Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные соотношения главы

ОСНОВНЫЕ СООТНОШЕНИЯ ГЛАВЫ 2  [c.531]

В предшествующих разделах этой главы внутреннее строение фаз не рассматривалось и в качестве переменных всегда использовались количества или концентрации компонентов фаз. Это означает, что через мембрану, разделяющую фазы, переносились те же структурные единицы, которые являлись составляющими фаз. Чтобы отказаться от этого ограничения, необходимо учесть химические превращения веществ на поверхности мембраны или в объемах фаз. Будем считать давления и температуры фаз одинаковыми и известными, а в качестве критерия равновесия используем условие (11.33) минимальности энергии Гиббса системы. Способ вывода основных соотношений виден из следующего конкретного примера.  [c.140]


Напомним сначала основные соотношения линейной теории упругости, полученные в первой главе. Пусть Q е— открытая область в трехмерном евклидовом пространстве соответствующая начальному положению исследуемого деформируемого тела,  [c.54]

В учебнике излагаются теория напряжений в деформаций, основные соотношения, принципы и теоремы теории упругости, постановка и методы решения задач теории упругости, плоская задача теории упругости в декартовых и полярных координатах, теория изгиба и устойчивости тонких пластин (прямоугольных и круглых в плане), приближенные методы решения задач теории упругости (вариационные методы, метод сеток, метод конечных элементов), основы теории тонких упругих (безмоментных и пологих) оболочек, основы теории пластичности. Большое внимание уделено приложениям, ра-вобрано большое количество задач. В конце каждой главы приведены вопросы для самопроверки в задачи для тренировки, к части из которых даны решения.  [c.2]

Общая постановка вопроса, принятая в настоящей главе, совпадает с принятой в 4-4. Основные соотношения будут получены для отрезка системы бесконечной длины, это позволит считать поле в зазоре между индуктором и цилиндром равномерным, а вне индуктора равным нулю. Как и прежде, будем считать, что магнитная проницаемость и удельное сопротивление постоянны во всех точках сечения. Поправки, касающиеся соотношений между диаметром и длиной индуктора с соответствующими размерами цилиндра, будут рассмотрены в 6-1.  [c.66]

Предыдущее соображение относится, собственно, к конечному промежутку времени но если мы здесь ограничимся рассмотрением одного момента t, то основное соотношение (5) показывает, что всякое состояние абсолютного движения можно получить, слагая скорости двух одновременных движений — относительного и переносного вместе с тем здесь находят себе приложение различные соображения, развитые в рубр. 25 — 27 предыдущей главы, относительно состояния движения, составленного из двух движений.  [c.200]

Обращено внимание на получение уравнений малых колебаний путем внесения упрощений в нелинейный аппарат. Далее основное содержание главы посвящено линейным колебаниям. Теория этих колебаний проиллюстрирована достаточно большим количеством примеров. Однако один из параграфов содержит очень краткую, чисто описательную информацию о нелинейных колебаниях. Это поможет читателю понять соотношение линейной и нелинейной теорий колебаний.  [c.5]


В задачу данной главы входит ознакомление читателя с необходимыми представлениями, вывод и разъяснение основных соотношений. Наиболее удобно это сделать на примере простых конструкций — статически неопределимых ферм. Векторные представления позволяют получить широкое обобщение результатов и перенести их с достаточной строгостью на конструкции любого типа, включая континуальные.  [c.144]

Эту главу мы посвятим выводу классических и модифицированных вариационных принципов для изгиба тонких упругих пластин, потому что задачи изгиба пластин часто используются в качестве примеров при численных расчетах различными методами конечных элементов. Если не будет оговорено противное, то используются обозначения гл. 8. Сначала будет дан обзор основных соотношений теории изгиба пластин.  [c.395]

