Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Колебания Исследование экспериментальное

Вторая глава посвящена теоретическому и экспериментальному определению частотного диапазона применимости предлагаемых методов расчета элементов машиностроительных конструкций, в частности стержней и амортизаторов. Приводится необходимая для расчета вынужденных колебаний конструкций экспериментальная информация о демпфирующих свойствах балок с антивибрационными покрытиями, о потерях энергии при колебаниях в разъемных соединениях и амортизаторах. Анализируются результаты экспериментальных исследований жесткости амортизаторов в области частот 0,01—10 Гц и различной асимметрии цикла нагружения. Делается попытка оценить предельную виброизоляцию резинометаллических амортизаторов.  [c.5]


Для подтверждения возможности создания условий рассмотренного резонансного режима скважинной обработки с применением штатных промысловых технических средств и используемых на практике генераторов упругих колебаний были проведены стендовые промысловые исследования. Экспериментальная проверка режима возбуждения упругих колебаний в скважине выполнялась на промысловом стенде, собранном на устьевой площадке нагнетательной скв. 6066 НГДУ Чекмагушнефть ОАО АНК Башнефть , с инструментальными замерами спек-трально-амплитудных параметров генерируемых колебаний в условиях работы, максимально приближенных к реальным скважинным условиям обработок.  [c.272]

Особое место в экспериментальных исследованиях интенсивно закрученных вихревых офаниченных течений, в том числе и в камере энергоразделения вихревых труб, занимает изучение пульсаций термодинамических параметров и, в частности, давления, формирующего звуковое поле, излучаемое вихревыми трубами. В соответствии с санитарно-гигиеническими требованиями этот отрицательно влияющий на окружающих фактор должен быть максимально снижен. В то же время должна присутствовать очевидная взаимосвязь взаимодействия акустических колебаний с турбулентной микроструктурой потока, а, следовательно, и со всеми явлениями переноса, ответственными в коне-  [c.117]

Это правило передает зависимость не точно и может служить лишь в качестве грубо ориентировочного. Вообще говоря, [а] с увеличением X убывает, но существуют вещества, для которых вращательная дисперсия аномальна. И экспериментальные исследования, и теоретические изыскания (Друде) показывают, что области аномалии соответствуют областям собственных колебаний (полосы поглощения) и устанавливают, таким образом, связь этого явления с явлением дисперсии показателя преломления.  [c.613]

В ходе развития теории упругости, определяемого обычно практическими потребностями, некоторые ее проблемы впоследствии явились предметами специальных дисциплин механики деформируемого тела Теория оболочек и пластин , Устойчивость деформируемых систем , Колебания упругих систем , Экспериментальные методы исследования напряжений , Термоупругость и др.  [c.6]

Механикой называют область науки, цель которой — изучение движения и напряженного состояния элементов машин, строительных конструкций, сплошных сред и т. п. под действием приложенных к ним сил. Современное состояние этой науки достаточно полно определяется ее основными составными частями общей механикой, к которой относят механику материальных точек, тел и их систем, сплошных и дискретных сред, колебания механических систем, теорию механизмов и машин и др. механикой деформируемых твердых тел, к которой относят теории упругости, пластичности, ползучести, теорию, стержней, ферм, оболочек и др. механикой жидкости и газа с разделами газо- и аэродинамика, магнитная гидродинамика и др. комплексными и специальными разделами механики, в частности биомеханикой, теорией прочности конструкций и материалов, экспериментальными методами исследования свойств материалов и др.  [c.4]


Общие сведения и теоретические данные. Экспериментальное исследование свободных изгибных колебаний полосы сводится к определению низших главных частот последовательных видов колебаний и нахождению для каждой частоты положения узловых линий, в точках которых амплитуды колебаний равны нулю. По найденным узловым линиям устанавливают форму колебаний, соответствующую данной частоте.  [c.114]

В рассматриваемый здесь круг вопросов входит изучение свободных затухающих колебаний, используемых для экспериментального определения эффективных комплексных модулей или податливостей, и исследование волн в композиционной среде, подвергающейся нестационарным воздействиям.  [c.181]

