Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Некоторые другие явления

В этом случае для прямой проверки ТВО останется лишь нелегкий поиск некоторых других явлений, предсказываемых различными моделями этой теории.  [c.213]

Ферриты для СВЧ относятся к группе магний-марганцевых ферритов с большим содержанием окиси магния. Они применяются в диапазоне от 500 до 20 ООО Мгц, проявляя при этом особые свойства. Электромагнитная волна в процессе прохождения ее через феррит может активно взаимодействовать с вращающимися электронами, определяющими магнитные свойства среды. В результате этого взаимодействия происходит поворот плоскости поляризации волн (эффект Фарадея) и некоторые другие явления. Накладывая внешнее поле, можно управлять этими явлениями.  [c.342]


НЕКОТОРЫЕ ДРУГИЕ ЯВЛЕНИЯ 26. Электропроводность неметаллических тел в ударных волнах  [c.605]

Как известно из термодинамики, р есть функция плотности данной массы газа (или жидкости) и ее температуры ). Температура в свою очередь изменяется при сжатии и разрежении. Теплопроводность газов и жидкостей очень мала, поэтому можно считать в первом приближении,, что при распространении звука процесс сжатия и разрежения каждой части газа или жидкости происходит адиабатически, т. е, без заметного теплообмена с соседними частями. В термодинамике показывается, чтО в этом случае (если можно пренебречь внутренним трением и некоторыми другими явлениями, о которых будет идти речь в 10) температура является однозначной функцией плотности ), и следовательно, давление также  [c.201]

Согласованность между вычисленными и наблюденными значениями в коррозионных исследованиях не есть следствие произвольных предполо- 5 жений и убедительно доказывает существенную справедливость принятого механизма процесса. Другими словами, научные обоснования кинетики коррозионных процессов более удовлетворительны, чем научное обоснование кинетики некоторых других явлений, рассматриваемых обычно как чисто научные.  [c.704]

Повышение упругих свойств материала при предварительном нагружении за предел текучести называется наклепом. В некоторых случаях явление наклепа бывает нежелательным и с ним борются, в других случаях, наоборот, искусственно вызывают наклеп.  [c.40]

Заканчивая это предельно краткое изучение свойств фотона, целесообразно сформулировать следующие общие соображения. Введение понятия фотона привело фактически к созданию новой корпускулярной теории света, хорошо объясняющей некоторые оптические явления, истолкование которых в рамках волновой теории было затруднительно, а иногда невозможно. В то же время при правильном описании явлений эта теория не приводит к противоречию с исходными положениями волновой оптики. В частности, можно описать явления на границе двух сред в терминах как волновой, так и корпускулярной оптики. Конечно, было бы грубой ошибкой отождествлять скорость электромагнитных волн и скорость корпускул и пытаться поставить какой-либо решающий опыт, позволяющий выбрать одну из двух дополняющих одна другую теорий для описания всех сложных оптических явлений. Следует учитывать, что волновая и корпускулярная картины — это классические крайности (пределы) квантово-ме-ханической сущности явления, полностью соответствующей дуализму материи.  [c.452]

Давно перед физиками встал вопрос нельзя ли осуществить цепную реакцию с атомными ядрами, в которой превращение отдельного ядра, протекающее с выделением энергии, автоматически вызывало бы за собой подобное превращение и в других таких же ядрах Открытие деления ядер урана и ядер некоторых других тяжелых элементов дало возможность практического осуществления цепной ядерной реакции. Удалось использовать два замечательных свойства явления деления ядер.  [c.309]


Лри построении модели ядерных оболочек используются экспериментальные значения магических чисел, спинов и магнитных моментов ядер (иногда также и некоторые другие характеристики, например значение электрического квадрупольного момента). Поэтому совпадение экспериментальных и теоретических значений для этих величин не является критерием правильности модели. Однако существует ряд следствий из модели, которые могут быть независимым образом сравнены с экспериментом. К числу таких следствий относятся два явления, рассмотренные в гл. II 1) распределение ядер-изомеров и 2) правила отбора для р-распада.  [c.197]

Великий ученый и философ древности Аристотель (384—322 гг. до н. э.) изложил в своих сочинениях учение о равновесии рычага и других простейших машин, общее учение о движении и силах и первый ввел в науку термин механика . Метод Аристотеля существенно отличается от современного метода точных наук и носит метафизический характер. Аристотель стремился выяснить причины явлений природы, исходя из общих аксиоматических положений, не прибегая к наблюдению и опыту, и поэтому иногда приходил к результатам, не подтверждающимся действительностью. Так, например, Аристотель считал, что скорости тел, падающих в пустоте, пропорциональны их весам. Он также считал, что для поддержания прямолинейного и равномерного движения тела необходимо действие постоянной силы. Эти и некоторые другие ошибочные представления Аристотеля о механическом движении держались в науке свыше полутора тысяч лет.  [c.13]

