Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Принцип Даламбера—Лагранжа. Общее уравнение механики

I. Исторические замечания. Уравнения движения механических систем можно получать исходя из весьма различных положений, которые могут рассматриваться, как основные принципы механики. Эти принципы должны полностью характеризовать движение системы материальных точек и быть эквивалентными всей системе дифференциальных уравнений движения. Все законы механики системы материальных точек, на которую наложены идеальные связи, могут быть получены из принципа Даламбера — Лагранжа (общего уравнения динамики). Тем не менее представляет интерес преобразовать общее уравнение динамики так, чтобы получить новую форму, эквивалентную этому уравнению, но отличную от него по структуре. Новые формы либо допускают некоторые обобщения, выходящие за рамки чисто механических задач, либо дают возможность получить новые формы дифференциальных уравнений движения. С теоретической точки зрения новые формы в некоторых случаях позволяют обнаруживать некоторые общие свойства системы, которые не всегда очевидны в первоначальной формулировке принципа. Полученный новый принцип может быть принят за основной закон, и из него можно вывести все свойства движения, если только он правильно отображает природу.  [c.500]


Далее обычным способом излагаются принципы механики принцип Даламбера, принцип возможных перемещений, принцип Даламбера— Лагранжа. Принципы возможных перемещений и Даламбера — Лагранжа рассматриваются для систем, подчиненных односторонним и двусторонним геометрическим идеальным связям. Из общего уравнения статики получаются уравнения равновесия свободного твердого тела и условия равновесия систем тел.  [c.70]

Соотношение (6 ), объединяющее два основных принципа механики, принцип виртуальных перемещений Лагранжа и принцип Даламбера, называется общим или универсальным уравнением механики.  [c.486]

Таким образом получено общее уравнение динамики в четырехмерном пространстве (2.42), которое в классической аналитической механике рассматривается как следствие принципа Даламбера — Лагранжа. Однако применение этого принципа требует идеальности связей, наложенных на систему. Б рассматриваемой системе внутренние связи неидеальны. Все же  [c.27]

Общее уравнение механики и его словесная формулировка выражают объединенный принцип Даламбера — Лагранжа — самый общий вариационный принцип. Этот принцип можно использовать в качестве основной аксиомы механики, так как из него можно вывести как уравнения равновесия, так и дифференциальные уравнения движения механической системы. Целесообразно заметить, что общее уравнение механики может быть применено и для неидеальных связей. В этом случае с учетом разложения сил реакции на  [c.177]

Лагранж полностью отказался от геометрической трактовки в механике- Все учение о равновесии и движении он свел к некоторым общим уравнениям. В основу статики он положил принцип возможных перемещений. В основу динамики он положил сочетание принципа возможных перемещений с принципом Даламбера (методом кинетостатики) и ввел обобщенные силы и обобщенные координаты.  [c.487]

Ж. Лагранж в трактате Аналитическая механика справедливо отмечает, что принцип равенства давлений по всем направлениям... является 1771 основой равновесия жидкостей . Однако сам Лагранж предпринял попытку вывода всех свойств жидкости в состоянии равновесия непосредственно из самой природы жидкостей, рассматривая последние как собрание молекул, сильно разобщенных, независимых друг от друга и способных совершенно свободно двигаться во всех направлениях . Лагранж предпринял новую систематизацию материала гидростатики. Он стремился все закономерности механики вывести чисто математически из единого принципа. Этим единым принципом всей механики Лагранжа была так называемая общая формула динамики (теперь называемая уравнением Даламбера — Лагранжа). В частном случае равновесия системы эта формула переходила в общую формулу статики (принцип возможных перемещений).  [c.177]


Лагранж в Аналитической механике рассматривает именно эту узкую форму принципа наименьшего действия. Однако указание на более широкую форму принципа содержится в его ранней работе где в 13 прямо указывается на то, что полученное Лагранжем в 8 этой статьи соотношение, тождественное с уравнением для изоэнергетической вариации, применимо в случае произвольных сил. Большинство ученых, разрабатывавших этот вопрос после Лагранжа, взяли у него как раз узкую форму принципа (в том числе Гамильтон и Якоби). Лишь Гельмгольц рассмотрел расширенную форму принципа. Однако Гельмгольц не счел нужным проводить отчетливое различие между принципом наименьшего действия в расширенной форме и принципом Гамильтона. Он основывался при этом на том безусловно верном положении, что оба эти принципа эквивалентны уравнению Даламбера и в силу этого являются следствиями друг друга. Тем не менее это не дает права отождествлять их, так как варьирование, применяемое в каждом из этих принципов, производится совершенно различными способами. Оба эти принципа получаются из соотношений при различных специализациях общего способа варьирования.  [c.221]

