Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Фазовые превращения н структурные изменения при сварке

Таким образом, различные участки основного металла характеризуются различными максимальными температурами и различными скоростями нагрева и охлаждения, т.е. подвергаются своеобразной термообработке. Поэтому структура и свойства основного металла в различных участках сварного соединения различны. Зону основного металла, в которой под воздействием термического цикла при сварке произошли фазовые и структурные изменения, называют зоной термического влияния. Характер этих превращений и протяженность зоны термического влияния зависят от состава и теплофизических свойств свариваемого металла, способа и режима сварки, типа сварного соединения и т.п.  [c.259]


В значительной степени технологичность конструкций сварных деталей зависит от поведения материала при местном нагреве до температуры плавления. При этом изменяются физико-механические свойства металла в связи со структурными изменениями, фазовыми превращениями и изменением размера зерна. Указанные изменения зависят от химического состава исходного металла и состояния металла перед сваркой. При сварке в околошовных зонах появляются высокие внутренние напряжения, которые вызывают коробление детали и способствуют появлению трещин. На образование трещин в околошовных зонах в некоторой степени влияют конструктивные факторы свариваемых деталей, толщина свариваемых деталей, вид сварки, размеры и расположение сварных швов, жесткость крепления деталей при сварке и др.  [c.120]

Монография состоит из семи глав. В гл. I рассмотрены основные положения теории фазовых превращений в металлах и сплавах в твердом состоянии, а также закономерности превращений железа, титана и их сплавов в изотермических условиях. В гл. II показаны условия их протекания в зоне термического влияния при сварке плавлением. В гл. III описаны новые методы и аппаратура для изучения кинетики фазовых превращений и изменений структуры и свойств металлов в неравновесных условиях при сварке и термомеханической обработке, а также для исследования задержанного разрушения и образования холодных трещин. В гл. IV приведены результаты исследования превращений при непрерывном нагреве, кинетики роста зерна и гомогенизации аустенита и Р-фазы сплавов титана при сварке. В гл. V рассмотрены основные закономерности фазовых превращений в условиях непрерывного охлаждения при сварке. В гл. VI изложен механизм задержанного разрушения сталей и сплавов титана, установлены критерии оценки этого явления и показано влияние легирующих элементов, параметров термического цикла и жесткости сварных соединений на" сопротивляемость этих материалов образованию холодных трещин при сварке. В гл. VII приведены характеристики свариваемости сталей и сплавов титана различных структурных классов и систем легирования, сформулированы критерии выбора технологии и режимов их сварки и показаны пути регулирования структуры и свойств сварных соединений как в процессе сварки, так и при последующей термической, термомеханической или механико-термической обработке.  [c.10]


В ЗТВ в процессе нагрева и охлаждения при сварке, а также в шве при охлаждении получают развитие целый ряд фазовых структурных превращений. Под фазовыми превращениями (переходами I рода) понимают превращения с образованием новых фаз, отличающихся от исходных атомно-кристаллическим строением, часто составом, свойствами, и разграниченных с ними поверхностями раздела (межфазными границами). При образовании новой фазы в ее объеме меняется свободная энергия, скачкообразно изменяются энтропия, теплосодержание и в момент превращения теплоемкость стремится к бесконечности. В связи с этим фазовое превращение сопровождается выделением или. поглощением теплоты. При структурных превращениях (переходах FI рода) происходит перераспределение дефектов кристаллической решетки, легирующих элементов и примесей и изменение субструктуры существующих фаз. Структурные превращения сопровождаются плавным изменением свободной энергии, энтропии и теплосодержания, скачкообразным — теплоемкости, и не сопровождаются выделением теплоты.  [c.491]

На рис. 26.1 приведена схема зон структурных изменений применительно к сварке углеродистой стали. Максимальные изменения структуры металла, его химического состава, а также вероятность возникновения различного рода дефектов наблюдаются в шве и зоне сплавления. Участок перегрева характеризуется существенным увеличением зерна, наличием полных структурных и фазовых превращений. На участке полной перекристаллизации температура нагрева выше температуры фазовых превращений, однако интенсивность превращений меньше, чем на участке перегрева, так же как и меньше время пребывания металла при этих температурах, поэтому существенного увеличения зерна здесь не происходит. В рассматриваемых зонах закали-вак)щихся сплавов возможно образование типичных закалочных структур. Связанное с этим снижение пластичности металла может служить причиной появления таких дефектов, как трещины, способствовать уменьшению прочности изделия.  [c.496]