Из рис. 1.44 видно, что в полулогарифмических координатах зависимость t (ff) хорошо описывается прямой линией. Совокупность таких прямых, полученных для данного материала при различных температурах, образует веер, исходящий из одной точки. Эту точку называют полюсом. Для всех исследованных материалов полюсы расположились на одной прямой, параллельной оси абсцисс. Это означает, что Тд у всех материалов приблизительно одинаково. Как показали опыты, оно равно примерно Ю- —10- с, т. е. близко к периоду колебаний атомов около положений равновесия. Строя зависимость Ig т от 1/Г для данного о, можно экспериментально определить t/a-Тщательные опыты, проведенные Журковым с сотрудниками и другими ис-  [c.57]

Даже хорошо отожженные металлы содержат большую плотность дислокаций, оцениваемую приблизительно 10 —10 см 2. При пластических деформациях металлов плотность дислокаций значительно возрастает и может достигать 10 —10 см- и выше. Однако плотность дислокаций увеличивается не только при пластических деформациях статического нагружения. Большинство экспериментальных работ, посвященных исследованию дислокационной структуры при усталости и ультразвуковых колебаниях, показывает, что, несмотря на относительно малые амплитуды напряжений (деформаций), плотность дислокаций возрастает в процессе циклического нагружения. После некоторого числа циклов нагружения она достигает определенной величины насыщения и в дальнейшем остается практически постоянной. Большей амплитуде напряжения (деформации) циклического нагружения соответствует и большая величина насыщения плотности дислокаций. Полученная при этом дислокационная структура зависит не только от величины амплитуды напряжения (деформации) циклического нагружения, но и от кристаллического строения материала и температуры, при которой проводится эксперимент.  [c.176]

Значительное внимание уделялось исследованию и созданию средств для устранения вредных колебаний. С этой целью проведено большое количество теоретических и экспериментальных работ по изучению процессов демпфирования в различных материалах и конструктивных элементах. Изучались способы и методы виброударного демпфирования и гашения колебаний с помощью демпферов сухого трения.  [c.31]

Качественное исследование даже для простейших систем показало, что могут быть такие реальные системы, для которых необходим поэтапный расчет. Во многих случаях достаточен более простой расчет переходного процесса лишь на интервале первого этапа. Излагаемая нами постановка задачи возникла в связи с исследованием динамических процессов в приводах вспомогательных механизмов тепловозов. Экспериментально установлено, что при включении вентилятора холодильника с помощью фрикционной муфты в системе привода начинается переходный процесс, сопровождаемый упругими колебаниями в соединительных валах, незатухающими на всем интервале переходного процесса.  [c.23]

Теоретические и экспериментальные исследования ряда рабочих машин показывают, что угловые скорости ведущих валов этих мапшн в периодическом режиме движения обладают значительными колебаниями, в большинстве случаев гораздо большими, чем у машин-двигателей.  [c.148]

Уравнения движения привода выписаны на основе уравнений Лагранжа, а рассеяние энергии в системе учтено в виде модели вязкого трения. Численные значения коэффициентов затухания колебаний определили расчетным путем с последующим уточнением в процессе экспериментального исследования. При расчете параметров дифференциальных уравнений движения учли, что баланс крутильной податливости складывается из податливостей валов па кручение, контактных деформаций сопряженных деталей, податливостей опор и изгибных деформаций валов, приведенных к крутильной податливости. Уравнения движения главного привода, имеющего переменные массы и жесткости, представили  [c.131]


Реакции упругих опор учли в виде сосредоточенных сил, пропорциональных соответствующему перемещению. После получения общего решения из граничных условий нашли частотное уравнение. В промышленных условиях выполнили экспериментальное исследование по определению вынужденных колебаний и сравнили их с найденными значениями частот, что позволило дать рекомендации по выбору жесткости станины. На втором этапе рассмотрели вынужденные колебания станины. Дифференциальные уравнения поперечных колебаний в плане и в вертикальной плоскости выписали по типу уравнения (4) и дополнительно учли начальную погибь в плане и в вертикальной п.лоскости и эксцентриситет приложения нагрузки. Решения этих уравнений разыскивали в виде рядов, представляя значения погиби и эксцентриситета, также аппроксимированные рядами.  [c.133]