Развитие аналитического направления в механике получило наиболее яркое выражение в работах знаменитого французского математика и механика Лагранжа (1736—1813). В его сочинении Аналитическая механика (1788) вся механика изложена строго аналитически на основе единого общего принципа — принципа возможных перемещений (указанного Иваном Бернулли еще в 1717 г.). Лагранжу принадлежат дальнейшее развитие п. математическая разработка методов применения этого принципа к решению задач механики. При этом Лагранж не ограничился применением этого принципа только в статике объединив принцип возможных перемещений с принципом Даламбера, он получил в общем виде дифференциальные уравнения движения  [c.20]

Французский ученый Даламбер (1717—1783 гг.) ввел в механику новый метод решения задач динамики при помощи уравнений статики. Нельзя не упомянуть также имени французского ученого Лагранжа (1736—1813 гг.), проделавшего большую работу по математическому обоснованию законов механики и обогатившего механику принципом возможных перемещений. Выводы Лагранжа были уточнены и дополнены русским математиком и механиком академиком М. В. Остроградским (1801 — 1861 гг.). Им же разработана общая теория удара, решен ряд важнейших задач из области гидростатики, гидродинамики, теории упругости и др.  [c.6]

Лагранж, Жозеф Луи (25.1.1736-10.4.1813) — великий французский математик, механик, астроном. В своем знаменитом трактате Аналитическая механика (в 2-х томах), наряду с общим формализмом динамики, привел уравнения движения твердого тела в произвольном потенциальном силовом поле, используя связанную с телом систему координат, проекции кинетического момента и направляющие косинусы (том II). Там же указан случай интегрируемости, характеризующийся осевой симметрией, который был доведен им до квадратур. Следуя своему принципу избегать чертежей, Лагранж не приводит геометрического изучения движения, а рисунки поведения апекса, вошедшие ранее почти во все учебники по механике, впервые появились в работе Пуассона (1815 г), который рассмотрел эту задачу как совершенно новую. Пуассон, тем не менее, систематизировал обозначения, усложняющие понимание трактатов Даламбера, Эйлера и Лагранжа и рассмотрел различные частные случаи движения (случай Лагранжа в некоторых учебниках называют случаем Лагранжа-Пуассона). В свою очередь Лагранж упростил решение для случая Эйлера и дал прямое доказательство существования вещественных корней уравнения третьей степени, определяющих положение главных осей. Отметим также вклад Лагранжа в теорию возмущений, позволивший Якоби рассмотреть задачу о возмущении волчка Эйлера и получить систему соответствующих оскулирующих переменных.  [c.21]

Далее существенный этап развития расчетных математических методов в механике связан с именем Даламбера (1717—1783), предложившего простой и общий метод составления уравнения движения системы. Широкое обобщение аналитические методы получили в трудах Лагранжа (1736—1783), выдвинувшего принцип виртуальных перемещений. Расширение принципа виртуальных перемещений мы находим в трудах русского математика М. В. Остроградского (1801 —1861). Вклад в динамику твердого тела внес С. А. Чаплыгин (1869—1947), а в аэродинамику — Н. Е. Жуковский (1847—1921), который был также выдающимся педагогом, ратовавшим за ясное и четкое выделение физической сущности механических задач и их решение.  [c.29]


Уравнение (17.27) является общим уравнением динамики. Оно известно в механике как тгринцип Даламбера — Лагранжа для голономных и неголономных систем (с линейными относительно скоростей связями). В выражении, стационарность которого утверждается принципом Даламбера — Лагранжа, варьируются лишь координаты, а скорости, уско-  [c.29]

Тогда же возник вопрос об общем методе кинетоста-тических исследований. С этой целью машиноведы пробовали применить не только принцип Даламбера, но и уравнение Лагранжа — однако безрезультатно. Как пишет Лоренц, все... динамические операции основывались на последовательном применении принципа потерянных сил Даламбера, который обеспечивал рассчитывающему и конструирующему инженеру преимущество непрерывной обозримости всех действий, что также сделало основы динамики особенно удобными для преподавания в высшей школе. Это следует подчеркнуть в особенности, ибо в последнее время стремятся приспособить для этого заимствованные из аналитической механики уравнения Лагранжа для каждой степени свободы движения... Основываясь на собственном опыте, я сомневаюсь, чтобы этот весьма значительный в науке метод пришелся но вкусу большинству инженеров  [c.90]

Метод виртуального варьирования возник вместе с принципом возможных перемещений (принципом виртуальных скоростей Лагранжа (J. L. Lagrang)) и принципом Даламбера (J. d Alembert) при объединении их в единый принцип Даламбера-Лагранжа, дающий общее уравнение аналитической механики. С использованием понятия возможных перемещений задаются реакции связей, в частности с помощью известного критерия идеальности связей. Принцип возможных перемещений вначале применялся при решении задач статики как необходимое условие равновесия. Достаточность принципа виртуальных скоростей для равновесия могла быть доказана только в теории, описывающей движение, так как под виртуальной скоростью следует понимать скорость, которую тело, находящееся в равновесии, готово принять в тот момент, когда равновесие нарушено, т. е. ту скорость, какую тело фактически получило бы в первое мгновение своего движения... [51]. Здесь мы вместо термина возможное перемещение предпочитаем пользоваться термином виртуальное перемещение , чтобы избежать терминологического противоречия, указанного М. В. Остроградским [79] при нестационарных связях виртуальные перемещения в общем случае не являются возможными в смысле физической реализации (иначе получилось бы, что возможные перемещения не являются возможными). Термин виртуальные вариации применяем, следуя авторам работ [74, 101], чтобы подчеркнуть, что варьирование производится в соответствии с требованиями, налагаемыми на виртуальные перемещения. Совокупность способов получения виртуальных вариаций, правила выбора множества последних и условия их применения составляют метод виртуального варьирования.  [c.10]

