Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Условия устойчивости термодинамического равновесия

Условия устойчивости термодинамического равновесия. Чтобы вывести систему из состояния устойчивого термодинамического равновесия, необходимо затратить извне работу. Таким образом, с энергетической точки зрения условие устойчивости равновесия любой из термодинамической систем есть не что иное, как требование максимума той полезной внешней работы, которая должна быть затрачена для того, чтобы сместить систему из состояния равновесия обратимым образом (и которая ранее была обозначена через Р т-щ)-Согласно уравнению (2.97) минимальная полезная внешняя работа при виртуальном изменении состояния системы  [c.112]


Особое состояние однородного тела. Полученные выше условия устойчивости термодинамического равновесия относятся к любым системам, а следовательно, справедливы и для однородных тел.  [c.117]

УСЛОВИЯ УСТОЙЧИВОСТИ ТЕРМОДИНАМИЧЕСКОГО РАВНОВЕСИЯ  [c.191]

Условия устойчивости термодинамического равновесия, соответствующие выражениям (3.17) или им аналогичным, показывают, что, когда термодинамическая система выводится в результате внешнего воздействия из состояния равновесия, в ней развиваются такие процессы, которые противодействуют внешнему воздействию и ослабляют его (принцип Ле Шателье—Брауна).  [c.197]

Условие устойчивости термодинамического равновесия требует отрицательного значения какого-нибудь производного нечетного порядка от давления по объему в критической точке. Поэтому используемые во многих учебниках термодинамики неравенство д р Р  [c.44]

Условие устойчивости термодинамического равновесия  [c.46]

Сложнее гарантировать единственность решения, хотя это так же важно, как и доказательство его существования. Наиболее надежные выводы получаются при известной форме поверхности минимизируемой функции в многомерном пространстве. Проблема эта тесно связана с анализом устойчивости равновесия и частично уже обсуждалась в 12, 13. Выше встречались различные формулировки условий устойчивости говорилось о существовании взаимно однозначного соответствия между термодинамическими силами и координатами, о постоянстве знака якобиана их преобразования (9.23), о положительной определенности квадратичных форм (12.32), (12.47), о знаке определителей матриц вторых производных характеристических функций (9.24), (12.20). Еще одно эквивалентное выражение условий устойчивости связано непосредственно с характеристикой формы поверхности рассматриваемой функции — это ее выпуклость.  [c.185]

УСЛОВИЯ РАВНОВЕСИЯ И УСТОЙЧИВОСТИ ТЕРМОДИНАМИЧЕСКИХ СИСТЕМ  [c.119]

Основное уравнение термодинамики для квази-статических процессов позволяет, как мы видели, ввести ряд термодинамических потенциалов, с помощью которых можно исследовать поведение термодинамических систем при этих процессах. Покажем теперь, что основное неравенство термодинамики для нестатических процессов с помощью введенных термодинамических потенциалов позволяет установить общие условия термодинамического равновесия и устойчивости различных систем. С точки зрения термодинамики эти условия являются достаточными. Однако, допуская в соответствии с опытом существование флуктуаций в системах (и, следовательно, выходя за рамки исходных положений термодинамики), можно доказать, что они являются также и необходимыми.  [c.119]


ОБЩИЕ УСЛОВИЯ ТЕРМОДИНАМИЧЕСКОГО РАВНОВЕСИЯ И УСТОЙЧИВОСТИ  [c.119]

Найдем общие условия равновесия и устойчивости термодинамической системы.  [c.121]

Таким образом, наличие флуктуаций в системах приводит к необходимости максимума энтропии при равновесии и, следовательно, всякий раз, когда это условие не выполнено, система не находится в устойчивом равновесии. Поэтому общее условие (6.4) является необходимым и достаточным условием устойчивости, а общее условие 5 5 < О является лишь достаточным условием устойчивости изолированных термодинамических систем.  [c.122]

Таким образом, общие условия устойчивого равновесия термодинамических систем в различных случаях определяются экстремальными значениями соответствующих термодинамических потенциалов. Эти условия являются не только достаточными, но и необходимыми, если обеспечены все другие условия для установления равновесия (поскольку найденные нами условия не являются единственными для возможности протекания процессов) .  [c.124]

Общие условия устойчивости равновесия термодинамических систем приводят к тому, что внешнее воздействие, выводящее систему из состояния равновесия, вызывает в этой системе такие процессы, которые ослабляют это воздействие. Это положение было установлено Ле Шателье в 1884 г. и обосновано Брауном в 1887 г. и названо принципом Ле Шателье — Брауна.  [c.131]