Основными показателями свариваемости низкоуглеродистых бей-нитно-мартенситных сталей являются сопротивляемость сварных соединений холодным трещинам и хрупкому разрушению и механические свойства зоны термического влияния, которые прежде всего связаны с фазовыми превращениями и структурными изменениями происходящими в стали при сварке. Структурные изменениях в стали при воздействии термического сварочного цикла оценивают по термокинетическим диаграммам непрерывного распада аустенита.  [c.291]

Механизм образования напряжений и деформаций при сварке. Классификация напряжений. Остаточные напряжения при сварке возникают в результате появления термопластических деформаций, которые образуются от неравномерного распределения температуры в изделии. Такие деформации бывают упругие и упругопластические. Последние являются источником остаточных напряжений при сварке и структурных и фазовых превращений (происходящих в основном при сварке легированных сталей) при относительно невысоких температурах, сопровождающихся местными изменениями плотности и объема металла.  [c.89]

Основное внимание в книге уделено методам оценки изменений структуры и механических свойств сварных соединений. В соответствующих разделах кратко рассмотрены вопросы теории фазовых и структурных превращений, технологической прочности при сварке, различных видов хрупкого разрушения сварных соединений. Сформулированы критерии оценки свариваемости, на основе которых выбирают способы, технологию и режимы сварки.  [c.2]

Большое число случаев хрупкого разрушения относится к сварным конструкциям. Трещины образуются обычно у дефектов сварных швов и распространяются в зоне сварочного нагрева. Эта особенность разрушения сварных конструкций связана не только с наличием макроскопических дефектов в соединениях, но также с существенным изменением структуры и свойств основного металла в зоне сварки под действием сварочного тепла и влиянием остаточных сварочных напряжений. Наиболее важными структурными факторами, определяющими сопротивление сварных соединений распространению хрупких трещин, являются размер зерна и фазовые превращения в металле шва и околошовной зоне.  [c.179]


При сварке плавлением металл, заполняющий шов и находящийся вблизи шва (околошовная зона), претерпевает существенные фазовые превращения вследствие быстрого нагрева до температуры плавления и последующего охлаждения. Условия расплавления и охлаждения металла в шве и структурные изменения металла в околошовной зоне определяют свойства сварного соединения.  [c.257]

Образование холодных трещин при сварке в металле шва и околошовной зоны обусловлено резким изменением механических свойств и характера напряженного состояния в процессе фазовых и структурных превращений.  [c.157]

Сварное соединение можно разделить на три основные зоны, имеющие различные микроструктуры А — зона основного металла, Б — зона термического влияния, В — зона иеталла шва (рис. 38). Металл шва (наплавленный металл) пмеет структуру литой стали. Зоной термического влияния называют прилегающий к шву участок основного металла (околошовная зона), в котором произошли структурные фазовые превращения (изменение формы и размера зерен) вследствие нагрева в процессе сварки, до температуры выше критической (723°С). При ручной дуговой сварке штучными электродами ширина зоны термического влияния составляет 3—6 мм. Обычно зона термического влияния имеет низкие механические свойства, поэтом у качество сварного соединения частично определяется свойствами и протяженностью зоны термического влияния.  [c.84]

Под сварным соединением понимается металл шва и околошовная зона основного металла. Околошовной зоной называется узкий участок основного металла вдоль шва, который в процессе сварки не расплавлялся, но подвергался воздействию высоких температур. V некоторых сталей на участке околошовной зоны при нагреве до критической температуры (723°С) и выше происходят структурные фазовые превращения (изменение формы и размеров зерен). Это явление называется вторичной кристаллизацией. Участок околошовной зоны таких сталей, на котором произошла вторичная кристаллизация, называется зоной термического влияния. При ручной дуговой сварке покрытыми электродами ширина зоны термического влияния может составлять 3—6 мм. В металле шва могу  [c.88]

Для исследования кинетики изменения механических свойств в условиях термического цикла сварки образцы с выточкой в средней части нагревают в деформирующем устройстве и при заданной температуре цикла подвергают разрыву. Эти испытания позволяют определить температурные интервалы, в которых вследствие фазовых или структурных превращений происходит резкое изменение свойств металла.  [c.582]