В главе приведены вывод формулы ш, основные соотношения нелинейной теории оболочек вращения, уравнения равновесия оболочки, односторонне и осесимметрично взаимодействующей со штампом. Даны канонические системы исходных и линеаризованных уравнений для оболочки и конструкции. Рассмотрена теория осевого смещения кольцевых штампов, кинематически связанных с оболочкой, изложены сведения о программе для ЭВМ.  [c.27]

В рассмотренных задачах устойчивости и изгиба композитных эластомерных конструкций армирующие слои предполагались абсолютно жесткими. Поэтому упругие свойства пакета полностью определяются де( )ормацией резиновых слоев. В главах 1 и 2 были получены уравнения теории эластомерного слоя, в том числе для слоя с жесткими лицевыми поверхностями, и даны формулы для вычисления жесткостей слоя при его сжатии, сдвиге и изгибе. Ввиду важности опроса вычисления приведенных жесткостей для изгиба и устойчивости многослойных конструкций вернемся к основным соотношениям теории слоя и формулам для вычисления жесткостей ап, 22, 12 в законе упругости (4.3).  [c.232]

ГЛАВА 8. ОСНОВНЫЕ СООТНОШЕНИЯ ДЛЯ ТЕПЛООБМЕНА ИЗЛУЧЕНИЕМ В ИЗЛУЧАЮЩИХ, ПОГЛОЩАЮЩИХ И РАССЕИВАЮЩИХ СРЕДАХ  [c.269]

Рассмотренные в книге контактные задачи относятся к тонкостенным конструкциям, представляющим набор оболочек, связанных круговыми кольцами. Общей теории оболочек и стержней и различным прикладным вариантам теории, применяемым в тех или иных ситуациях (в зависимости от класса оболочек, вида нагружения, конструктивных особенностей оболочечных систем, требований к точности расчета и т. д.), посвящены многие исследования [10, 13, 62, 63, 75]. Огромная библиография по теории оболочек содержится, в частности, в упомянутых монографиях, а также в работах [11, 14, 45] и др. В этой главе приведены основные соотношения теории оболочек и стержней, используемые в книге. Эти сведения приведены без подробных комментариев и носят конспективный характер.  [c.7]

В главах 1—3 изложены общие вопросы. Приведены сведения об основных моделях, применяемых при решении дифракционных задач. Изложены основные соотношения линейных упругих и вязко-упругих тел. Дана постановка линеаризованных задач для нелинейных тел. Изложена классическая и уточ-  [c.6]

Поэтому в данной главе в начале приведены в справочном варианте основные понятия и соотношения нелинейной теории упругости и элементы нелинейной теории вязкоупругости (причем читатель, знакомый с книгами Л.И. Седова [228] и А.И. Лурье [131], естественно, может пропустить этот раздел). А затем изложены основные соотношения теории многократного наложения больших деформаций [120], причем для удобства чтения в более расширенном, чем справочный формат, изложении.  [c.256]

Авторы постарались сделать книгу, по возможности, читаемой не только узкими специалистами, частично учтя замечание зарубежных коллег о необходимости размещать в книге как новые результаты, так и справочную информацию, облегчающую чтение. Поэтому в главах 1 и 2 излагаются максимально сжато основные соотношения нелинейной теории упругости и вязкоупругости и основы теории многократного наложения больших деформаций, а в приложениях III-VI приведены справочные материалы, облегчающие чтение глав, связанных с методами решения задач (хотя авторы и отмечают, что чтение будет более комфортным для читателей, знакомых с книгами Л.И. Седова Введение в механику сплошной среды и А.И. Лурье Нелинейная теория упругости , и что первые две главы они могут пропускать при чтении).  [c.4]


В ЭТОЙ главе кратко изложены основные соотношения теории многократного наложения больших упругих и вязкоупругих деформаций и общая постановка краевых задач этой теории. В теории многократного наложения больших деформаций напряженно-деформированное состояние может быть описано не только в координатах начального и конечного (текущего) состояний, но и в координатах одного из нескольких промежуточных состояний. Это особенно важно при рассмотрении задач с последовательно изменяющимися границами и граничными усилиями.  [c.23]