Полагаем, что рассеяние энергии в зубчатых передачах при линейных колебаниях происходит в основном в подшипниковых опорах зубчатых колес и в шлицевых и шпоночных соединениях. Принимаемое допущение основывается на результатах экспериментально-теоретических исследований, выполненных рядом авторов [73 81]. Как показывают эти результаты, рассеяние энергии при колебаниях за счет внутреннего неупругого сопротивления в материале валов редуктора пренебрежимо мало по сравнению с указанными видами конструкционного демпфирования.  [c.92]

Экспериментальные исследования показали, что нелинейность демпфирования колебаний штока с инструментом снижает Ту до величины, значительно меньшей и поэтому может быть исключено из уравнений. В этом случае по условию (6.4) можно найти динамические характеристики привода в функции производительности Qo- Так, минимально допустимая частота автоколебаний привода fa определится соотношением  [c.148]

Во многих теоретических и экспериментальных исследованиях было показано, что идеальные кинематические функции, задаваемые конструктором, в первую очередь ускорения, могут сильно искажаться колебаниями, интенсивность которых зависит от свойств закона движения [14, 18, 53, 69, 73]. При этом существенным образом изменились представления об оптимальных законах движения. Характерно, что за счет рационального синтеза кулачковых механизмов при учете упругих и демпфирующих свойств ведомой части механизма была значительно повышена производительность многих машин легкой, полиграфической, текстильной и других отраслей промышленности.  [c.52]

По вопросу о влиянип напряжения на демпфирующую способность материалов существуют различные точки зрения. Одни исследователи считают, что напряжение влияет на демпфирующую способность, другие исследователи придерживаются противоположных взглядов. Такое положение объясняется тем, что согласно вышеизложенному рассеяние энергии колебаний в материале зависит от причин, проявляющихся по-разному в зависимости от различных условий. При сравнительно высоких напряжениях (как, например, у лопаток турбин), возникает местная пластическая деформация, протекающая в отдельных зернах. Наряду с этим для ферромагнитных материалов на их де.мпфирующую способность влияет ферромагнитное состояние материала, в особенности магнитомеханический гистерезис (смещение границ самопроизвольно намагничивающихся ферромагнетиков— доменов ). Рассеяние энергии колебаний, обусловленное двумя указанными факторами, почти не зависит от частоты и увеличивается с ростом амплитуды напряжения. При малых же напряжениях влияние локальной пластической деформации и ферромагнитных свойств слабо проявляется. Здесь имеют решающее значение диффузионный п термоунругий эффекты. Рассеяние энергии колебаний, обусловленное этими процессами, зависит от частоты и почти не зависит от амплитуды колебаний. Многочисленные экспериментальные исследования показали, что внутреннее тренне при сравнительно больших напряжениях зависит от амплитуды.  [c.104]

Испытанию подвергались три варианта пакетов с одной, двумя и тремя связями. Связи были припаяны к стержням. Для определения напряженного состояния стержней вдоль них были наклеены восемь тензодатчи-ков. Напряжения в проволоках были определены расчетным путем. Методика исследования — свободные, затухающие колебания. Схема экспериментальной установки приведена на рис. 68.  [c.141]

Все большее применение многожильных пружин в технике, необходимость в ряде случаев оценки частоты их поперечных колебаний, исследование устойчивости многожильных пружин сжатия, что является особенно важным, и др. заставило изучить из-гибную жесткость многожильных пружин. Подробное теоретическое и экспериментальное исследование этого вопроса изложено в работе [5].  [c.160]

Этот результат можно получить из общего принципа, высказанного Кельвином. Если рассматривать два погруженных в жидкость тела, из которых одно (А) совершает малые колебания, в то время как другое (В) удерживается в покое, то скорость жидкости на поверхности В в общем будет брльше на той стороне, которая обращена к А, чем на противоположной стороне. Поэтому среднее давление на первую сторону будет меньше, чем на вторую, так что В в общем будет испытывать притяжение к Л. В качестве практических иллюстраций этой теоремы мы можем привести кажущееся притяжение подвешенной тонкой карточки в воздухе колеблющимся камертоном, а также другие подобные явления, исследованные экспериментально Гутрие 1) и объясненные вышеуказанным способом Кельвином ).  [c.239]