II. В условиях сварочного нагрева проблема физико-химической и термомеханической совместимости компонентов формулируется не менее остро, чем при производстве КМ. Влияние сварки на структурные изменения в КМ можно рассмотреть на примере соединения, образующегося при проплавлении дугой волокнистого КМ поперек направления армирования (рис. 12.1). Если металл матрицы не обладает полиморфизмом (например, алюминий, магний, медь, никель и др.) то в соединении можно выделить четыре основные зоны 1 - зона, нагреваемая ниже температуры возврата матрицы (по аналогии со сваркой обычных материалов этот участок может быть назван основным) 2 - зона, ограниченная температурами возврата и рекристаллизации металла матрицы (зона возврата) 3 - зона, ограниченная температурами рекристаллизации и плавления матрицы (зона рекристаллизации) 4 -зона нагрева выше температуры плавления матрицы (сварной шов). Если матрицей в КМ являются сплавы титана, циркония, железа и других металлов, имеющих полиморфные превращения, то в зонах 3 к 4 появятся подзоны с полной или частичной фазовой перекристаллизацией матрицы.  [c.170]

Приведенные выражения справедливы только в узких интервалах температур Т — То, где а можно считать величиной, не зависящей от температуры. На самом деле температурный коэффициент линейного расширения зависит от температуры и, кроме того, резко изменяется при всех структурных и фазовых превращениях в металле. В качестве примера рассмотрим характер объемных изменений при охлаждении металла ванны для случая сварки малоуглеродистой стали.  [c.298]

В тех случаях, когда металл шва и околошовной зоны в процессе охлаждения претерпевает фазовые или структурные превращения, связанные с изменением его удельного объема и значительным ухудшением пластических свойств, трещины могут возникать и в области низких температур — ниже 200 °С. Подобные явления имеют место, например, при сварке закаливающихся сталей. Такие трещины называются холодными. Они могут быть поперечными (в шве, чаще в околошовной зоне), а также располагаться параллельно границе сплавления (отколы).  [c.320]

С помощью термических циклов сварки, снятых с точно фиксированных точек по сечению образца с помощью приспособления, можно построить изохроны (кривые распределения температуры по длине и толщине образца в фиксированные моменты времени) за весь период сварки. Этот параметр сварки позволяет косвенным образом фиксировать образование и изменение различных структурных зон шва (определив интервал температур фазовых превращений первого и второго рода свариваемого материала по термомеханической кривой).  [c.51]

В зоне термического влияния И происходят структурные превращения с изменениями фазового состава, формы фаз и формы кристаллов, с образованием отбеленной корки, являющейся нежелательной пограничной прослойкой при всех существующих способах сварки.  [c.107]


ФАЗОВЫЕ ПРЕВРАЩЕНИЯ И СТРУКТУРНЫЕ ИЗМЕНЕНИЯ ПРИ СВАРКЕ  [c.9]

Основными показателями свариваемости низкоуглеродистых бейнитно-мартенситных сталей являются сопротивляемость сварных соединений холодными трещинам и хрупкому разрущению и механические свойства зоны термического влияния, которые прежде всего связаны с фазовыми превращениями и структурными изменениями в стали при сварке. На основе этих показателей определяют технологические и конструктивные условия получения сварных соединений, удовлетворяющих эксплуатационные требования к сварной конструкции.  [c.184]

Фазовые превращения и структурные изменения при сварке  [c.184]

Фазовые превращения и структурные изменения легированной стали и сплавов титана в условиях непрерывного нагрева и охлаждения при сварке с учетом изменений физической и химической неоднородности высокотемпературных фаз, а также факторы и явления, определяющие степень этой неоднородности характер исходной структуры взаимодействие мигрирующих границ с примесями и легирующими элементами при собирательной рекристаллизации перераспределение легирующих элементов и примесей между матрицей и новыми твердыми и жидкими фазами, образующимися при высокотемпературном нагреве гомогенизация взаимодействие дислокаций, возникающих вследствие пластической деформации, с легирующими элементами и примесями и т. д.  [c.6]

В настоящее время исследователи и практики в области сварки располагают более широкими возможностями воздействия на металл сварных швов, чем на основной металл в зоне термического влияния и особенно в околошовной ее участке. К этим мерам улучшения свойств сварных швов относятся использование присадочного металла, отличающегося от основного металла химическим составом или малым содержанием вредных примесей применение защитных газов или специальных модифицирующих галоидных бескислородных флюсов, сварка без присадочного металла и т. д. Известные меры воздействия на основной металл в околошовной зоне и других участках зоны термического влияния (регулирование скорости охлаждения, длительности пребывания металла выше определенной критической температуры и т. п. путем изменения погонной энергии источников теплоты, применения специальных видов технологии многослойной сварки и подогрева, термообработки до и после сварки) не всегда приводят к положительным результатам. В большинстве случаев это обусловлено недостаточной исследованностью кинетики фазовых превращений и структурных изменений в специфических условиях термического цикла сварки, а в ряде случаев неудачной композицией основного металла и неправильным выбором присадочных материалов.  [c.8]