Последнее используется при проектировании автоматических тормозных устройств лифтов, в некоторых другах случаях. А явление увеличения силы трения торможения с увеличением силы, действующей на тело, получило название самоторможения.  [c.36]

При выводе выражения (17.1) использованы также некоторые"другие приближения как физического, так и математического характера, но они менее суш ественны, чем уже упомянутые. Вильсон [11 (стр. 254) отмечает Выражение для AF (т. е. для изменения потенциальной энергии при смещении иона), несомненно, является не вполне точным, поскольку ионы должны до некоторой степени деформироваться... возможно, что грубый характер приближения, сделанного при рассмотрении взаимодействий между электронами проводимости и колебаниями решетки, является причиной того, что эта теория не в состоянии объяснить сверхпроводимость. Хотя вероятно, что для объяснения явления сверхпроводимости необходимо привлечь некоторые новые физические принципы, все же вполне возможно, что существующие трудности имеют скорее математический, чем физический, характер. Так же как тщательный анализ уравнения состояния газа приводит к выводу о возможности существования жидкой фазы, более точное математическое толкование проблемы взаимодействия приведет и к объяснению сверхпроводимости... необходима более совершенная и более общая теория взаимодействия между электронами и решеткой ).  [c.188]

Область физики, в которой изучают звуковые явления и их взаимосвязь с другими явлениями физики, называется акустикой. Она изучает волны с частотой от 1 до 10 Гц. Физическая природа волн в этом диапазоне едина, однако в зависимости от частоты им присущи некоторые особенности. Например, при высоких частотах длина волн столь мала, что становится сравнимой с размерами комплексов молекул и даже крупных молекул. Поэтому такие короткие волны особенно интенсивно взаимодействуют с веществом, в котором они распространяются.  [c.223]

Явление пересыщения почти всегда имеет место при адиабатическом истечении насыщенного, и слегка перегретого (в частности водяного) пара через сопла, вследствие чего для расчета процесса истечения необходимо знать как границу пересыщения, так и свойства пересыщенного пара. Кроме того, на, явлении пересыщения водяного пара и паров некоторых других жидкостей основано действие камеры Вильсона, являющейся одним из основных приборов атомной и ядерной физики, что также побуждало возможно подробнее исследовать границы пересыщения паров воды и некоторых других веществ. Тем не менее экспериментальных данных о степени пересыщения недостаточно.  [c.237]


Теоретические результаты, полученные для гипотетической сплошной среды, тем больше приближаются к результатам наблюдений, чем полнее и точнее учтены в ней свойства реальных жидкостей и газов. К сожалению, идеализацию среды во многих случаях не удается ограничить только допущением ее сплошности. Из-за сложности изучаемых явлений приходится не учитывать и некоторые другие свойства реальных сред.  [c.11]

Уравнения, связывающие параметры гидродинамических процессов, выражают те или иные физические законы и потому их, структура не должна зависеть от системы единиц измерения. Учитывая это обстоятельство и принимая во внимание возможность применять для описания гидродинамических (так же как и для других физических) процессов разнообразные, в том числе специально выбранные системы единиц, можно установить некоторые общие свойства указанных уравнений. Знание этих свойств позволяет во многих случаях прогнозировать структуру искомых связей между физическими размерными и безразмерными параметрами. Используя формулу размерности (предполагается, что она известна читателю из курса физики), можно указать также рациональные комбинации физических параметров, определение связей между которыми дает результаты, относящиеся сразу к целому классу явлений. Совокупность этих, а также некоторых других, с ними связанных, вопросов составляет теорию размерностей, которая особенно полезна на первых стадиях изучения явления, когда еще отсутствует достоверное математическое описание.  [c.126]

Методы аналогий являются экспериментальными методами, основанными на идентичности уравнений, описывающих потенциальные плоские течения и некоторые другие физические явления, Из числа этих методов в первую очередь рассмотрим метод электрогидродинамической аналогии (ЭГДА). Он основан на том, что поля плоского безвихревого течения несжимаемой жидкости и электрического тока в плоском проводнике являются потенциальными с нулевой дивергенцией. Они. описываются уравнением Лапласа. В табл. 4 приведены аналогичные величины (аналоги) и уравнения, которым удовлетворяют эти поля.  [c.266]

Теоретические результаты, полученные для гипотетической сплошной среды, тем лучше совпадут с результатами наблюдений, чем полнее и точнее учтены в ней свойства реальных жидкостей и газов. К сожалению, идеализацию среды во многих случаях не удается ограничить только допущением ее сплошности. Сложность изучаемых явлений заставляет отказываться от учета и некоторых других свойств реальных сред. В зависимости от тех свойств, которые приписываются гипотетической сплошной среде, получают различные ее модели. Всякая идеализация среды имеет границы применимости, в которых получаются результаты, удовлетворительные с точки зрения запросов практики. При использовании результатов, полученных для идеализированной среды, важно поэтому знать границы их применимости и точность в этих границах. Установление границ применимости является непростым делом, требующим знания существа явлений или хотя бы интуитивно правильного их понимания.  [c.13]

Следует иметь в виду, что динамическое или вообще физическое подобие является обобщением геометрического подобия. Как известно из геометрии, две фигуры подобны в том случае, когда отношения всех соответственных размеров этих фигур одинаковы, т. е. когда размеры одной фигуры могут быть получены простым умножением размеров другой фигуры на некоторый масштабный коэффициент. Точно так же динамически или физически подобными явлениями называют такие явления, когда по заданным характеристикам одного явления можно получить соответствующие характеристики другого явления также путем простого умножения этих характеристик на соответствующие переходные масштабные коэффициенты.  [c.110]

Металлы, применяемые на практике, имеют поликристаллическое строение, поэтому в них обычно существенным является рассеяние, связанное с упругой анизотропией. Это явление заключается в том, что в кристаллах значения модулей упругости (а следовательно, и скоростей звука) зависят от направления относительно осей симметрии кристалла. С точки зрения упругих свойств вольфрам является изотропным материалом для некоторых других металлов анизотропия свойств возрастает в таком порядке магний, алюминий, титан, уран, железо, никель, серебро, медь, цинк.  [c.194]

Вторая ошибочная предпосылка опирается на представление, что химические, оптические, электрические, магнитные и некоторые другие явления не подвластны второму закону. Эта наивная иллюзия возникла вследствие непонимания того факта, что любые явления, в которых есть (или может появиться) микробеспорядок, неизбежно связаны с энтропией, а следовательно, и со вторым законом. От него никуда не уйдешь, даже используя для создания ррт-2 любые, самые хитрые эффекты.  [c.208]

Однако для спектроскопии одиночных молекул, а также для расчета формы оптических полос поглощения и флуоресценщ1и молекулярных ансамблей или, например, для расчета сигнала фотонного эха нет необходимости располагать полной матрицей плотности. Для изучения всех перечисленных и некоторых других явлений достаточно иметь в своем распоряжении упрощенную матрицу плотности, т. е. матрицу плотности, редуцироваьшую, например, по индексам спонтанно испущенных фотонов. Как было показано в главе 1, где мы пренебрегали существованием фононов и туннелонов, после операции редуцирования по квантовым числам спонтанно испущенных фотонов приходим к системе (3.12), состоящей всего из четырех уравнений, которые отличаются от оптических уравнений Блоха только тем, что вместо двух релаксационных констант Ti и Т2 содержат лишь одну константу Ti.  [c.90]

Эта картина объясняет многие явления коррозионной усталости, но все же некоторые из них пе находят удовлетворительного объяснения, а именно препмущественность образования внутрикристаллитных треш,ин, избирател1,пость их образования и их многочисленность, влияние напряженного состояния, заш,итное воздействие остаточных напряжений, наличие которых усиливает общую коррозию, отсутствие влияния на коррозионную усталость усиления электрохимического процесса коррозии при наложении анодного потенциала и некоторые другие явления.  [c.175]


Пораженные участки поверхности нагруженного металла становятся концентраторами напряжений. По мере локализации процесса коррозии и углубления язв растет концентрация напряжений. Участки с максимальными напряжениями (дно язвы) имеют более отрицательный потенциал, т. е. являются анодами, поэтому коррозионные язвы углубляются до В031никн0-вения трещин (рис. 5). В процессе возникновения и развития трещины концентрация напряжений вызывает разрушение защитной пленки на поверхности металла, структурные превращения под действием местной пластической деформации и некоторые другие явления, которые смещают потенциал в вершине трещины в отрицательную сторону и усиливают электрохимиче-ческую неоднородность. Таким образом, развитие трещины при контролирующем электрохимическом процессе обусловлено анодным процессом, активированным действующими напряжениями. В этих условиях роль сорбционного процесса заключается в поверхностно-адсорбционном эффекте снижения прочности и облегчения деформирования металла в вершине развивающейся трещины.  [c.73]

