Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Эффекты релаксации в газах

Эффекты релаксации в газах  [c.345]

Эффекты релаксации в газовых потоках проявляются в тех случаях, когда период релаксации имеет одинаковый порядок с характерным временем течения. В немногочисленных теоретических работах [8, 9], посвященных колебательной релаксации при течении в сопле однокомпонентного двухатомного газа, показано, что проявлением неравновесности является замораживание колебательной энергии Ет, (следовательно, и температуры 7 ) величины Е. и перестают изменяться, в то время как поступательная температура Т продолжает существенно уменьшаться.  [c.372]


Простейший вариант оптич. эхо-спектроскопии (спектроскопии на основе светового эха) реализуется при наблюдении зависимости амплитуды сигнала светового ха от времени задержки зл.-магн, излучения, резонансно взаимодействующего с ансамблем частиц среды. Сигнал светового эха появляется после 2-го импульса через время, равное задержке 2-го импульса относительно 1-го. Оптич. эхо есть, по существу, повторное возникновение эффекта затухания свободной поляризации, к-рое сопровождает 1 й импульс. 2-й импульс нужен для того, чтобы восстановить одинаковую фазу возбуждённых 1-м импульсом атомных диполей, потерянную к моменту прихода 2-го импульса вследствие процессов релаксации. Для регистрации оптич. эха площадь 1-го импульса (интеграл от амплитуды напряжённости оптич. поля по всей длительности импульса, умноженный на дипольный момент перехода должна быть равна я/2, второго — я. Спектроскопия светового эха — один из наиб, мощных инструментов изучения столкновительных релаксац. процессов в газах. Время затухания сигнала светового эха равно эфф. времени жизни возбуждённого уровня, определяемого атомными (молекулярными) столкновениями ц спонтанным излучением. Методами спектроскопии светового эха измеряют также сверхтонкую структуру возбуждённых состояний.  [c.308]

Ввиду малой длины волны У. характер его распространения определяется в первую очередь молекулярной структурой среды, поэтому, измеряя скорость с и коэф. затухания а, можно судить о молекулярных свойствах вещества (см. Молекулярная акустика). Характерная особенность распространения У. в многоатомных газах и во мн. жидкостях—существование областей дисперсии звука, сопровождающейся сильным возрастанием его поглощения. Эти эффекты объясняются процессами релаксации (см. Релаксация акустическая). У. в газах, и в частности в воздухе, распространяется с большим затуханием (см. Поглощение звука). Жидкости и твёрдые тела (особенно монокристаллы) представляют собой, как правило, хорошие проводники У., затухание в них значительно меньше. Поэтому области использования У. средних и высоких частот относятся почти исключительно к жидкостям и твёрдым телам, а в воздухе и газах применяют только У. низких частот.  [c.215]

Применения Ф. э. весьма разнообразны. Око используется в нелинейной спектроскопии для измерения времён релаксации, исследования тонкой и сверхтонкой структур квантовых уровней энергии, изучения параметров столкновений в газах, идентификации типов квантовых переходов и т. д. Перспективны приложения эффектов Ф. э. в динамической голографии, в системах оптической обработки информации, в частности в системах оперативной памяти в оптических компьютерах, и т. д.  [c.355]


Будем рассматривать движение газа, когда можно не принимать во внимание эффекты диссоциации и эффекты релаксации. Можно считать, что такое рассмотрение для воздуха годится до температуры 2000° К. Поэтому будем считать, что уравнение состояния идеального газа выполняется. В неподвижной системе координат уравнение непрерывности имеет вид  [c.406]

Однако движение реальных жидкостей связано и с другими физическими эффектами, которые не учитывались ни Навье, ни Стоксом, Так, в реальных газах при гиперзвуковых скоростях течения важную роль играют эффект релаксации, молекулярная диссоциация и ионизация ). Будущий специалист по гидромеханике, которому придется иметь дело с задачами, связанными со спутниками и их возвращением, должен дополнительно к уравнениям Навье — Стокса хорошо ознакомиться с химической кинетикой.  [c.49]

Указанные выше явления относились к невязкой жидкости. В вязкой жидкости вследствие вязкости и теплопроводности давление и скорость меняются всегда непрерывно. Однако можно показать, что область, в которой главным образом меняются давление и скорость, имеет порядок величины среднего свободного пробега молекул газа и, следовательно, вообще эта область будет очень мала (исключая газ крайне малой плотности). На толщину и физическую природу этой переходной области влияют также внутренние термодинамические свойства газа, именно распределение тепловой энергии по различным степеням свободы молекулы. Этот эффект называется эффектом релаксации и весьма важен в случае газа с медленной внутренней вибрацией. Рассмотрение последней проблемы требует применения методов квантовой механики.  [c.55]

