Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Конструкционные материалы Конструкционные стали

Приведенные выше соотношения справедливы при температурах примерно до 200° С, когда показатели прочности, упругости, линейного расширения и теплопроводности для обычных конструкционных материалов изменяются сравнительно мало. Эти соотношения теряют силу при переходе в область высоких температур. Здесь на первый план выступает жаропрочность, т. е. свойство длительно выдерживать напряжения в условиях высоких температур. К жаропрочным материалам относятся стали, легированные N1, Ш, Мо, Та. сплавы на никелевой основе, титановые сплавы и др. В области высоких температур качественные соотношения между материалами становятся иными. С повышением температуры большинство рассмотренных выше материалов (например стали обычного состава) теряет прочность некоторые из них вообще не способны выдерживать высокие температуры (легкие сплавы). Титановые сплавы, которые в условиях умеренных температур являются едва ли не самыми худшими по величине термических напряжений, здесь в силу своей жаропрочности выдвигаются на одно из первых мест.  [c.350]


В марках порошковых конструкционных материалов из углеродистых и легированных сталей первая буква определяет класс материалов С — сталь, вторая буква П указывает то, что материалы получены методами порошковой металлургии. Первая цифра после букв СП как и в случае конструкционных сталей, показывает среднее содержание углерода в сотых долях процента. Последующие буквы обозначают легирующие элементы, а цифры после них — их среднее содержание в целых процентах. В конце марки через тире указывается группа плотности материала (1—4). В табл. 22 приведены механические свойства некоторых марок порошковых материалов для различных условий нагружения.  [c.251]

Строительство атомных электростанций, атомных кораблей требует самых разнообразных материалов конструкционных сталей, нержавеющих и жаропрочных сталей и сплавов, цветных металлов и других металлических материалов. Но атомная техника предъявила к материалам, используемым для изготовления некоторых деталей, особые требования, не встречающиеся в других отраслях техники. В данном случае речь идет в первую очередь о такой важнейшей характеристике, как способность ядра атома поглощать тепловые нейтроны (нейтроны с низкой энергией). Для атомной техники требуются материалы и с высокой способностью к поглощению нейтронов , и с ма-лон . Способность разных металлов поглощать нейтроны колеблется в очень широких пределах (табл. 114).  [c.557]

Все конструкционные материалы можно условно разделить на хрупкие и пластичные. К весьма пластичным материалам относят малоуглеродистые стали, алюминий, медь и некоторые другие. Эти материалы обладают способностью деформироваться в широких пределах без разрушения. Примерами хрупких материалов могут служить чугун, высокоуглеродистые сорта стали, металлокерамические материалы, стекло. Хрупкие материалы разрушаются без заметной предварительной деформации.  [c.131]

Механизм деформации и разрушения разных конструкционных материалов различен. В настоящее время появилось много новых материалов, в том числе синтетических. Некоторые из них имеют ярко выраженную анизотропию. Таковы, например, армированные и волокнистые материалы. Но даже многие из тех материалов, которые в больших объемах кажутся вполне однородными (как, например, сталь и чугун), имеют поликристаллическую структуру и, следовательно, в микрообъемах тоже анизотропны. Поэтому до настоящего момента не удалось построить универсальную математическую модель, удовлетворительно описывающую процесс деформации и разрушения любого материала. Существует несколько таких моделей, каждая из которых строится на основе своей особой гипотезы разрушения и находится в согласии с экспериментальными результатами только для определенной группы материалов. Мы не сможем рассмотреть здесь все эти модели и ограничимся только несколькими, простейшими, но обеспечивающими приемлемую точность расчетов.  [c.158]


Техническое применение чистого железа очень невелико. Зато железо, легированное углеродом,, является наиболее употребительным конструкционным материалом. В стали (или углеродистой стали) содержание углерода доходит до 1,3 %, а в чугуне оно может быть от 2 до 4%.  [c.101]