Значительные изменения приобретают иногда обертоны деформационных колебаний (исследование их сопряжено с большими экспериментальными трудностями, связанными с наложением полос и их слабой интенсивностью). Они отчетливо проявляются, например, в спектре поглощения первого обертона деформационного колебания СИ раствора хлороформа в триэтиламине, исследованного Щепкиным [9] (рис. 63). При образовании комплекса частота колебания увеличивается, а интенсивность полосы резко возрастает. Когда изменения обертонных полос, как в приведенном примере, явно выражены, они позволяют получать дополнительную информацию о природе и свойствах водородной связи,  [c.164]


Практическая ценность указанного экспериментальнотеоретического исследования нелинейных автоматических систем определяется тем, что при таком исследовании используются преимущества как теоретического, так и экспериментального исследований. При этом теоретический расчет позволяет не только исследовать свободные и вынужденные колебания автоматических систем и производить выбор наивыгоднейшей настройки регулятора, но и определять влияние отдельных параметров системы на динамику автоматического регулирования и обосновывать методику сокращенных экспериментальных исследований. Экспериментальное же исследование позволяет производить  [c.5]

Результаты эксперимента показали, что при постепенном увеличении 1 происходит скачкообразное изменение спектрального состава излучаемых трубой звуковых волн. При этом подобным образом изменяются и термодинамические параметры работы вихревой трубы. Видно (см. рис. 3.32), что при достижении ц = 0,85 происходит резкое уменьшение адиабатного КПД и абсолютных эффектов подогрева и охлаждения (по модулю). Это явление сопровождается уменьшением интенсивности низкочастотных колебаний и соответственно увеличением высокочастотной акустической составляющей. Динамика низкочастотных колебаний в зависимости от ц аналогична поведению адиабатного КПД, т. е. максимуму КПД соответствует и максимум звукового давления, приходящегося на частоту 1300 Гц. Можно сделать вывод, что в процессе энергопергеноса в вихревой трубе наиболее активную роль играют низкочастотные возмущения и перспектива в использовании интенсификации тепломассообмена в вихревой трубе связана с применением для этого низкочастотных колебаний, соответствующих диапазону 1000—3000 Гц. Между акустическими характеристиками и эффективностью работы вихревой трубы существует четкая корреляция. Таким образом, на основе представленного обзора и результатов некоторых экспериментальных исследований макро- и микроструктуры вихревого потока вьщелим наиболее характерные и принципиальные его свойства  [c.141]

ИХ диаметральными краями. В результате этого в течение одной половины периода электрическое поле ускоряет ионы, образовавшиеся в диаметральном зазоре и направляющиеся во внутреннюю полость одного из электродов, где под действием магнитного поля они движутся по круговым траекториям и в конце концов опять попадают в зазор между электродами. Магнитное поле задается таким образом, чтобы время, необходимое для прохождения полуокружности по траектории внутри электродов, равнялось полупериоду колебаний. Вследствие этого, когда ионы возвратятся в зазор между электродами, электрическое поле изменит свое направление, и, таким образом, ионы, входя внутрь другого электрода, приобретут еще одно приращение скорости. Поскольку радиусы траекторий внутри электродов пропорциональны скоростям ионов, время, необходимое для прохождения таким ионом полуокружности, не зависит от его скорости. Поэтому если ионы затрачивают точно половину периода на первую половину своего оборота, то они будут двигаться и дальше в таком же режиме и, таким образом, будут описывать спираль с периодом обращения, равным периоду колебаний электрического поля, до тех пор, пока они не достигнут наружного края прибора. Их кинетические энергии по окончании процесса ускорения будут больше энергии, соответствующей напряжению, приложенному к электродам, во столько раз, сколько они совершили переходов от одного электрода к другому. Этот метод предназначен главным образом для ускорения легких ионов, и в проведенных опытах особое внимание уделялось получению протонов, обладающих высокими скоростями, потому что предполагалось, что только протоны пригодны для экспериментальных исследований атомных ядер. При применении магнита с плошад-  [c.145]

Указанный гравитационный эффект вызывает значительные трудности при проведении экспериментальных исследований теплофизических свойств вещества вблизи критической точки. Эти трудности усугубляются наличием еще одной особенности вещества, находящегося в К(ри-тическом состоянии, которая заключается в больщой длительности установления равновесия. Незначительные отклонения температуры и плотности от равновесных могут выравниваться сутками вследствие медленности релаксационных процессов в системе. К сказанному следует добавить, что резкое изменение свойств вблизи критической точки (удельного объема, энтальпии, теплоемкости) приводит к тому, что незначительные колебания давления и температуры, при которых проводится эксперимент, вызывают большие отклонения измеряемого свойства от истинной величины.  [c.94]

Ставски и Лоуви [153 ] осуществили теоретическое и экспериментальное исследования осесимметричных форм свободных колебаний круглых пластин, состоящих из произвольного набора изотропных слоев.  [c.188]

Данный обзор исследований волн и колебаний, возникающих в направленно армированных композитах, был по необходимости кратким, и список цитированных работ, бесспорно, далек от полного. Некоторые важные и интересные аспекты проблемы совсем не рассматривались. В числе последних упомянем динамические эффекты в хаотически армированных композитах, механизмы разрушения в условиях динамического нагружения, такие, например, как разрыв волокон и расслоение, оптимизацию структуры, и, конечно, нелинейность связи напряжений с деформациями при динамическом нагружении направленно армированных композитов. Аналитические и экспериментальные работы по этим темам опубликованы, но большая часть из них носит поисковый характер. Краткое обсуждение некоторых из зтих работ содержится в обзорных статьях Гёртмана [29] и Пека [53, 54]. Несмотря на это стоит закончить данную главу несколькими замечаниями относительно хаотического армирования, разрушения, оптимизации и нелинейности, а также перечислением некоторых посвяшенных этим вопросам работ.  [c.386]

В настоящей главе была сделана попытка дать сводку результатов, полученных в различных экспериментальных и теоретических работах по волнам и колебаниям, возникающим в направленно армированных композитах, для случая малых деформаций и линейных определяющих уравнений. Эта попытка представляется своевременной, так как за последние годы достигнуты значительные успехи в понимании особенностей линейного динамического поведения композиционных материалов. Линейная теория с ее точными результатами для слоистой среды и различными хорошо обоснованными приближенными подходами к описанию как слоистых, так и волокнистых композитов в настоящее время близка к полному завершению. Этот объем теоретических сведений дополняется экспериментальной проверкой результатов, относящихся к распространению сину-соида льных волн и импульсных возмущений. Следует отметить, однако, что необходимость проведения дальнейших экспериментальных исследований все еще остается важной. Многое еще предстоит сделать и в решении задач с нестационарными волнами, в особенности в определении локальных значений полевых переменных, таких, как напряжения на поверхности раздела фаз и динамическая концентрация напряжений.  [c.388]

При возбуждении ультразвуковых волн электромагнитноакустическим методом в ферромагнетиках колебания возникают как за счет взаимодействия вихревых токов с постоянным магнитным полем, так и за счет магнитострикционнык сил. Экспериментальные исследования Г. А. Буденкова,  [c.246]


Как показали экспериментальные исследования [1, 2], при возбуждении ЭМА методом ультразвуковых колебаний в ферромагнитных материалах при повышенных температурах коэффициент преобразования электромагнитной энергии в упругую увеличивается. Особенно резко возрастает амплитуда ультразвукового импульса при подходе к точке Кюри. В связи с этим весьма актуальна задача теоретической интерпретации характера возбуждения ультразвуковых колебаний при повышенных температурах. Возбуждение ультразвуковых колебаний ЭМА методом в ферромагнитных материалах происходит за счет взаимодействия вихревых токов с индукцией постоянного магнитного поля и за счет маг-нитострикционных сил. При повышении температуры индукция постоянного магнитного поля В, а также электропроводность среды уменьшаются, что приводит к уменьшению амплитуды ультразвуковых колебаний, возбуждаемых за счет амперовых сил.  [c.114]

Аналитические зависимости (29) — (32) декремента внутреннего трения от времени (числа циклов) нагружения были сопоставлены с экспериментальными результатами работ [10, 17]. В работе [17] приведено исследование изменения декремента внутреннего трения в стали, содержащей 0,22% С, подвергнутой циклическому нагружению изгибом с частотой 3100 цикл/мин при амплитуде напряжения 24 кгс/мм . Через различные промежутки времени нагружение прерывалось и проводилось измерение декремента внутреннего трения в килогерцевой области частот методом затухания собственных колебаний.  [c.173]

Вторая особенность предопределяет целесообразность экспериментального исследования теплофизических сеойств с технической точностью. Известно, что при экспериментальном изучении теплофизических свойств необходимо иметь сведения о. составе и чистоте исследуемых веществ, поскольку достоверность конечных результатов определяется не только погрешностью применяемых методов, но и составом веществ. Что касается органических и кремнийорганических теплоносителей, то они являются сложными смесями, точный состав которых часто не известен. Это следует учитывать экспериментаторам при исследовании теплофизических свойств указанных теплоносителей, и, как нам представляется, вряд Л и целесообразно проводить прецизионные измерения с достижимой на сегодняшний день точностью. Вполне достаточно ограничиться измерениями с тех ни-ческой точностью (например, при погрешности определения плотности 0,3— , вязкости 2—4% и т. д.). Для технических расчетов подобная погрешность вполне допустима, тем более что колебания в химическом составе жидкости вызывают изменения в свойствах различных партий теплоносителя, которые часто превышают указанную погрешность. Так, непостоянство полимерного состава полиорганосилоксановых жидкостей приводит к изменению свойств на 10—15% Л. 39, 42]. Изменение свойств наблюдается и у терфенильных смесей различных марок,  [c.85]

НО разложившегося в условиях пиролиза МИПД [Л. 73]. Третья серия измерений проводилась с облученным МИПД [Л. 74]. Во второй серии опытов была проведена часть измерений в ранее исследованной, области температур, причем отсчет времени истечения проводился как визуально, так и с помощью контура электромагнитных колебаний. Результаты этих измерений в пределах погрешности эксперимента согласуются с данными предыдущего исследования [Л. 103]. Измерения проводились многократно при нижнем и верхнем положении вертикальной трубки, а окончательно принимался средний результат. Разброс экспериментальных точек не превышал 1%. Максимальная относительная погрешность определения коэффициента вязкости нераз-ложившегося МИПД (табл. 3-58) не превышала 2,6%.  [c.173]


Смотреть страницы где упоминается термин Колебания Исследование экспериментальное : [c.177]    [c.183]    [c.193]    [c.214]    [c.208]    [c.32]    [c.219]    [c.10]    [c.188]    [c.201]    [c.250]    [c.174]    [c.89]    [c.35]    [c.39]    [c.95]   
Справочник машиностроителя Том 3 Изд.2 (1956) -- [ c.378 ]

Справочник машиностроителя Том 3 Издание 2 (1955) -- [ c.378 ]



ПОИСК



Данные экспериментального исследования пространственных моделей струйных реле, логических элементов, элементов запоминания сигналов и аэродинамических генераторов колебаний

Колебания - Возбудители при испытаниях фазовый определения декремента 317 Определение гидродинамических параметров 370 - Экспериментальные исследования

Критические числа оборотов Экспериментальное исследование крутильных колебаний

Метод свободных колебаний и примеры экспериментальных исследований

Некоторые аспекты экспериментальных исследований колебаний рабочих колес Вибрационная доводка турбомашин

Экспериментальное исследование

Экспериментальное исследование вынужденных колебаний без резания

Экспериментальное исследование устойчивости и колебаний при резании

Экспериментальные и теоретические исследования, обосновывающие гипотезы о природе действия КВЧ-излучений на организмы. Вероятный механизм генерации клетками КВЧ-колебаний

Экспериментальные исследования аксиальных колебаний диска по Кэмпбеллу

Экспериментальные исследования форм колебаний



© 2025 Mash-xxl.info Реклама на сайте