Наличие третьего участка (рис. 10, 3) и тип структурных изменений в нем зависят от исходного состояния основного металла перед сваркой. При сварке отожженного металла третий участок в зоне термического влияния практически отсутствует. При сварке сталей или сплавов титана после упрочняющей термической обработки типа закалка , закалка и отпуск или закалка и старение , а также в нагартованном состоянии (после ковки или прокатки) в этом участке, как правило, происходит разупрочнение. В первом случае оно обусловлено процессами распада пересыщенных твердых растворов (отпуском мартенсита или старением высокотемпературных остаточных фаз) и последующей коагуляцией упрочняющих фаз (карбидов в сталях и интерметаллидов и химических соединений в сплавах титана). Во втором случае к разупрочнению преимущественно приводят процессы рекристаллизации обработки. Этот третий участок принято называть участком или зоной разупрочнения, отпуска или рекристаллизации. Наиболее резкое разупрочнение металла обычно имеет место у границы этого участка с участком неполной перекристаллизации, где максимальные температуры нагрева близки к нижней критической точке фазового превращения Г ,ф,п. Поэтому основными параметрами термического цикла участка разупрочнения являются максимальная температура нагрева = н.ф.п и длительность (или р) пребывания металла при сварке выше температуры отпуска (или  [c.39]

Например, в сталях перлитного класса эти изменения связаны с мартенситным превращением, в титане и его сплавах — с гидридным превращением. Превращения этого типа сопровождаются резким изменением удельного объема. Поэтому при сварке металлов и сплавов, претерпевающих фазовые и структурные превращения, развитие внешних напряжений обусловлено не только неравномерным нагревом и охлаждением отдельных участков сварного соединения, но и изменением удельного объема в процессе фазовых превращений.  [c.77]

Происходящие в зоне термического влияния структурные изменения в значительной мере зависят от природы свариваемого металла, режима и способа сварки В чистых металлах и однофазных сплавах, не претерпевающих аллотропических превращений, нагрев при сварке вызывает только рост зерна. В полиморфных же металлах и сплавах этот нагрев вызывает, кроме того, фазовые и структурные превращения.  [c.179]

В главе I атласа изложены основные виды фазовых превращений и структурных изменений в титане и его сплавах, а также условия их протекания при сварке. Приведены особенности фазовых превращений при непрерывном нагреве, роста зерна и гомогенизации р-фазы. Рассмотрены превращения Р-фазы в околошовной зоне при последующем непрерывном охлаждении в широком диапазоне изменения скоростей. Показано влияние а- и р-ста-билизирующих элементов, а также газовых и других примесей на кинетику фазовых превращений и изменение фазового состава и структуры сплавов.  [c.7]

Чувствительность металла к тепловому воздейств ИЮ сварки является одним из главных показателей свариваемости. В сварном соедин 1ии под действием термического цикла сварки происходят рост зерна, структурные и фазовые превращения в шве и зоне термического влияния, изменение прочностных и пластических < войств. Как правило, чем выше прочность свариваемого материала и больше степень его легирования, тем чувствительнее материал к термическому циклу сварки и сложнее технология его сварки.  [c.41]

Нагрев и охлаждение металлов вызывают изменение линейных размеров тела и его объема. Эта зависимость выражается через функцию свободных объемных изменений а, вызванных термическим воздействием и структурными или фазовыми превращениями. Часто эту величину а называют коэффициентом линейного расширения. Значения коэффициентов а в условиях сварки следует определять дилатометрическим измерением. При этом на образце воспроизводят сварочный термический цикл и измеряют свободную температурную деформацию ёсв на незакрепленном образце. Текущее значение коэффициента а представляют как тангенс угла наклона касательной к дилатометрической кривой дг в/дТ. В тех случаях, когда полученная зависимость Вс Т) значительно отклоняется от прямолинейного закона, в расчет можно вводить среднее значение коэффициента ср = tg0 p, определяемое углом наклона прямой линии (рис. 11.6, кривая /). Если мгновенные значения а = дгс /дТ на стадиях нагрева и охлаждения существенно изменяются при изменении температуры, то целесообразно вводить в расчеты сварочных деформаций и напряжений переменные значения а, задавая функции а = а(Т) как для стадии нагрева, так и для стадии охлаждения. 4В  [c.413]