Общие условия термодинамического равновесия и устойчивости  [c.98]

На основе такого представления, рассматривая выход системы из состояния равновесия как результат виртуальных отклонений внутренних параметров от их равновесных значений, можно, пользуясь основным неравенством термодинамики (3.59) для нестатических процессов, получить общие (т. е. для любых систем) условия термодинамического равновесия и устойчивости. При этом, поскольку состояние термодинамических систем определяется не только механическими параметрами, но и специально термодинамическими (температура, энтропия и др.) и другими параметрами, вместо одного общего условия равновесия для механических систем (6.2) для термодинамических систем их будет несколько в зависимости от отношения системы к внешним телам (адиабатная система, изотермическая система и др.).  [c.100]

Термодинамическая устойчивость системы определяется второй вариацией какого-либо термодинамического потенциала, если она не равна нулю. Найдем вначале общее выражение устойчивости системы, а потом исследуем и вторую вариацию соответствующего термодинамического потенциала. Рассмотрим закрытую систему, находящуюся в термостате с температурой Т под постоянным давлением Р. Общим условием устойчивости равновесия такой системы является минимум ее энергии Гиббса G = = Е—rS-f-PV. Это означает, что состояние системы в термостате при данных Р и Г с координатами (экстенсивными параметрами) У и S является устойчивым, если при небольшом спонтанном изменении координат ее энергия Гиббса G возрастает AG = = Gi — G>0, т. е.  [c.105]

Общие условия устойчивости равновесия термодинамических систем приводят к тому, что внешнее воздействие, выводящее систему из состояния равновесия, вызывает в этой системе такие  [c.109]

Теория равновесных флуктуаций тесно связана с вопросом устойчивости состояния термодинамического равновесия (см. гл. 6). Их взаимоотношение аналогично отношению теории устойчивости и теории малых колебаний в механике. Подобно тому, как параметры малых колебаний определяются по значениям производных потенциальной энергии механической системы в положении равновесия, в теории равновесных флуктуаций их характеристики определяются значениями термодинамических производных в состоянии равновесия или соответствующими моментами равновесных канонических распределений. Полученные ранее условия устойчивости относительно вариации тех или иных термодинамических параметров соответствуют положительности дисперсии соответствующих величин в теории флуктуаций.  [c.292]


В изолированной системе внутренняя энергия и и общий ее объем V имеют неизменные значения. Будучи выведенной из состояния устойчивого равновесия, система через некоторое время возвратится в это состояние, причем вследствие необратимости релаксационных процессов полезной внешней работы не производится, а энтропия системы, как это следует из выражения (3.31), но мере приближения к состоянию равновесия будет возрастать до тех пор, пока не достигнет максимума. Из этого вытекает следующее условие термодинамического равновесия изолированной системы в состоянии термодинамического равновесия, энтропия изолированной системы имеет максимальное значение, т. е.  [c.109]

Неравенства (3.33), (3.34), (3.36)—(3.38), согласно которым первая вариация характеристических функций 5, 11, 1, Р,Ф в состоянии термодинамического равновесия равняется нулю, есть необходимое, но еще не достаточное условие, так как оно не гарантирует устойчивости равновесия. Из дальнейшего будет ясно, что равновесие будет устойчиво, если условие экстремума соответствующей характеристической функции удовлетворяется во втором, а в некоторых случаях и в более высоком порядке.  [c.112]

Условия устойчивою равновесия (4-25) — (4-27) имеют самое общее значение и применимы к любым термодинамическим системам.  [c.117]

Состояние равновесия, устойчивое в малом и неустойчивое в большом, аналогично относительно устойчивому, так называемому метастабильному состоянию многочастичных (например, молекулярных) систем ). Метаста-бильными являются пересыщенное состояние пара, полученное путем его охлаждения или сжатия, аморфное (стеклообразное) состояние переохлажденной жидкости сложного химического строения, состояние смеси веществ, химическая реакция между которыми задержана низкой температурой, и т. п. Наиболее устойчивым при данных внешних условиях является другое состояние системы, для достижения которого требуется преодоление более или менее высокого энергетического барьера. Можно представить себе, что в простейшем случае при данных условиях соответствующая термодинамическая функция Е каждой частицы системы имеет график, показанный на рис. 18.68, а в роли функции Е выступает свободная энергия, если заданы температура и объем системы, или термодинамический потенциал, если заданы температура и давление. Минимум функции Е в точке А соответствует метастабильному состоянию, а более глубокий минимум в точке В — наиболее устойчивому состоянию. Частица системы ввиду того, что ее энергия имеет случайные отклонения от среднего значения (флуктуации), может преодолевать барьер между состояниями А к В и переходить из одного состояния в другое. Поскольку АЕ < АЕ (см. рис. 18.68, а), то вероятность перехода частиц из состояния А в состояние В выше вероятности обратного перехода. Таким образом, при данных условиях имеется тенденция к переходу многочастичной системы из относительно устойчивого состояния в наиболее устойчивое. Все же метастабильное состояние может существовать довольно продолжительное время, а иногда и практически неограниченно долго. Так, для многих полимеров образование кристаллической фазы из переохлажденной жидкости связано с преодолением столь высоких барьеров, что аморфное состояние сохраняется без видимых изменений десятки лет.  [c.406]