Глава 10. ОСНОВНЫЕ СООТНОШЕНИЯ РАЗМЕРОВ ДЕТАЛЕЙ ПОДШИПНИКОВ  [c.508]

Создание Максвеллом электромагнитной теории света позволило уничтожить внутренние противоречия старой упругостной теории и получить основные соотношения, обсуждавшиеся в предыдущих главах, несравненно более простым способом. Но для обоснования приведенного ре,1ультата (<х == 1 — l/n ) необходимо развитие электромагнитной теории. В 7.2 мы вернемся к истолкованию опыта Физо в рамках специальной теории относительности, а сейчас рассмотрим следствия этого опыта с позиций классической физики, на которой базировались конкурирующие теории в конце XIX в.  [c.368]

В первых пяти главах учебника рассматриваются общие вопросы теории упругости (теория напряжений и деформаций, основные соотношения и теоремы, постановка и лгетоды решения задач теории упругости, плоская задача в декартовых координатах, плоская задача в полярных координатах). В шестой и седьмой главах излагаются основные уравнения теории тонких пластин (гибких и жестких) и некоторые задачи изгиба и устойчивости пластин. Восьмая глава учебника посвящена рассмотрению приближенных методов решения задач прикладной теории упругости (вариационных, конечных разностей, конечных элементов). В девятой главе рассматриваются основы расчета тонких упругих оболочек, причем основное внимание уделено вопросам расчета безмоментных и пологих оболочек. В десятой главе изучаются основы теории пластичности. Здесь рассмотрена и теория расчета конструкций по предельнол1у состоянию.  [c.6]

В данной главе не ставится задача изложения химической термодинамики в виде, пригодном для ее широкого практического приложе-(нмя. Задача этой главы — 1ПЮ1ка1зать существ,eHHOie единство всех тер мо-динам ических выводов. С этой целью некоторые основные соотношения и понятия химии будут получены, исходя из положений первого и второго законов термодинамики, до сих пор с успехом применявшихся для изучения систем, в которых не происходит никаких химических изменений. Химик-практик на этой основе должен построить детальное описание интересуюш.его его процесса, в которое в частности, войдут эмпирические уравнения, близкие к истинным. Приближенные соотношения часто применяются или по неосведомленности об истинных соотношениях, или потому, что для математического анализа удобны более простые соотношения.  [c.120]

Кроме того, в данной главе приводятся основные соотношения и уравнения, описывающие динамику поведения двухкомпонентных линейных вязкоупругих сред. В последнем разделе главы показана эквивалентность уравнений, описывающих распространение электромагнитных волн в средах с конечной проводимостью, уравнениям распространения вязкоупругих волн в средах, удовлетворяюших модели Максвелла.  [c.4]

Во введении к части А дается общее представление о вариационных принципах и методах механики. Первые 10 глав посвящены формулировкам и применениям вариационных принципов и методов в теории упругодеформируемых сложных тел, скручиваемых стержней, балок, пластин, оболочек и конструкции. Первая, третья и четвертая главы носят подготовительный характер, и в них обсуждаются основные соотношения теории упругости для случаев малых и больших деформаций. Здесь же содержится изложение классических принципов виртуальной работы и дополнительной виртуальной работы, которые существенным образом используются в других главах при выводе минимальных вариационных принципов статики упругого тела. Важные обобще-  [c.5]