В XVIII в. начинается интенсивное развитие в механике аналитических методов, т. е. методов,- основанных на применении дифференциального и интегрального исчислений. Методы решения задач динамики точки и твердого тела путем составления и интегрирования соответствующих дифференциальных уравнений были разработаны великим математиком и механиком Л. Эйлером (1707—1783). Из других исследований в этой области наибольшее значение для развития механики имели труды выдающихся французских ученых Ж. Даламбера (1717—1783), предложившего свой известный принцип решения зйдач динамики, и Ж. Лагранжа (1736—1813), разработавшего общий аналитический метод решения задач динамики на основе принципа Даламбера и принципа возможных перемещений. В настоящее время аналитические методы решения задач являются в динамике основными.  [c.7]

Перейдем к изучению наиболее общих методов решения задач механики. Эти методы основываются на общем принципе — принципе возможных перемеицений, или принципе Лагранжа, так как Ж. Лагранж первый придал этому принципу законченную форму и положил его в основу статики. Обч единнв этот принцип с принципом Даламбера, Ж. Лагранж получил общее уравнение динамики, из которого вытекают основные дифференциальные уравнения движения материальной системы и основные теоремы динамики ).  [c.107]

Р авенство (2) или (3) и представляет собой общее уравнение динамики. Оно получено путем соединения двух общих принципов механики принципа Даламбера с принципом возможных перемещений, связанным с именем Лагранжа. Поэтому общее уравнение динамики иногда называется уравнением Лагранжа — Даламбера. Из него следует, что при любом движении механической системы с идеальными удерживающими связями в каждый данный момент сумма элементарных работ всех активных сил и всех условно приложенных сил инерции на всяком возможном перемещении системы равна нулю. При этом возможные перемещения нужно брать для фиксированного положения системы, соответствующего рассматриваемому моменту.  [c.780]

Аналитическая динамика начала развиваться в конце XVII— начале XVIII в., в период буржуазной революции в Европе. Торричелли и Бернулли положили начало аналитической статике. Галилей и Ньютон сформулировали основные законы динамики, а в конце XVIII в. Лагранж разработал основы современной аналитической динамики. Весь этот период характеризуется бурным развитием техники и точных наук. В результате появилась потребность к обобщению накопленных знаний, к созданию таких принципов, откуда бы вытекали все основные положения механики. Одним из результатов такого обобщения явился принцип Даламбера — Эйлера — Лагранжа, как наиболее общий принцип механики. Он позволил сформулировать различные задачи о движении в виде системы дифференциальных уравнений.  [c.443]


Своей Механикой Эйлер стремился расшифровать, разъяснить, упростить, развить, обобщить основные понятия и законы механики, созданной его предшественниками. В первую очередь — Ньютоном. Динамика Даламбера — это попытка радикальной перестройки основ механики, стремление к физической ясности ее понятий, предельной универсальности, всеобщности, наглядности и эффективности ее основополагающих принципов. Традиционный принцип виртуальных скоростей (перемещений) был прекрасным образцом основ теории равновесия тел. Поэтому идея его модернизации для нужд теории движения тел представляется вполне естественной. По потребовалась не столько модернизация математического содержания принципа, сколько пересмотр физического понятия равновесия, покоя. Пдея возможности уравновешивания, уничтожения некоторых динамических характеристик двигающегося тела в каждый момент времени связями (другими телами) оказалась очень перспективной. Пменно эту идею положил Лагранж в основу своего общего уравнения динамики, опубликованного в 1788 г.  [c.268]


Смотреть страницы где упоминается термин Принцип Даламбера—Лагранжа. Общее уравнение механики : [c.146]    [c.13]   
Смотреть главы в:

Основы классической механики  -> Принцип Даламбера—Лагранжа. Общее уравнение механики



ПОИСК



Даламбер

Даламбера принцип

Даламбера-Лагранжа)

Лагранжа общие уравнения

Лагранжева механика

МЕХАНИКИ Уравнения Лагранжа

Механика общая

Общие принципы

Общие уравнения

Принцип Даламбера Общее уравнение механики

Принцип Даламбера и уравнения Лагранжа

Принцип Даламбера — Лагранжа Уравнения Лагранжа

Принцип Даламбера—Лагранжа

Принцип Лагранжа

Принципы механики

Уравнение Даламбера

Уравнение Даламбера — Лагранжа

Уравнение общее механики

Уравнения Лагранжа



© 2025 Mash-xxl.info Реклама на сайте