Условия сварки, режим сварки, направление теплоотвода, скорость кристаллизации и охлаждения, объем сварочной ванны оказывают заметное влияние на структуру сварных швов. При сварке углеродистых и конструкционных сталей, как известно, условия сварки сказываются не столько на первичной, сколько на вторичной структуре шва. При сварке хромоникелевых аусте-нитных сталей и сплавов фазовые превращения, т. е. вторичная кристаллизация, сводятся, обычно только к выпадению избыточной фазы по границам зерен (кристаллов) аустенйта или по границам полигонизации. В то же время под влиянием изменений условий сварки первичная структура хромоникелевых сварных швов претерпевает весьма суш,ественные изменения. Большая скорость кристаллизации обусловливает развитие структурной микронеоднородности в сварном шве, а также межслойной ликвации и способствует подавлению зональной ликвации.  [c.118]

Холодные трещины образуются в металле шва и око лошовной зоны из-за резкого изменения механических свойств, а также характера напряженного. состояния вследствие фазовых и структурных превращений. В образовании холодных трещин при сварке сталей существенную роль играет водород, который выделяется из твер-ддго раствора в имеющиеся в металле микрообъемы (пустоты). В них выделивщийся атомарный водород соединяется в молекулы и создает в окружающем объеме металла внутреннее давление, которое образует высокое напряжение, способствующее образованию трещин при нагрузке и даже без нагрева.  [c.61]

Например, в сталях перлитного и мартенситного класса эти изменения связаны с мар-тенситным, а иногда и промежуточным превращениями в титане, цирконии и их сплавах — с гидридным превращением. Превращения этого типа сопровождаются резким изменением удельного объема (фиг. 20). Поэтому при сварке металлов и сплавов, претерпевающих фазовые и структурные превращения, развит11е напряжений первого рода обусловлено не только неравномерным нагревом и охлаждением отдельных участков сварного соединения и разницей в их теплофизических и механических свойствах, но и изменением удельного объема в процессе фазовых превращений.  [c.157]

Ж ные фазовые изменения. Термический цикл резки характеризуется большими скоростями нагрева до высоких температур и столь же большими скоростями охлаждения (рис. 8). В этом случае под действием теплового удара узкая зона металла нагревается до температур выше аустенитного превращения и частично до температуры плавления. При этом скорость нагрева при резке более чем в 2—3 раза превышает скорость нагрева, например при электродуговой сварке (380—400 град1сек в интервале 300—900°С). Под действием такого термического цикла в з.т.в. происходят фазовые изменения с образованием структур закалки. Последнее усугубляется наличием на кромке металла с повышенным содер-ж анием углерода и других элементов. Эти структурные изменения зависят не только от состава металла, но и от его толщины и режима резки. Даные, характеризующие влияние толщины и группы разрезаемой стали на глубину зоны температурного влияния, приведены в табл. 7.  [c.28]

При сварке металлов и сплавов, претерпевающих фазовые и структурные превращения, в сварных соединениях развиваются напряжения первого рода, обусловленные неравномерным нагревом и охлаждением, изменением удельного объема в процессе фазовых превращений и разностью теплофизических и механических свойств отдельных участков соединения. Эти напряжения уравновешиваются в макрообъемах металла.  [c.577]

Металл в зоне сварного соединения испытывает нагрев и последующее охлаждение. Изменение температуры металла во время сварки называется термическим Щ1КЧ0М сварки. Максимальная температура нагрева в разных участках соединения различна. В зоне термического влияния температура нагрева изменяется от температуры плавления металладо комнатной температуры. При этом в металле происходят различные структурные и фазовые превращения.  [c.18]

Как известно, шероховатость или чистота поверхности при механической обработке определяется в первую очередь прочностными свойствами обрабатываемого материала. При сварке плавлением воздействие термического цикла сварки вызывает в металле структурно-химические изменения, обус-ловливаюшие неоднородность прочностных свойств сварного соединения. Так, сварные соединения, выполненные из закаленных низколегированных сталей, характеризуются двумя основными участками неоднородности в зоне термического влияния (1 — разупрочненный участок, обусловленный сварочным нагревом стали до температуры Ас 2 - участок полной перекристаллизации, нагревающийся выше температуры конца фазового а—у превращения вплоть до температуры плавления). Регламентируемый уровень прочности сварных соединений из стали 09Г2С соответствует разупрочнению участка 1 на 11—13 % и упрочнению участка 2 на 8—10 %. Для стали 16ГМЮЧ соответственно 15—17 % и 10—13 %. В отдельных случаях относительное разупрочнение свариваемых сталей может превышать 40%.  [c.91]


Смотреть главы в:

Сварка и свариваемые материалы Том 1  -> Фазовые превращения н структурные изменения при сварке



ПОИСК



Превращение

Превращение структурное

Превращение фазовое

Структурные и фазовые превращения

Фазовые н структурные превращения при сварке

Фазовые превращения при сварке



© 2025 Mash-xxl.info Реклама на сайте