Чтобы было более понятным дальнейшее, напомним читателю вновь уравнения Блоха для спина. На электрон атома действует не только внешнее световое поле, но и другие возмущения. Например, в газе атом может сталкиваться с другими атомами. В твердом теле электрон может взаимодействовать с колебаниями решетки и т. д. Известно, что подобные эффекты приводят к затуханию дипольных моментов. Введем это затухание в теорию феноменологически, добавив в правую часть равенства (5.38) член затухания — уа. Константа затухания у имеет тот же самый смысл, что и обратное время поперечной релаксации для ядерных спинов. Таким образом, получаем для рассматриваемого атома следующее уравнение  [c.120]

Коллапсы волновых функций не являются произвольными они подчиняются универсальной наложенной извне связи — вероятности коллапсов должны быть пропорциональны ф для соответствующего состояния. Этот универсальный закон не позволяет создать сверхсветовую коммуникацию на произвольно больших расстояниях. Но коллапсы индивидуальных волновых функций в газе, в том числе в газе свободных электронов, допускают малое отклонение от универсального закона ф , если взаимодействие сложной системы большого количества электронов описывать на языке индивидуальных волновых пакетов. Обычно такое малое отклонение от закона р ф не играет большой роли, но оно является ключевым для объяснения эффекта Соколова. Соответственно, на базе эффекта Соколова можно представить себе передачу информации посредством квантовых корреляций на сравнительно небольших расстояниях. Существенную роль при этом играют необратимые процессы релаксации электронов проводимости в металле.  [c.382]

Конечно, в системе типа газа этот эффект наблюдать не удается, но в системе ядерных магнитных моментов (см. 4 раздела задач к гл. 5) значения времен релаксации, в частности спин-решеточного т, достигающего десятков минут, оказываются  [c.332]

Третье предположение (6.24) означает, что газ находится в состоянии локального термодинамического равновесия. В изменяющихся течениях внутренняя энергия всегда стремится к равновесному значению, соответствующему новым условиям. Однако при этом существует некоторая задержка во времени, особенно для установления колебательной и вращательной энергии. Такое явление назьшается эффектом релаксации, а характерное время задержки — временем релаксации. Это интересный, но несколько частный вопрос, так что детали мы отложим и приведем в качестве примера в гл. 10.  [c.152]


Явления, приводящие к отступлению от закона Ома в сильных электрических полях, можно разделить на две группы. К первой относятся явления, изменяющие время релаксации, а следовательно, подвижность носителей. Это разогрев электронного газа и эффект Ганна. Вторая группа явлений, в которую входят ударная ионизация и эффект Зинера, вызывает изменение концентрации носителей.  [c.256]

Все особенности поглощения в реальных жидкостях и газах объясняет релаксационная теория поглощения, основанная иа представлении о распространении звука как о неравновесном процессе структурных, химических, термических и других изменений, происходящих в звуковой волне. Макроскопическим проявлением этих процессов является дополнительное затухание за счет объемной вязкости. При этом все релаксационные эффекты, наблюдаемые на опыте, полностью могут быть объяснены релаксацией объемной вязкости.  [c.379]

Рассмотрим сначала смесь одноатомного инертного газа с двухатомным газом, причем концентрация последнего пусть будет настолько малой, что столкновениями между двухатомными молекулами можно пренебречь. В таком случае энергия, идущая на колебательную релаксацию, оказывает пренебрежимо малый эффект на температуру, т. е. на энергию поступательных степеней  [c.534]

Анализ различных механизмов ионизации в ударной волне в аргоне (и вообще одноатомных газов) содержится в уже цитированной выше работе Л. М. Бибермана и И. Т. Якубова [93]. Авторы исследовали влияние вариаций в выборе эффективных сечений ионизации ударами электронов и атомов, роль ступенчатых и радиационных процессов. Они пришли к выводу о том, что в ускорении образования начальных электронов решающую роль должно играть возбуждение атомов резонансным излучением, выходящим из равновесной зоны. Благодаря этому эффекту сильно повышается концентрация возбужденных атомов, которые легкО ионизуются электронным ударом. Учет этого позволил авторам значительно сократить расхождения между расчетными и экспериментальными значениями времени релаксации и добиться удовлетворительного согласия тех и других. Надо сказать, что в вопросе об ионизационной релаксации, в особенности о механизме начальной ионизации, полной ясности еще нет. Отметим работу [95], в которой изучалась релаксация в ксеноне, и работу [96] о влиянии излучения.  [c.396]

