. При этом игольчатая структура карбидов наиболее желательна. Последующая термическая обработка (закалка) кулачков должна обеспечить максимальную твердость, не изменяя структуры первичных карбидов. Недопустимо содержание остаточного аустенита свыше 10%. Металлическая матрица закаленного чугуна состоит из игольчатого мартенсита и обеспечивает надежное удерживание карбидных зерен при воздействии на них циклических нагрузок. Химический состав чугуна должен обеспечить получение оптимальной исходной структуры в отливке и его хорошую прокаливаемость и закаливаемость. Высокая твердость кулачков лЪжет быть получена и в литье (отбеленные кулачки), при этом носки кулачков оформляются кокилем. Следует заметить, что чугунные закаленные распределительные валы более технологичны и обладают более высокими эксплуатационными свойствами.  [c.104]

Химический состав котловой воды определяется качеством исходной воды и способами ее химической обработки, выбираемыми в зависимости от типа котлов и параметров вырабатываемого пара. Для ТЭЦ с котлами до 98,1 10 Па (100 кгс/см2) в качестве подпиточной воды, как правило, используется химически очищенная вода, подготавливаемая по схемам известкование — магнезиальное обескремнивание — Ка-катионирование, Н—Ыа- катионирование или Ыа-катионирование. Поэтому котловая вода даже чистого отсека этих котлов содержит избыточную щелочность в виде едкого натра и соды и значительное жоличество хлоридов, сульфатов и других соединений. Солесодержание воды солевых отсеков может достигать сотен и даже тысяч миллиграммов на килограмм.  [c.8]

На описанных выше опытных установках исследовали санитарно-гигиенические качества и химический состав воды до и после нагрева. Исходная вода в этих установках была различной по составу в одном случае артезианская средней минерализации и средней жесткости, содержавшая сравнительно много свободной углекислоты, в другом — конденсат и химически очищенная вода, т. е. почти обессоленная, содержавшая весьма малые концентрации растворенных газов. Столь значительное различие в составе и качестве исходной воды позволило определить влияние ее состава на изменения, происходящие при контактном нагреве ее дымовыми газами, в широком диапазоне природных вод. Данные об изменениях в составе артезианской воды при контактном нагреве ее продуктами сгорания природного газа по материалам Киевской горсанэпидстанции за несколько лет приведены в ряде работ [20, 36, 42].  [c.128]


Наиболее обстоятельные исследования качества воды проведены были на экономайзерах ряда эл ектростанций. Во время испытаний контактного экономайзера на Бердичевской электростанции акцент был сделан на изучение содержания коррозионно агрессивных газов в воде, поскольку горячая вода направлялась на технологические нужды соседнего кожевенного завода, а протяженность трубопровода горячей воды достаточно велика. Полные химические анализы воды, в том числе на содержание кислорода и СО2, проводились химической лабораторией электростанции. Результаты исследований показали, что химический состав нагретой воды по сравнению с составом исходной практически не изменялся. Обнаруженные незначительные изменения способствовали повышению качества воды (например, при нагревании воды концентрация взвешенных веществ несколько снижается, а кислорода падает до 1 мг/л). Единственным фактором, вызывающим беспокойство, было значительное увеличение концентрации в воде СО2 (до 70—75 мг/л и выше), что может привести к интенсивной коррозии трубопровода горячей воды. При повышении концентрации в воде СО2 снизилась pH, но все же вода оставалась щелочной (рН>7). В условиях Бердичевской электростанции такое не меняющее характера и коррозионной активности воды уменьшение pH объясняется наличием достаточного количества бикарбонатных ионов.  [c.130]

НИЯ предела прочности к исходному значению предела текучести для разных марок турбинных сталей, образцы которых испытывались в 28 %-ном растворе NaOH. Химический состав сталей приведен в табл. 8.1. Как следует из рис. 8.10, а, все испытанные стали в большей или меньшей степени подвержены коррозии под напряжением  [c.284]

Химический состав уноса, который получается в результате механического выноса частиц исходной шихты, примерно такой же, как химический состав материалов шяхты. Химический состав уноса, образующегося в результате возгонки металлов и обладающего большой дисперсностью, отличается от исходных материалов шихты в результате смешения уноса с возгонами металлов.  [c.29]

Электродуговая наплавка хромистых и хромоникелевых авитационностойких сталей Я З детали гидротурбин, изготовленные из углеродистых и низколегированных сталей, имеет ряд специфических особенностей. Прежде всего это относится к выбору исходного состава сварочных (присадочных) материалов, так как наплавленный металл в этом случае будет являться сплавом основного металла детали и присадочного. Поэтому на химический состав наплавленного металла, его структуру и свойства, а следовательно, и коррозионно-кавитационную стойкость, кроме химического состава присадочных материалов, в большой степени будет влиять и технология наплавки  [c.86]


Смотреть страницы где упоминается термин Исходный химический состав : [c.396]    [c.99]    [c.78]    [c.211]    [c.157]    [c.40]    [c.11]    [c.31]    [c.193]    [c.102]    [c.117]    [c.141]   
Ракетные двигатели (1962) -- [ c.168 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте