Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Микроструктура потока

Особое место в экспериментальных исследованиях интенсивно закрученных вихревых офаниченных течений, в том числе и в камере энергоразделения вихревых труб, занимает изучение пульсаций термодинамических параметров и, в частности, давления, формирующего звуковое поле, излучаемое вихревыми трубами. В соответствии с санитарно-гигиеническими требованиями этот отрицательно влияющий на окружающих фактор должен быть максимально снижен. В то же время должна присутствовать очевидная взаимосвязь взаимодействия акустических колебаний с турбулентной микроструктурой потока, а, следовательно, и со всеми явлениями переноса, ответственными в коне-  [c.117]


Связь микроструктуры потока с энергоразделением  [c.121]

Приведенный качественный анализ макро- и микроструктуры потока, а также природы энергоразделения в вихревой трубе и соответствующие оценки имеют важное значение для развития теории вихревого эффекта и соверщенствования создаваемых на его основе технических устройств.  [c.143]

При разработке адекватной физико-математической модели, объясняющей феномен Ранка, одним из основных факторов следует считать взаимосвязь эффективности процесса энергоразделения с характеристиками микроструктуры потока [15, 37, 38, 95,  [c.170]

Численный анализ, проведенный в [143], дает диапазон изменения величины 0,7 < 0,9 для критического режима истечения газа из соплового ввода завихрителя. Приведенные выше теоретические оценки взаимосвязи характерных величин процесса энергоразделения с микроструктурой потока однозначно подтверждают существование между ними строгой корреляционной  [c.190]

Найденные изолированные вихревые образования характерны тем, что возникают при аналитических краевых условиях, взятых, например, на окружности конечного радиуса с центром в начале координат. Они, как микроструктура потока, могут появляться в ламинарных течениях без видимых причин. Численные методы недостаточно высокого порядка точности не воспроизведут их, если они целиком располагаются внутри ячеек расчетной сетки.  [c.201]

В настоящей работе результаты детального исследования макро- и микроструктуры потока, закрученного с использованием различных видов завихрителей, использованы для построения математической модели закрученного потока и разработки универсального способа обобщения результатов его экспериментального исследования, которые позволили построить физически обоснованные методы расчета тепло-, массообмена и трения в таких потоках.  [c.8]

Дополнительные потери энергии, обусловленные закруткой потока, в самом канале связаны с изменением макро- и микроструктуры потока.  [c.132]

В некоторых литературных источниках [15, 34-40, 112, 116] сопловые устройства формирования закрученной струи называют завихрителями. Такое название соплового ввода, формирующего закрученный поток, вносит некоторую двусмысленность, связанную с завихренностью турбулентных течений. Изучение закрученных течений, особенно при достаточно высоких степенях закрутки, неразрывно связано с необходимостью изучения микроструктуры течения, а следовательно, и с завихренностью. Поэтому, когда речь идет о техническом аппарате, устройстве, использующем закрученные потоки, более оправдано употребление терминов устройство формирования закрученной струи (закручивающее устройство) или просто сопловой ввод.  [c.11]


Микроструктура закрученного потока в трубах с диафрагмированием выходного сечения исследована в [6, 196]. При значительной закрутке диафрагмирование приводит к перемещению минимума в приосевую область и снижению там общего уровня интенсивности соответствующих пульсаций.  [c.116]

Микроструктура света (1950) Чем большее число молекул находится в возбужденном состоянии при распространении света в среде, т. е. чем больше световая мощность, тем заметнее должна уменьшаться доля поглощаемой энергии, так как возбужденные молекулы до своего возвращения в нормальное состояние перестают абсорбировать свет прежним образом. Поглощение должно, таким образом, зависеть от мощности светового потока. Очевидно, что отклонение от линейности будет тем заметнее, чем больше  [c.216]

Турбулентные характеристики потока дают представление о микроструктуре турбулентных течений в различных условиях. Они необходимы для расчета закономерностей течения, тепло- и массо-обмена турбулентных потоков, разработки более совершенных методов их расчета.  [c.255]

В момент возникновения турбулентные вихри имеют крупные размеры и низкие частоты пульсаций. В дальнейшем происходит перенос этих вихрей потоком, их разрушение, рост частоты пульсаций. Крупномасштабные вихри несут основную долю энергии пульсационного движения, которое передается вихрям малого размера. В последних кинетическая энергия турбулентности переходит в теплоту в результате вязкого трения. Распределение энергии пульсаций по частотам носит название энергетического спектра пульсаций. Имеются и другие более сложные параметры, характеризующие микроструктуру турбулентного потока [4].  [c.257]

МИКРОСТРУКТУРА ЗАКРУЧЕННОГО ПОТОКА  [c.79]

Экспериментальное исследование микроструктуры закрученного потока при диафрагмировании канала также выполнено в трубе с диаметром 80 мм и длиной 14 калибров при течении воздуха с использованием аксиально-лопаточных завихрителей с центральным телом (см. табл. 1.1). В качестве выходной диафрагмы использовался осесимметричный конический конфузор. Его относительный диаметр dJ = й д. изменялся от 0,5 до ОД.  [c.83]

МИКРОСТРУКТУРА ЗАКРУЧЕННОГО ПОТОКА В ПРОНИЦАЕМОМ ЦИЛИНДРИЧЕСКОМ КАНАЛЕ  [c.84]

Микроструктура закрученного потока определялась в системе координат V, (см. рис. 4.1). Интенсивность пульсаций рассчитывалась так же как и в непроницаемом канале (разд. 4.1). На рис. 4.9 представлено распределение е , и для одного из завихрителей в сечении х- 8,46 при различных значениях параметра вдува В. Качественно аналогичные данные получены и для других завихрителей.  [c.85]

На рис. 31,в схематически показано сечение трубы до эксплуатации (сплошные линии) н после эксплуатации (пунктир). Направление теплового потока обозначено стрелкой с буквой q. Максимальное утонение наблюдается на тыльной стороне под углом 45° к вертикали. На вертикальном участке выше гиба наружный диаметр трубы и толщина стенки находятся в пределах допусков. Микроструктура состоит из зерен феррита и слабо коагулированного перлита. На внутренней поверхности трубы имеется обезуглероженный слой, образовавшийся при окислении трубы в процессе термической обработки. На наружной стороне такой слой отсутствует. Особенно сильно пострадали горизонтальные участки подъемно-опускных петель, примыкающих к подовому экрану. Было принято решение о замене экрана и об изменении технологии расшлаковки.  [c.86]

В настоящее время среди исследователей вихревого эффекта широкое распространение получила усовершенствованная модификация гипотезы взаимодействия вихрей [137, 140, 142, 143, 155, 157]. Хотя сама гипотеза будет подробно описана в гл. 4 в целях логического объяснения взаимосвязи микроструктуры потока с энергопереносом в камере энергоразделения вихревых труб, кратко рассмотрим ее основные положения.  [c.121]

Таким образом, можно сделать вывод о том, что для внесения ясности в понимание физического механизма энергоразделения в вихревых трубах необходимо провести дополнительные исследования по изучению влияния мелкомасштабной турбулентности, а также влияния КВС и прецессии вихревого ядра на вихревой эффект. В теоретическом плане необходимо провести предварительные оценки возможности энергоразяеления вследствие взаимодействия когерентных вихревых структур, проанализировать уравнения закрученного потока в представлении вихревой, акустической и турбулентной структур возмущений, а также построить физико-математическую модель процесса энергоразделения на базе детального рассмотрения микроструктуры потока в вихревых трубах.  [c.128]


Исследование характеристик турбулентности вблизи края затопленной струи имеет тот недостаток, что здесь весьма велики уровни турбулентности, а это ставит под сомнение точность измерений, которые осуществляются с помощью термоанемометров.. Приобретает интерес исследование микроструктуры потока в турбулентных следах, а также в спутных струях. Весьма интересные результаты применительно к турбулентным следам за цилиндрическими телами в условиях безградиентного и градиентного спутных потоков получены Ю- Г. Захаровым и Л. Н. Уханойой (1959, 1966). А. С. Гиневский и Л. И. Илизарова исследовали микроструктуру турбулентной струи в спутном потоке (1966).  [c.816]

Перейдем к более общей постановке задач о движении жидкости в пористой среде, подчиняющемся закону Дарси, и рассмотрим трехмерное движение. Пусть Ых, иу и иг будут компонентами скорости фильтрации вдоль координатных осей х, у ц г. Под компонентами скорости фильтрации вдоль нормали к какой-либо площадке будем, естественно, понимать отношение фильтрационного расхода, протекающего через эту площадку, к ее площади. Как и в гидравлической постановке, здесь не учитывается микроструктура потока в масштабе отдельных частиц среды, а изучается непрерывное поле скоростей, допускающее рассмотрение сколь угодно малых ее объемов. Представим себе фиктивную жидкость, заполняющую все пространство, включая и объем твердого скелета среды, и движущуюся со скоростями их, иу и г- Рзспределение давлений в ней должно соответствовать действительному распределению давлений в реальной жидкости. По аналогии с общими уравнениями гидродинамики составим уравнения движения жидкости в пористой среде, ограничившись для простоты случаем установившегося движения. Эти уравнения впервые были получены И. Е. Жуковским (1889 г.).  [c.466]

В вихревых трубах практически всегда формируется интенсивно закрученный поток, по своей микроструктуре близкий к составному вихрю Рэнкина (рис. 1.7). При этом периферийный вихрь, как уже отмечалось, вращается по закону, близкому к закону постоянства циркуляции Г = onst или к зависимости (1.13) окружной скорости по радиусу. Приосевой вихрь, вращающийся по закону, близкому к вращению твердого тела (1.14) с постоянной угловой скоростью (О = onst, получил название вынужденного [40, 112, 115, 116, 137, 196, 204].  [c.26]

Микроструктура закрученного потока представляет особый интерес для понимания физического механизма процессов течения и тепломассообмена. На структуру турбулентного течения в камере энергорааделения вихревых труб значительно влияют особенности радиального распределения осредненных параметров и кривизна обтекаемой газом поверхности. При этом поле турбулентных пульсаций закрученного ограниченного потока всегда трехмерное и имеет особенности, отличающие его от турбулентных характеристик незакрученных течений [15, 18, 30, 181, 196]. На рис. 3.11,а показаны интенсивность турбулентности е закрученного потока в системе координат, связанной с криволинейной линией тока, где — продольная, — поперечная и ц — радиальная составляющие турбулентных пульсаций в зависимости от относительного расстояния до стенки камеры энергоразделения y/R.  [c.115]

Результаты эксперимента показали, что при постепенном увеличении 1 происходит скачкообразное изменение спектрального состава излучаемых трубой звуковых волн. При этом подобным образом изменяются и термодинамические параметры работы вихревой трубы. Видно (см. рис. 3.32), что при достижении ц = 0,85 происходит резкое уменьшение адиабатного КПД и абсолютных эффектов подогрева и охлаждения (по модулю). Это явление сопровождается уменьшением интенсивности низкочастотных колебаний и соответственно увеличением высокочастотной акустической составляющей. Динамика низкочастотных колебаний в зависимости от ц аналогична поведению адиабатного КПД, т. е. максимуму КПД соответствует и максимум звукового давления, приходящегося на частоту 1300 Гц. Можно сделать вывод, что в процессе энергопергеноса в вихревой трубе наиболее активную роль играют низкочастотные возмущения и перспектива в использовании интенсификации тепломассообмена в вихревой трубе связана с применением для этого низкочастотных колебаний, соответствующих диапазону 1000—3000 Гц. Между акустическими характеристиками и эффективностью работы вихревой трубы существует четкая корреляция. Таким образом, на основе представленного обзора и результатов некоторых экспериментальных исследований макро- и микроструктуры вихревого потока вьщелим наиболее характерные и принципиальные его свойства  [c.141]

Все изложенные выше примеры, анализ доступных литературных данных позволяют сделать вывод о том, что вихревые трубы использовались лишь в условиях отсутствия вторичного центробежного поля сил, накладываемого на основное, создаваемое закручивающим устройством. Поэтому отсутствуют исследования характеристик процесса энергоразделения в вихревых трубах в условиях воздействия на них вторичного поля инерционных сил. Тем не менее, очевидно, что оно определенным образом искажает обычную картину течения в камере энергоразделения вихревых труб. Такое воздействие должно сопровождаться не только изменением характеристик макроструктуры потока, но и характеристик его микроструктуры. На каждый турбулентный микро-или макровихрь в зависимости от его расположения в объеме камеры энергоразделения и собственных размеров действует своя дополнительная сила инерции, зависящая от частоты вращения ротора и радиуса от центра элемента вихря до оси.  [c.379]


Из физических соображений следует, что значение Ау зависит от величины и микроструктуры внутрипоровой поверхности, скорости и теплофизических свойств теплоносителя и не должно зависеть от длины проницаемого каркаса, поскольку микроструктура однофазного потока стабилизируется на расстоянии нескольких диаметров пор от входа в него. В свою очередь, микроструктура порового пространства зависит от пористости и характера исходного дисперсного материала - порошка, волокна, сетки и т. д.  [c.37]

В связи с этим следует отметить, что числа Рейнольдса потока, полученные при обработке результатов для пористых порошковых металлов с помошью параметра ( /а, существенно меньше соответствующих значений, рассчитанных при использовании в качестве характерного размера диаметра пор d или частиц d , хотя условия всех экспериментов и характеристики матриц примерно одинаковы. Поскольку параметр fij t таких металлов обычно значительно меньше геометрических размеров пористой микроструктуры (что нетрудно показать на основании данных табл. 2.1), то использование параметра j3/a передвинуло бы зависимости, приведенные на рис. 2.7, из области Re > 1 и сблизило бы их в области Re < 1. В тех случаях, когда пористый металл изготовлен из мелкого порошка и или d малы и близки к /3/а, критериальные уравнения близки к тем, в которых в качестве характерного размера использована величина 0/а. Однако такое представление экспериментальных данных, приведенных в табл. 2.4, невозможно из-за отсутствия необходимых сведений.  [c.41]

При нагреве стали под потоком газа атмосфера типа Н2 — Н2О — N2 практически является обезуглероживающей сталь с любым содержанием углерода. При нагреве стали в печах с герметическими муфелями и с ограниченным весьма малым расходом газа образуется в результате некоторого обезуглероживания стали метан в концентрации, достаточной для установления равновесия между газовой фазой и углеродом в у-железе. С понижением парциального давления -j-равновесное содержание метана уменьшается, и область обезуглероживания сужается (пунктирные кривые верхней части фиг. 125). Обезуглероживающая способность атмосферы типа На — Н2О — N2 при различных условиях нагрева стали характеризуется кривыми зависимости глубины обезуглероживания от влажности атмосферы (фиг. 129) и микроструктурой обезуглероженного слоя (фиг. 130, см. вклейку).  [c.564]

Фиг. 130. Микроструктура обеауглероженного слоя. Продолжительность нагрева стали 3 часа охлаждение под потоком газа атмосфера Н, - HjO - N, + Рн,0 = 1- Фиг. 130. Микроструктура обеауглероженного слоя. Продолжительность нагрева стали 3 часа охлаждение под потоком газа атмосфера Н, - HjO - N, + Рн,0 = 1-

Смотреть страницы где упоминается термин Микроструктура потока : [c.5]    [c.115]    [c.144]    [c.464]    [c.68]    [c.99]    [c.90]    [c.318]    [c.124]    [c.28]    [c.332]    [c.339]    [c.155]    [c.407]   
Смотреть главы в:

Вихревой эффект. Эксперимент, теория, технические решения  -> Микроструктура потока



ПОИСК



Макро- и микроструктура потоков в камере энергораэделеиия вихревых труб

Микроструктура

Микроструктура закрученного потока

Микроструктура закрученного потока в каналах переменного сечения

Микроструктура закрученного потока в проницаемом цилиндрическом канале

Микроструктура закрученного потока в трубах

Микроструктура коэффициента преломления в турбулентном потоке

Микроструктура температурпого поля в турбулентном потоке

Микроструктура турбулентного потока Структурные и спектральные функции поля скоростей в турбулептяом потоке

Связь микроструктуры потока с энергоразделением



© 2025 Mash-xxl.info Реклама на сайте