Остановимся кратко на содержании главы. В разд. 2,2 на основе принципа виртуальных перемещений Лагранжа выведены основные соотношения подкрепленной ребрами криволинейной панели. В разд. 22.3 выделено элементарное решение Сопротивления материалов. Преобразование исходных уравнений для плоской панели к системе разрешающих уравнений содержится в разд. 2.4. Далее в разд. 2.5 изучено напряженно-деформированное состояние симметрично подкрепленной панели. Рассмотрена панель как конечной, так и бесконечной длины. Решение представлено в виде быстросходящихся рядов, даны результаты численных расчетов и программы расчета. В разд. 2.6 изучается эффект подкрепления панели на торце дополнительным ребром, работающим только иа изгиб. В разд. 2.7, как и в разд. 2.5, рассмотрена симметрично подкрепленная панель, но при кососимметрнчиом загруженин ребер парой сил. Решение отличается от полученного в разд. 2.5, так как требуется учитывать изгиб панели в ее плоскости. Решение доведено до числа. В разд. 2.8 рассмотрены панели с двумя ребрами разной жесткости для случа.я, когда поперечное перемещение панелн равно нулю или отлично от нуля. В разд. 2.9 на примере бесконечной пластины с полубесконечным ребром дается оценка погрешности решения путем введения гипотезы отсутствия поперечной деформации пластины. Эта оценка выполнена, путем срав неиня решения на основе упомянутой гипотезы с точным решением, полученным иа основе уравнений плоской теории упругости. Результаты этого раздела опубликованы Э. И. Грнголюком и В. М. Толкачевым [5]. В этой работе дана также общая постановка задач включения на основе гипотезы отсутствия поперечной деформации, рассмотрены задачи для пластины и ребра конечных размеров, для полубесконечной пластины с полубесконечным ребром, а также задача для защемленной по боковым сторонам полубесконечной полосы, нагруженной на торце постоянной распределенной нормальной нагрузкой.  [c.68]


В главе рассматриваются нелинейно-упругие материалы. Приводятся основные соотношения нелинейной теории упругости. Выявляется структура упругих потенциалов, отвечающих различным типам анизотропных мате-рпалов. Выписываются условия перехода при малых деформациях упругих законов в соответствующие законы Гука. Рассматривается плоское напряженное состояние. Особое внимание уделяется ортотропному, трансверсаль-но-изотропному и изотропному материалам.  [c.59]

Задачи, рассмотренные в 2 главы 9, можно решить в постановке момептной теории упругости со стесненным вращением. Основные соотношения получаются из (7 гл. 7), если нижние уравнения заменить условием совместности  [c.161]

В этой вводной главе дается обзор и вывод некоторых основных соотношений для классических электромагнитных полей. Исходя из у ивнений Максвелла и материальных уравнений, мы получим выражения для плотности и потока энергии электромагнитного поля. Будет доказана теорема Пойнтинга, а также выведены законы сохранения и волновые уравнения. Мы подробно рассмотрим распространение монохроматических плоских волн и некоторые их важные свойства, а также обсудим понятия фазовой скорости и групповой скорости волнового пакета, распространяющегося в среде с дисперсией.  [c.9]

В этой книге мы везде будем излагать наши формулировки НМГЭ в простой, физически понятной форме, использованной в гл. 2 и в настоящей главе, хотя во всех до единого случаях они могут быть формально обоснованы так же, как это только что было сделано выше. Интересно отметить, что, считая и решением внутри А, совпадающим на границе S с и, мы сразу же получаем вторую формулировку основного соотношения непрямого метода  [c.76]

Эти результаты, очевидно, отличаются по форме от тех, которые мы получали до сих пор. Перемещением, которое соответствует Р (в смысле главы 1, 7), является опускание точки О на рис. 63. Не задерживаясь на его вычислении, как функции у, мы из (16) можем видеть, что так как А не определена, оно не обязательно пропорционально Я, а может иметь любое значение. Таким образом, задача выходит из области применения общих теорем, изложенных в I и 111 главах, хотя она решалась согласно теории, предполагающей, что закон Гука является основным соотношением между напряжением и деформацией. Мы вернемся к этому в гл. XIII ( 476).  [c.256]


Смотреть страницы где упоминается термин Основные соотношения главы : [c.98]    [c.246]    [c.252]    [c.96]   
Смотреть главы в:

Метод конечных элементов в технике  -> Основные соотношения главы



ПОИСК



Основные соотношения



© 2025 Mash-xxl.info Реклама на сайте