Термодинамическое равновесие. Теория термодинамич. равновесия исследует общие условия равновесия подсистем, а также условия устойчивости термодинамич. равновесия, Исследование этих условий основано на законе возрастания энтропии, вследствие к-рого энгрония замкнутой системы достигает в равновесии своего максимума.  [c.86]

В сформулированных в предшествующем разделе критериях равновесия термодинамических систем также не в полной мере использованы следствия второго закона о максимальности энтропии изолированной системы или о минимальности термодинамических потенциалов при тех или иных условиях равновесия. Действительно, знаки неравенств для вариаций первого порядка в (11.1), (11.13) и других критериях соответствуют виду экстремума энтропии, внутренней энергии и т. д., но эти знаки, как отмечалось, относятся к особому случаю граничного экстремума характеристической функции. Если же последняя имеет в равновесии стационарное значение, то вопрос о виде экстремума (минимума, максимума или точки пЬрегиба) при использовании (11.1), (11.13), (11.31) и других остается открытым и для ответа на него надо дополнить указанные критерии соответствующими условиями устойчивости равновесия  [c.115]

Метасгабильлое (внутренне устойчивое) равновесие— такое неизменяющееся во времегш состояипо системы (в неизменных внешних условиях), которое самопроизвольно, после внешнего импульса, может перейти в состояние термодинамического равновесия.  [c.204]

Таким образом, равенство 55 =О определяет общее условие равновесия, а неравенство 5"5<0 — общее условие устойчивости равновесия изолированных термодинамических систем. Эти условия являются достаточными, так как если бы система, имея максимальную энтропию, не находилась в устойчивом равновесии, то при приближении к нему ее энтропия начала бы расти, что противоречит предположению о ее максимальности. Доказать необходимость максимальной энтропии при устойчивом равновесии изолированной системы исходя из основного неравенства (6.3) нельзя, так как из него не следует, что равновесие невозможно при немаксимальной энтропии. Однако, принимая во внимание молекулярную природу термодинамических систем и наличие обусловленных ею флуктуаций внутренних параметров, видим, что состояние равновесия без максимума энтропии невозможно, так как благодаря этим флуктуациям в системе возникают неравновесные процессы, сопровождающиеся ростом энтропии и приводящие систему к равновесию при максимальной энтропии.  [c.122]


Это значит, что первая вариация энтропии равна нулю, а вторая меньше нуля. Равенство нулю первой вариации является лишь необходимым условием экстремума и не обеспечивает того, чтобы энтропия имела именно максимум. Достаточным условием максимума энтропии является отрицательное значение ее второй вариации, которое и обеспечивает устойчивость равновесия. Если же при 65 = 0 вторая вариация энтропии положительна (минимум энтропии), то соответствующее состояние системы будет равновесным, но совершенно неустойчивым , так как благодаря флуктуациям в ней начнутся неравновесные процессы, которые и приведут ее в равновесное состояние с максимумом энтропии. Так как дальше энтропия расти не может, то это равновесие будет устойчивым. Таким образом, равенство б5 = 0 определяет общее условие равновесия, а неравенство 6 5<О — общее условие устойчивости равновесия изолированных термодинамических систем. Эти условия являются достаточными, так как если бы система, имея максимальную энтропию, не находилась в устойчивом равновесии, то при приближении к нему ее энтропия начала бы расти, что противоречит предположению о ее максимальности. Доказать необходимость максимальной энтропии при устойчивом равновесии изолированной системы исходя из основного неравенства (6.3) нельзя, так как из него не следует, что равновесие невозможно при немаксимальной энтропии. Однако принимая во внимание молекулярную природу термодинамических систем и наличие обусловленных ею флуктуаций внутренних параметров, видим, что состояние равновесия без максимума энтропии невозможно, так как благодаря этим флуктуациям в системе возникают неравновесные процессы, сопровождающиеся ростом энтропии и приводящие систему к равновесию при максимальной энтропии.  [c.101]