С явлением диссипации мы познакомимся более подробно в следующем параграфе при рассмотрении поглощения звука в релаксирующей среде. Поглощение звуковых волн представляет собой характерный пример диссипации механической энергии. Примером неполного использования энергии вследствие необратимости может служить рассмотренный выше идеализированный случай истечения газа в пустоту с полностью замороженными колебаниями. В кинетическую энергию разлета идет только обратимая часть внутренней энергии энергия поступательных и вращательных степеней свободы, а энергия колебаний так и остается в молекулах, благодаря чему скорость истечения оказывается меньшей. Подобные эффекты необратимости при наличии неравновесных процессов могут привести к дополнительным потерям в высокоскоростных турбинах при высоких температурах, в соплах ракетных двигателей и т. д. На использовании эффекта повышения энтропии с течением времени основан независимый метод измерения времени колебательной релаксации т, примененный Кантровицем [1] для исследования релаксации в СОг.  [c.427]

НИИ При распространении в нелинейно поглош,аюш,ей среде в пренебрежении нелинейными тепловыми эффектами, обусловленными нагревом газа за счет вторичных процессов столкновительной релаксации. Это накладывает ограничения на длительность импульсов X, а именно, расчет на основе (8.47) справедлив при резонансном поглощении на КВ-переходах при т<Стут, где Хут — время колебательно-поступательной релаксации.  [c.206]

Недавние эксперименты [26, 27] показали, что времена ионизации и релаксации крайне быстро уменьшаются с ростол температуры. Поэтому для спутника, движущегося по круговой орбите, эффекты релаксации существенны только на высотах, превышающих 200 ООО футов (60 км), где и сама скорость лучистой теплоотдачи от горячего газа к поверхности тела весьма мала (рис. 10.7). Однако в некоторых случаях, в частности при рекомбинации азота под действием излучения, превышение величины grad над ее равновесным значением может произойти лишь, если избыточная концентрация N достаточно велика.. Эта проблема заслуживает дальнейшего изучения, особенно в районах низких плотностей и температур порядка 10 ООО — 12 000° К.  [c.353]

Источник света (конденсированная искра) и конденсатор питаются од ювремеино от одного источника. При определенном для данного источника света значении напряжения между электродами происходит разрядка конденсатора. В зависимости от расположения зеркал и 5., можно выбрать такой путь света от источника U до образца между обкладками конденсатора, при котором исчезает эффект Керра. Это означает, что время распространения света на этом пути равно времени релаксации. Опыты показывают, что длина этого пути равна 400 см, т. е. т 10 с. При таком процессе не учитывалось время пробоя газа. Более точное вычисление с учетом времени пробоя газа дает т 10" с. Это позволяет использовать ячейку Керза в качестве оптического затвора.  [c.291]

Наиболее, важной особенностью эффекта Керра, обусловившей широкое его применение, является весьма малая инерционность. Это свойство ячейки Керра проверялось в остроумных опытах (схема опытов изображена на рис. 3.11), а в последующем детально исследовалось в большом количеспве экспериментов. Источник света (конденсированная искра) и конденсатор Керра получают напряжение от одного источника тока. Как только произошел пробой газа между электродами (искра) и возник связанный с этим пробоем импульс света, начинает постепенно исчезать эффект Керра, что вызвано релаксацией дипольных моментов. молекул. Системой зеркал можно удлинить путь от источника света до ячейки Керра. Опыты показали, что, пока свет проходит расстояние 400 см, все следы двойного лучепреломления успевают исчезнуть. Отсюда была найдена инерционность процесса, характеризуемая средним временем х 10 с. В последующих прецизионных опытах было учтено время пробоя газа и была установлена еще меньшая инерционность эффекта (г Г 10 с). Таким образом, открылась возможность создания практически безынерционного оптического затвора и тем самым были заложены основы физики очень быстрых процессов ( нано-секундная техника 1 не = 10 с).. За последнее время эта техника приобрела особое значение в связи с возможностью получения очень больших мощностей светового потока в лазерах. Действительно, если возбудить в твердотельном лазере импульс света с энергией 10 Дж и продолжительностью 10" с, то мощность такого импульса составит 10 кВт. Если же с помощью какого-либо быстродействующего устройства (например, ячейки Керра) заставить высветиться эту систему за время порядка 10 с, то мощность импульса составит уже 1 ГВт. Такие гигантские импульс обладают некоторыми совершенно новыми физическими свойствами. Использование подобных сверхмощных световых потоков играет большую роль в области бурно развивающейся нелинейной оптики, а также при решении различных технических задач.  [c.123]


Степень поляризации определяется коннурепцпей процессов накачки и тепловой релаксации, ирпводя-щей к потере поляризации за счёт тепловых столкновений атомов со стенками ячейки. Для того чтобы свести. эффект тепловой релаксации к минимуму, в поглощающую ячейку наряду с парами щелочного металла помещают небольшое кол-во диамагн. газа (Не, Аг, N и т. д.), замедляющего диффузию к стенкам, либо покрывают стенки защитными покрытиями (парафин, полиэтилен).  [c.332]

Яркой особенностью С. д., отличающей его от др. эффектов воздействия излучения на движение частиц газа, является то, что для возникновения направленного движения газовых компонентов не обязателен прямой или косвенный обмен импульсом и энергией между излучением и внеш. степенями свободы частиц газа. Особенно отчётливо это видно на примере сугубо радиационной релаксации возбуждённого состояния поглощающих частиц (что характерно для электронных переходов атомов) поглощённый частицей фотон в результате спонтанного испускания снова возвращается в поле излучения практически без изменения энергии. Т. о., энергия поступат. движения газовых компонентов черпается из тепловой анергии, а действие излучения, выступающего в роли своеобразного демона Максвелла, состоит в преобразовании хаотич. (теплового) движения частиц газа в упорядоченное (направленное) движение компонентов смеси. Неизбежное при этом уменьшение энтропии газовой подсистемы компенсируется увеличением энтропии второй подсистемы — излучения из упорядоченного (направленного) оно  [c.469]

Другой механизм влияния электрич. поля на оптич. свойства вещества связан с определ. ориентацией в поле молекул, обладающих постоянным дипольным моментом или анизотропией поляризуемости. В результате у первоначально изотропного ансамбля молекул появляются свойства одноосного кристалла. Характерное время ориентационных процессов колеблется от 10 —10 с для газов и чистых жидкостей до 10 с и больше для коллоидных растворов, молекул, аэрозолей и т. п. Особенно сильно выражен ориентационный эффект в жидких к р и с т а л л а X (время релаксации 10" с), в них наблюдается целый ряд электрооптич. эффектов. В твёрдых телах при наложении электрич, поля наблюдается появление оптической анизотропии, обусловлен, установлением различий в ср. расстояниях между частицами решётки вдоль и поперёк поля (стрикционный эффект). Как ориентационный, так и стрикционный эффекты не только дают существ, вклад в эффект Керра, но и приводят к изменению интенсивности и деполяризации рассеянного света под влиянием электрич, поля (т. н. дитин дализм).  [c.589]

Если рост объема и развитие пористости связаны с уровнем напряжений, создающихся в фазах до плавления, то какова же роль жидкой фазы Ясно, что ее нельзя свести к облегчению релаксации напряжений. Жидкие прослойки между зернами создаются и при малых количествах введенной примеси. Вместе с тем повышение содержания меди и кремния способствует росту объема при термоциклировании. Можно предположить, что эффект количества примеси связан со степенью оплавления по достижении образцами верхней температуры цикла. Однако само по себе это аредположение ничего не дает. В самом деле, если при нагреве выше эвтектических температур образование жидкой фазы происходит в связи с присутствующими в образцах усадочными несплошностями, возникающими при предыдущей кристаллизации или термоциклах, объем образцов не изменится. Даже ускоренные нагревы, вследствие которых плавление возможно и вне связи с усадочными несплошностями, не интенсифицируют рост. При медленных же нагревах жидкая фаза, по-видимому, должна появляться в участках, затвердевших последними при предыдущем цикле, т. е. вблизи усадочных рыхлот. Возможно, что рыхлоты заполнены газами и препятствуют расширению жидкости в порах. Однако растворимость газов в жидкости велика и привлечение их для объяснения роста вряд ли оправдано. Таким образом, необходимо допущение о плавлении металла без связи с усадочными порами. В этом случае может реализоваться различие удельных объемов фаз до и после оплавления, определяющее предел остаточного увеличения объема за один цикл. Заимствованные из работы [691 справочные данные об объемном эффекте плавления металлов приведены в табл. 8.  [c.122]

В данной работе для исследования неравновесных эффектов и определения переносных свойств в многоатомных газах типа СОа использовался аппарат кинетической теории многотемпературной релаксации на основе обобщенного уравнения Больцмана с учетом поступательных, вращательных и колебательных степеней свободы, развитый ранее для двухатомных газов Ц]. Преимуществом такого подхода является то, что релаксационные уравнения для заселенностей колебательных уровней во всех приближениях получаются вместе с гидродинамической системой, структура которой зависит только от принятых предположений о расположении по порядку величины соответствующих времен или длин релаксации. Предполагалось, что поступательные и вращательные степени свободы релаксируют быстро, а колебательные — медленно, но с различными скоростями для разных мод колебаний, причем передача колебательной энергии в процессе соударений происходила по законам гармонического осциллятора.  [c.105]

Переходя к конкретному решению задачи о такой частичной релаксации распределения легкой примеси, используем тот факт, что уравнение (6.1) является линейным. Тогда, счи тая газ пространственно безграничным (что означает иренебрежение граничными эффектами), можно представить зависимость распределения от пространственных координат в ы/де двухстороннего разложения Фурье  [c.34]

Экспериментальные результаты но другим жидкостям (помимо сжиженных инертных газов) показывают, что теория, учитывающая лишь вязкость и теплопроводность, не может полностью объяснить поглощение и дисперсию, обнаруженную в жидкостях. Это связано с тем, что в классической гидродинамике в отличие от релаксационных теорий не предусматривается возможность различных энергетических состояний частицы. Однако классическую теорию можно изменить так, чтобы включить эти эффекты. Один из путей модификации классической гидродинамики заключается в принятии предположения, что вязко-тепловые и релаксационные эффекты действуют одновременно и независимо. Сакади [69] и Мейкснер [56] провели такого рода рассмотрение, и Мейкснер показал, что в жидкостях, особенно таких, для которых время релаксации имеет порядок 10 с, эффекты, обусловленные внутренними превращениями, и эффекты, обусловленные вязкостью, теплопроводностью и диффузией, практически аддитивны во всем частотном интервале, исследованном в эксперименте, и что потери, вызванные вязкостью и теплопроводностью, успешно описываются классическим коэффициентом поглощения (40).  [c.173]

МОЖНО принять уровни отдельных атомов Для возбуждения атомов на энергетические уровни, лежащие выше основного состояния, Б систему должна быть введена энергия, скажем, п>тем пропускания электрического тока через газ Какие уровни реально возбуждаются в атом процессе — сложным образом завпспт от параметров разряда (давления и температуры газа размеров газоразрядной камеры, электрического тока и величины поля и т д ), а также от параметров, описывающих атомные состояния (от сечений возбуждения электронами, ионами и.1и нейтральными атомами, скоростей релаксации рассматриваемых состояний и т. д ) Вообще говоря, чтобы описать населенность различных возбужденных уровней в системе, нам следует найти распределение кинетической энергии электронов, атомов п ионов в разряде и зависпмость его от параметров разряда, а затем и пoJIьзoвaть эт> информацию вместе с атомными параметрами (сечениями возбуждения, зависящими от кинетической энергии частиц, скоростями релаксации при радиационных распадах и т. д ) для определения населенностей агомов на различных энергетических уровнях. Разумеется для некоторых энергетических уровней могут оказаться валяными и другие эффекты (например, резонансные)1 существенно изменяя населенность этих уровней по сравнению с той, которая ожидается в таком простейшем приближении.  [c.12]


В поле коротких световых импульсов, длительность к-рых меньше характерных времён релаксации среды (для газов 10 —10 с, для конденсиров. сред 10 —10 с), наблк -дается эффект просветления др. типа, наз. эффектом самоиндуцированной прозрачности. В этом случае короткий мопщый световой импульс проходит через среду, вообще не успев поглотиться (слабое же квазинепрерывное излучение той же частоты может поглотиться этой средой практически полностью). Результатом вз-ствия такого очень короткого светового импульса со средой оказывается резкое уменьшение групповой скорости распространения светового импульса и изменение его формы. Эффекты нелинейного поглощения связаны с тем, что при вз-ствии интенсивного излучения частоты (йо с ч-цами заметную вероятность имеют многофотонные процессы.  [c.461]


Смотреть страницы где упоминается термин Эффекты релаксации в газах : [c.329]    [c.214]    [c.315]    [c.780]    [c.816]    [c.376]    [c.83]    [c.409]    [c.296]    [c.66]    [c.286]    [c.47]    [c.5]   
Смотреть главы в:

Линейные и нелинейные волны  -> Эффекты релаксации в газах



ПОИСК



Релаксации эффекты

Релаксация



© 2025 Mash-xxl.info Реклама на сайте