Конструкционными материалами для реакторных установок являются в основном аустенитные нержавеющие стали. Это вызвано стремлением уменьшить коррозию для сокращения возможности перехода продуктов коррозии в воду реакторов и их отложения на твэлах. Корпус реактора выполняется из перлитной стали с аустенитной нержавеющей наплавкой. Основные трубопроводы реакторного контура выполняются также из перлитных сталей с плакировкой аустенитной нержавеющей.  [c.52]

Конструкционные материалы — нержавеющая сталь, ванадий, ниобий (распыление, распухание, потеря пластичности)  [c.8]

В книге рассмотрены различные группы наиболее употребительных в машиностроении материалов конструкционных сталей, чугунов, рессорно-пружинных сталей и сплавов, инструментальных, мартенситностареющих сталей, коррозионностойких и жаропрочных сталей и сплавов, новых сталей для химико-термической обработки.  [c.4]

В литературе нет сведений о влиянии примесей на активационные свойства теплоносителей, работающих в ядерных реакторах. Многие примеси накапливаются в теплоносителе в процессе его работы до значительных концентраций и не считаться с их активационными свойствами нельзя. В первую очередь это относится к конструкционным материалам, накапливающимся в жидком металле-теплоносителе в растворенном виде и в форме твердых взвесей металлов и окислов, а также в холодных ловушках, где эти частицы задерживаются фильтром. Железо и никель, например, входящие в состав стали, являются наиболее ощутимыми примесями в жидких щелочных металлах. В ядерных реакторах возможны реакции типа Fe(a, рп), Fe d, п), q(p, п), Ре(р, у), Ni(rt, р) и др. с образованием  [c.48]

Медные Медь марок МОО, МО, Ml, М2р, МЗр 1083 1083 8,9 Марки меди с содержанием кислорода не более 0,05 % Пайка конструкционных материалов, высоколегированных сталей в вакууме, нейтральной и восстановительных средах  [c.158]

Водный теплоноситель, контактируя с конструкционными материалами (различными сталями и сплавами на основе меди), обогащается продуктами коррозии — главным образом оксидами железа и меди в коллоидной форме.  [c.32]

Общие положения н схемы обработки. Ультразвуковая абразивная обработка эффективна при обработке заготовок из конструкционных материалов, имеющих низкую обрабатываемость резанием, электрофизическим и электрохимическим методами. Это заготовки из хрупких и твердых неэлектропроводных, химически стойких материалов, таких, как стекло, кварц, керамика, ситалл, алмаз, полупроводники (германий, кремний, арсенид галлия), азотированных и цементированных сталей и др.  [c.609]

Обычными конструкционными материалами в восстановительных средах являются стали 20 и ЗОХМА. Они эксплуатируются до температуры 300 °С. Для изделий, работающих при более высоких температурах, в металл вводят легирующие добавки. В качестве добавок используют элементы, повышающие сопротивляемость стали обезуглероживанию, как то хром, молибден, ванадий. Хром дополнительно препятствует проникновению водорода в металл.  [c.166]

Титан и его сплавы в нейтральных водных растворах хлоридов являются катодом по отношению к большинству конструкционных материалов коррозионностойким сталям, медноникелевым сплавам, алюминию и его сплавам. В этом случае контакт с другим металлом не приводит к сколь-нибудь заметной коррозии титана и его сплавов, но, как правило, является опасным для контактирующего металла.  [c.193]

Находясь в электрическом контакте с большинством других конструкционных материалов титан и его сплавы в спокойной морской воде являются катодами. Такой контакт может ускорить коррозию сопряженного металла на большую или меньшую величину в соответствии с соотношениями площадей и поляризационными характеристиками контактирующих материалов (рис. 4.17). Из-за более низкого перенапряжения катодной реакции на медном электроде по сравнению с титановым электродом, потери массы углеродистой стали, находящейся в контакте с медью в несколько раз больше, чем в случае контакте с титаном (рис. 4.18).  [c.199]


Высокотемпературные материалы. Конструкционные стали  [c.286]

Конструкционные материалы. Сортовая сталь профильная, листовая, швеллерная, угловая и др. Стальные трубы, метизы. Лесоматериалы. Цемент, бетон, железобетон.  [c.320]

Первая часть посвящена главным образом анализу отечественного и зарубежного опыта эксплуатации и антикоррозионной защиты стального оборудования нефтеперерабатывающих производств. Важнейшими особенностями нефтеперерабатывающей промышленности являются очень высокая производительность, мощные материальные потоки и в связи с этим большие металлоемкость и габариты аппаратуры. В таких условиях практически невозможно широкое применение в качестве конструкционных материалов высоколегированных сталей или цветных металлов. Основная аппаратура нефтеперерабатывающих заводов выполняется из углеродистых и низколегированных сталей. Рабочие среды многих стадий нефтепереработки отличаются высокой агрессивностью. Наиболее активными коррозионными агентами являются сероводород, соляная кислота, хлориды, нафтеновые кислоты, водород. Защита от коррозии, вызванной этими веществами, в условиях высоких температур и давлений представляет нелегкую задачу. В книге изложены методы удаления и нейтрализации вредных примесей, приведены подробные рекомендации конструкционных материалов и наиболее безопасные в коррозионном отношении варианты конструкций и режимы эксплуатации аппаратов. Эта часть книги написана коллективом специалистов ВНИИНефтемаша.  [c.7]

Высоколегированные стали и сплавы составляют значительную группу конструкционных материалов. К числу основных трудностей, которые возникают при сварке указанных материалов, относится обеспечение стойкости металла шва и околошовной зоны против образования трещин, коррозионной стойкости сварных соединений, получение и сохранение в процессе эксплуатации требуемых свойств сварного соединения, получение плотных швов. При сварке высоколегированных сталей могут возникать горячие и холодные трещины в шве и околошовной зоне. С кристаллизационными трещинами борются путем создания в металле шва двухфазной структуры, ограничения в нем содержания вредных примесей и легирования вольфрамом, молибденом и марганцем, применения фтористо-кальциевых электродных покрытий и фторидных сварочных флюсов, использования различных технологических приемов. Присутствие бора может привести к образованию холодных трещин в швах и околошовной зоне. Предотвращение их появления достигается предварительным и сопутствующим подогревом сварного соединения свыше 250 — 300 °С. С помощью технологических приемов можно также предотвратить кристаллизационные трещины. В ряде случаев это достигается увеличением коэффициента формы шва, увеличением зазора до 1,5 — 2 мм при сварке тавровых соединений. Предварительный и сопутствующий подогрев не оказывает заметного влияния на стойкость против образования кристаллизационных трещин. Большое влияние оказывает режим сварки. Применение электродной проволоки диаметром 1,2 — 2 мм на умеренных режимах при минимально возможных значениях погонной энергии создает условия для предотвращения появления трещин. Предпочтение следует отдавать сварочным материалам повышенной чистоты. При сварке аустенитных сталей проплавление основного металла должно быть минимальным. Горячие трещины образуются  [c.110]

Сегодня 93% используемых в мире конструкционных материалов составляют стали и сплавы на основе железа. По мнению специалистов Британской ассоциации чугуна и стали, годовой объем производства стали в мире достигнет к 1984 г. 700 миллионов тонн. Значительно изменятся ее характеристики увеличится прочность и вязкость, она будет лучше очищена от примесей, повысится ее стойкость к воздействию внешней среды.  [c.13]

В настоящее время основным конструкционным материалом является сталь, которая в зависимости от состава может быть углеродистой, низколегированной и высоколегированной. Основным компонентом, определяющим механические свойства углеродистых и низколегированных сталей, является углерод.  [c.130]

Статистические модели стойкости разрабатывали для точения каждой из трех групп обрабатываемых материалов конструкционных сталей, жаропрочных сплавов, титановых сплавов.  [c.177]

Высокопрочные стали (группа XIV) являются низколегированными, после закалки и отпуска приобретают прочность 0в 5 1600 МПа. В отожженном состоянии их обрабатываемость такая же, как и конструкционных сталей. В термообработанном состоянии обрабатываемость сталей XIV группы твердосплавным инструментом в 5—8 раз ниже обрабатываемости стали 45. Быстрорежущий инструмент применять неэффективно из-за весьма малых скоростей резания. Для повышения обрабатываемости рассмотренных сталей необходимо применять новые марки инструментальных материалов, специальные геометрические параметры инструмента и новые высокоэффективные СОЖ.  [c.37]

Основными критериями при выборе конструкционных материалов, работающих в условиях низких температур, являются удельная прочность и сопротивление хрупкому разрушению. С этой точки зрения одним из перспективных материалов для криогенной техники являются алюминиевые сплавы. При любом уровне прочности удельная прочность титановых сплавов в 1,7, а алюминиевых — в 2,8 раза больше, чем у стали. Опыт показывает, что в алюминии и его сплавах не существует резкого перехода из вязкого в хрупкое состояние при низких температурах (порога хладноломкости), а пределы текучести и прочности при низких температурах выше, чем при комнатной. У большинства алюминиевых сплавов пластичность повышается с понижением температуры или остается на уровне значений при комнатной температуре. Благодаря этому алюминиевые сплавы широко используются в производстве, хранении и транспортировке криогенных жидкостей, а также в конструкциях космических снарядов и ракет, работающих на криогенных топливе и окислителе, в качестве материалов для баков.  [c.424]


Прямую накатку выполняют одним роликом, косую сетчатую — двумя роликами с правой и левой насечками. На твердых материалах (конструкционная сталь) угол между линиями насечки должен быть не более 70°, на мягких материалах (латунь) — не более 90°. Чем крупнее накатка и тверже материал детали, тем больше требуется проходов.  [c.173]

Нержавеющая сталь в водных растворах при 300°С корродирует со скоростью около 0,5 мг/(м2-ч). Эта величина не оказывает сколько-нибудь заметного влияния на механическую прочность материалов. Однако поверхности конструкционных материалов на АЭС столь велики, что в сутки за счет коррозионно-эрозионных процессов в таких сравнительно мощных установках, как Дрезденская и Шиппингпорт-ская АЭС в США, или Нововоронежская и Белоярская АЭС в СССР, образуется до 100 г продуктов коррозии. Для более мощных блоков переход продуктов коррозии в воду будет соответственно большим. Состав продуктов коррозии в реакторной воде и в отложениях разнообразен и зависит от применяемых конструкционных материалов. Особенно неблагоприятны долгоживущие изотопы продуктов коррозии с жестким -у-излучением, например изотопы кобальта и цинка. В табл. 15-1 приведены основные долгоживущие  [c.149]

Располагаемая пластичность (деформационная способность) конструкционных материалов. В формировании предельного мало-циклового повреждения при неизотермическом нагрул ении значима роль характеристик кратковременной и длительной статической прочности и пластичности применяемых материалов, прежде всего длительной пластичности, которая коррелирует с сопротивлением малоцикловой усталости. Срок эксплуатации современных термически высоконагруженных аппаратов и установок в зависимости от их назначения изменяется в широких пределах — от нескольких сотен до нескольких десятков тысяч часов. Экспериментальные исследования временной зависимости характеристик пластичности при длительном разрыве [2, 29, 56, 109] показали, что они существенно изменяются с течением времени. Характерно, что применяемые конструкционные жаропрочные стали и сплавы для деталей, работающих при высоких температурах, являются деформационно стареющими материалами, охрупчнвающимися в диапазоне рабочих температур и в процессе длительной эксплуатации.  [c.75]

Примечания 1. При обработке материалов с твердостью НВ < 280 применять инструменты из базовой быстрорежущей стали Р6М5, при обработке твердых и труднообрабатываемых конструкционных материалов - из сталей Р6М5К5 и Р9М4К8.  [c.544]

Устранение трещин, образующихся по первому механизму, очевидно, связано с выбором материалов и технологии, исключающих их появление при сварке, и не обусловлено самой термической обработкой. Возникновение трещин на начальной стадии нагрева по второму механизму наиболее вероятно в сварных конструкциях высокой жесткости, изготовляемых из низколегированных конструкционных сталей повышенной прочности, а также из сталей ферритного и феррито-аустенитного классов. Так, считается, что зародышевая трещина, возникшая по этому механизму в око-лошовной зоне кольцевого сварного стыка барабана высокого давления из r-Ni-Mo-V стали [114], явилась очагом развития магистральной трещины, вызвавшей разрушение барабана при его гидравлическом испытании. Очевидно, что в случае опасности появления подобных зародышевых трещин, должен предусматриваться замедленный нагрев изделия на его начальных стадиях.  [c.93]

Широко известные хромоникелевые аустенитные стали типа 18-8 являются не только коррозионностойким, но и жаропрочным, а также окалиностойким конструкционным материалом. Обычная сталь 1Х18Н10Т успешно используется в качестве жаропрочного материала, например, при температуре 600° С, сохраняя хорошую жаростойкость до 800—850° С. В табл. 1 приведены состав и области применения некоторых наиболее типичных жаропрочных хромоникелевых аустенитных сталей типа 18-8 или близких к этому типу сталей. Следует отметить, что в хромоникелевых жаропрочных сталях соотношение содержаний хрома и никеля обычно бывает более низким, чем в коррозионностойких сталях.  [c.8]

Магний и его сплавы обладают наибольшей анодностью по отношению к большинству обычных конструкционных материалоЕ . В разбавленных водных растворах солей анодность магния примерно на 1,6 s более таковой насыщенного каломельного электрода магниевые сплавы обладают потенциалами, всего на 0,1 — 0,2 в менее анодных. При катодной защите стали магниевыми протекторами действующая разность потенциалов составляет 0.7—0,9 в в зависимости от состава агрессивной среды и поляризации под действием защитного тока.  [c.112]

В обобщенной форме влияние обработок на усталость авиационных конструкционных материалов (коррозибнностойких сталей мартенситно-ферритного класса, жаропрочных титановых и никелевых сплавов) представлено в табл. 4.9. Минимальные значения коэффициентов р влияния обработки на усталость после большинства типов обработок соответствуют титановым сплавам, а максимальные— никелевым.  [c.134]

Сопротивление деформированию и разрушению при малом числе циклов нагружения определяется структурным состоянием материала и условиями нагружения. По циклическим свойствам принято различать циклически упрочняющиеся материалы, у которых ширина петли пластического гистерезиса с ростом числа циклов нагружения уменьшается разупрочняющиеся, деформирование которых сопровождается прогрессирующим увеличением ширины петли гистерезиса вплоть до разрушения, а также циклически стабилизирующиеся, для которых характерна неизменность ширины петли гистерезиса за исключением начального и конечного участков нагружения [1]. Один и тот же материал в зависимости от исходного структурного состояния может быть либо упрочняющимся, либо разупрочняющимся, либо циклически стабилизирующимся. О характере поведения материала при малоцикловом нагружении можно судить по его статическим свойствам материалы, у которых отношение величины равномерной деформации и общей при статическом разрушении больше 0,5, являются упрочняющимися, при 8в/8< 0,5 они разупрочняются, апри8в/е = 0,5 — стабилизируются [2]. Сопротивление конструкционных материалов малоцикловому разрушению определяется их исходной пластичностью и темпом ее исчерпания [3, 4]. Для упрочняющихся материалов характерен затухаюший темп накопления повреждений (рис. 1, кривая 1, алюминиевый сплав АД-33), для разупрочняющихся — прогрессирующий (кривая 3, сталь ТС) и для циклически стабилизирую щихся материалов — равномерный (кривая -2, сталь 22К) темп накопления повреждений. В последнем случае это накопление сравнительно равномерно в связи с тем, что петля гистерезиса не изменяется с ростом числа циклов нагружения, и неравномерность наблюдается лишь при квази-статическом разрушении, когда интенсивно накапливается односторонняя деформация, определяющая уровень квазистатического повреждения.  [c.51]

Основные конструкционные материалы в производстве аппаратуры для действующего производства этилмеркаптана — углеродистые и нержавеющие стали. Интенсивная коррозия углеродистых сталей выводит из строя аппаратуру, трубопроводы, арматару, в связи с чем требуются частые остановки для замены или ремонта оборудования. Кроме того, коррозия углеродистых сталей в сероводородных средах сопровождается образованием пирофорных сульфидов железа, получающихся при взаимодействии окислов железа с газообразным сероводородом и способных в сухом состоянии воспламеняться на воздухе [7]. Нержавеющие хромоникелевые стали типа Х18Н10Т более коррозионностойки по сравнению с углеродистыми, однако случаи выхода из строя аппаратуры из этой стали из-за коррозионного растрескивания также нередки. Это подтверждается работой [8], в которой наблюдалось растрескивание напряженной стали Х18Н10Т в сероводородных средах. В условиях синтеза этилмеркаптана коррозионное растрескивание может быть  [c.163]


Влияние контакта БА с различными сталями, некоторыми сплавами и неметаллическими конструкционными материалами на его полимеризационную активность при 40—45 °С показано на рис. 2.13. Рост вязкости наблюдается после 100 ч выдержки в сосуде из стали 07Х13АГ20 (общее время контакта 300 ч). При использовании углеродистой стали повышение вязкости меньше. После контакта в течение 440 ч при 40—45 °С, 950 ч при комнатной температуре наблюдается более резкий рост вязкости и помутнение раствора.  [c.200]

На стадиях полимеризации, отделения непрореагировавшего ПВА, омыления, промывки и отжима ПВС, подсушки и растворения ПВС рабочие среды обладают слабой и средней агрессивностью по отношению к конструкционным материалам. Наиболее агрессивные компоненты — уксусная кислота (0,1—0,2%), масляная кислота (0,1—0,2%), ацетат натрия (до 0,05%), метиловый спирт. На этих стадиях процесса используют оборудование из высоколегированной стали 12Х18Н10Т, углеродистой стали со стеклоэмалевым покрытием, технического алюминия. На стадиях ацеталирования и промывки ПВС применяют оборудование из углеродистой стали со стеклоэмалевым покрытием. Это связано с тем, что на стадии ацеталирования вводят катализатор — соляную кислоту, наличие которой (0,4—0,001 %), а также хлорида натрия определяет коррозионную активность сред на всех последующих стадиях процесса.  [c.297]

По имеющимся данным, состав и термическая обработка конструкционной стали мало влияют на сопротивление усталости в условиях фреттинга (табл. 1). Вместе с тем имеются сведения, что литейные материалы, а главное, разнородные материалы в определенных сочетаниях (например, сталь инструментальная— сталь конструкционная или сталь — титан) обладают более высоким сопротивлением усталости в условиях ф1. еттинга. Среди алюминиевых сплавов сплавы системы А1—Mg—2п по некоторым результатам обнаруживают большую потерю усталостной прочности, чем дуралюмин.  [c.229]

Наиболее широкое применение за последние годы получили высокопрочные стали с СТв = 160 кгс/мм после обычной закалки и отпуска и особенно после изотермической закалки, высокопрочные алюминиевые сплавы с Ов 40 кгс/мм , титановые сплавы с (Тв 100 кгс/мм [1, 2, 22, 38, 40]. В качестве примера в табл. 24.1 приведены типичные свойства основных технических металлов 2 железа, алюминия и титана и свойства сплавов на основе этих металлов, т. е. сталей, алюминиевых и титановых сплавов, нашедших широкое практическое применение. Примерами материалов средней прочности могут служить алюминиевые сплавы с временным сопротивлением Ств = 35- 40 кгс/мм (дюралюминий), конструкционные стали с Ств= 1Ю-ь140 кгс/мм , титановые сплавы с (Тв = 70ч-80 кгс/мм . В качестве примеров материалов высокой прочности можно назвать алюминиевые сплавы с Ов = 55- 60 кгс/мм , конструкционные стали с Ов = 160 -ь180 кгс/мм и даже до 220 кгс/мм титановые сплавы с СТв = = 105-ь 125 кгс/мм . Эти материалы применяют главным образом в отраслях промышленности, в которых предъявляют высокие требования к прочности и весу конструкций [40]. Диаграммы деформации технического алюминия, железа, титана и сплавов средней и высокой прочности на основе этих материалов приведены на рис. 24.1 и 24.2. Переход от чистых металлов к сплавам  [c.249]

Для горячей штамповки рекомендуются следующие материалы конструкционные стали марок 25, 45, ЗОХГСА и ЗОХГСНА нержавеющие стали 1Х18Н9Т и Ж2 алюминиевые сплавы АК6, Д1 и В95 магниевые сплавы МА2 и ВМ65-1 титановые сплавы ВТЗ-1 и ВТ5.  [c.81]

Bv ияниe состава покрытия на коэффициенты деформации и составляющие силы резания в широком диапазоне изменения скоростей резания при обработке различных материалов (конструкционных сталей, жаропрочных и титановых сплавов) свидетельствуют о неоднозначном влиянии состава покрытия на исследуемые параметры (табл. 38, 39, рис. 45).  [c.97]

В сухих средах и в жидкостях с тщательно контролируемым составом можно использовать многие материалы, часто без специальной защиты. В атмосферных условиях, даже в загрязненных атмосферах, можно не запщщать такие материалы, как нержавеющие стали и алюминиевые сплавы. Долговечны также медь и свинец. В более агрессивной влажной среде, например в морском воздухе, экономически целесообразнее употреблять относительно дешевые конструкционные материалы (низкоуглеродистые стали)  [c.73]


Смотреть страницы где упоминается термин Конструкционные материалы Конструкционные стали : [c.11]    [c.4]    [c.14]    [c.62]    [c.15]    [c.48]    [c.294]    [c.79]    [c.121]   
Смотреть главы в:

Справочник по машиностроительному черчению Издание 3  -> Конструкционные материалы Конструкционные стали



ПОИСК



Влияние внешних и внутренних факторов на коррозионное и электрохимическое поведение конструкционных материалов Низколегированные стали

Выбор материалов и обозначение их на чертежах Стали углеродистая качественная и низколегированная конструкционные. Стали холодногнутая

Выеокоуглеродистые стали как конструкционный материал

КОНСТРУКЦИОННЫЕ И МАГНИТНЫЕ МАТЕРИАЛЫ, ИСПОЛЬЗУЕМЫЕ В СММ Конструкционные магнитно-мягкие стали

КОНСТРУКЦИОННЫЕ МАТЕРИАЛЫ ТЕПЛОТЕХНИКИ И МЕТОДЫ КОНТРОЛЯ Стали теплоэнергетического оборудования

Конструкционные материалы Стали и чугуны

Конструкционные стали

Материал конструкционный

Материалы Стали

Металлические конструкционные материалы. Выбор стали для деталей электротермических установок

Стали конструкционные стали



© 2025 Mash-xxl.info Реклама на сайте