Устойчивые и неустойчивые состояния равновесия. Условия термодинамического равновесия (3.33)—(3.38) имеют самое общее значение и пр1[ме-нимы к любым термодинамическим системам.  [c.111]

Однако, если предположить, что обе фазы, находясь в точках а и 6, могут взаимодействовать между собой, образуя термодинамическую систему, находящуюся при постоянных р а Т, то выяснится, что состояние Ь, в котором потенциал выше, чем в состоянии а, является лишь относительно устойчивым — метастабильным, ибо переход вещества из состояния два приведет к уменьшению потенциала ф. Аналогичные заключения можно сделать относительно точек с н d. То же относится н к рис. 2-4. На основании этого частки изобар и изотерм на рис. 2-3 и 2-4, относящиеся к состоянию устойчивого равновесия, изобрал<ены сплошными линиями, а участки, относящиеся к метастабильным состояниям,—пунктирными. Как уже отмечалось, реальные термодинамические системы могут находиться в метастабиль ных состояниях, если приняты меры к тому, чтобы они не подвергались заметным возмущениям извне, и если возмущения, связанные с естественными флуктуациями, малы по сравнению с порогами устойчивости. Так, например, очень чистую жидкость, находящуюся при некотором постоянном давлении, меньшем критического, можно нагреть до температуры, заметно превосходящей температуру насыщения при данном давлении Т з(р), без того, чтобы йачался процесс парообразования. Такое состояние жидкости аналогично точке d на рис. 2-4,а. Наоборот, пар можно изобарно охладить до точки Ь (рис. 2-4,а) без того, чтобы он начал конденсироваться. Однако можно показать, что существуют определенные границы существования метастабильных состояний. Эти границы определяются тем, что для метастабильных состояний должны выполняться условия устойчивости, поскольку, как отмечалось, мета--стабильные состояния по отношению к малым возмущениям устойчивы, т. е. для близкой окрестности точки метастабилшого равновесия должны выполняться условия (2-37) и (2-38)  [c.36]

Уравнения (4-33) — (4-37) имеет смысл привлекать к расчету процесса, начиная от тех сечений канала, в которых возникает интенсивное образование устойчивых зародышей, сопровождающееся заметным выпадением конденсата, и кончая местом, где завершается скачок конденсации и система жидкость—пар переходит в термодинамически равновесное состояние. С момента восстановления термодинамического равновесия в потоке перестают быть действительными уравнения (4-36), (4-36 ), а также выражения для определения скорости зародышеобразования, относящиеся к явлениям, происходящим в перенасыщенном паре. Уравнения же (4-33) — (4-35) без дополнительных связей, характеризующих междуфазовый обмен массой, не образуют замкнутой системы. В условиях фазового равновесия и совпадения скоростей паровой и конденсированной составляющих потока можно парожидкостную среду рассматривать как единую систему. Процесс изоэн-тропийного течения такой термодинамически равновесной системы полностью описывается приведенными в 3-3 уравнениями (3-7) — (3-9), к которым следует присоединить уравнение кривой упругости Т = f (р). Заметим, что система уравнений (3-7) — (3-9) свободна от такого допущения, заложенного в основу вывода зависимости (4-33) — (4-35), как отождествление свойств пара и идеального газа.  [c.155]


Смотреть страницы где упоминается термин Условия устойчивости термодинамического равновесия : [c.188]    [c.125]    [c.186]    [c.27]    [c.108]    [c.121]    [c.89]    [c.16]   
Смотреть главы в:

Термодинамика  -> Условия устойчивости термодинамического равновесия



ПОИСК



Общие условия термодинамического равновесия и устойчивости

Равновесие термодинамическо

Равновесие термодинамическое

Равновесие условие равновесия

Равновесие устойчивое

Условие равновесия устойчивого

Условие устойчивости

Условия равновесия

Условия равновесия и устойчивости термодинамических систем

Условия равновесия и устойчивости термодинамических систем Общие условия термодинамического равновесия и устойчивости

Условия равновесия. Устойчивость

Устойчивость равновесия

Экстремальные свойства термодинамических потенциалов, условия термодинамического равновесия и термодинамической устойчивости систем



© 2025 Mash-xxl.info Реклама на сайте