При рассмотрении зависимости прочности от времени нагру-л<ения люжно отметить некоторые другие явления. Так, например, на рис. 183 приведены кривые замедленного разрушения для надрезанных образцов из стали с пределом прочности 190 кПмм -, при различных значениях теоретического коэффициента концентрации напряжения. Замедленное разрушение происходит только при условии понижения номинального напряжения от внешней нагрузки ниже предельного напряжения (а о. уровень которого зависит от концентрации напряжения, что является признаком зависимости процессов, вызывающих замедленное разрушение, от максимального напряжения а ,ах -= асг , а не от номинального напряжения.  [c.257]

Цель настоящей книги заключается в том, чтобы дать общее представление о процессе теплопередачи при низких температурах и рассмотреть задачи, Которые являются специфическими для этого процесса. Сказанное отнюдь не означает, что классическая теория теплопередачи неприменима при низких температур ах правильнее будет отметить, что в этом случае неприменимо большинство допущений, которые используются для получен ия решений при обычных температурах. Например, пр1и низких температурах изменение физических свойств более значителино и их нельзя сти-тать, как это обычно делается, постоянными. В условиях низких температур чаще приходится иметь дело оо средами, которые представляют сабой смесь двух или более фаз и теория которых существенно отличается от теории однофазных жидкостей. Эти и некоторые другие явления, которые чаще встречаются при низких тампературах, чем при нормальных условиях, и обсуждаются в предлагаемой книге.  [c.7]

В 1895 г. английский физик Дж. Дж. Томсон открыл первую элементарную частицу—электрон. Открытие электрона явилось результатом подробного изучения природы катодных лучей, которые оказались потоком частиц с отрицательным электрическим зарядом, равным 4,8 10 ° СГСЭ и массой 9,1-10 г, т.е. в 1837 раз меньшей, чем масса самого легкого атома (водорода). При этом во всех вариантах опыта с катодными лучами (разные материалы электродов, различный газ и др.) рбразующиеся частицы имели одинаковые массу и заряд. Исследование некоторых других явлений (электролиз, электронная эмиссия и др.) привело к аналогичному результату в составе всех атомов содержатся в разном количестве тождественные элементарные частицы, которые при известных условиях могут отделяться от атомов. Так как атомы электрически нейтральны, то атомный остаток (ион) имеет положительный заряд, равный по значению заряду всех отделившихся электронов. Открытие электрона привело к большому успеху в развитии представлений о веществе. В частности, была развита электронная теория металлов было получено естественное объяснение для химических сил сцепления атомов в молекуле (электрическое притяжение между электронами и положительными ионами).  [c.130]

В предыдущих разделах было установлено, что все подобные друг другу явления некоторой группы представляют собой одно и то же явление, данное в различных маспггабах. Выводы, полученные при изучении любого явления группы, можно распространить на все явления этой группы. Следовательно, изучение определенного конкретного явления данной группы равносильно изучению любого другого явления той же группы. Поэтому в тех случаях, когда непосредственное опытное исследование конкретного явления в образце-натуре затруднительно по техническим или экономическим причинам, его заменяют изучением подобного явления в модели.  [c.424]

Таким образом, предварительная вытяжка за предел текучести изменяет некоторые механические свойства стали — повышает предел пропорциональности и уменьшает остаточное удлинение после разрыва, т. е. делает ее более хрупкой. Измененне свойств материала в результате деформации за пределом текучести называется наклепом. В (некоторых случаях явление наклепа нежелательно и его стремятся устранить, в других же, наоборот, наклеп полезен и его создают искусственно. i  [c.96]

При таком построении курса естественным является дальнейший переход к объяснению разнообразных физических явлений, связанных с учетом действия поля световой волны на электроны и ионы. Эти приложения электронной теории существенны для решения многих принципиальных вопросов кроме традиционного рассмотрения электронной теории дисперсии дается представление о молекулярной теории вращения и решаются некоторые другие 1адачи, в частности проводится ознакомление с основами нелинейной оптики.  [c.7]

В этом соотношеьп1и амплитуда Eo(t) и фаза tp(f) не постоянны, а относительно медленно (по сравнению с основными колебагги ями на несущей частоте (и) изменяются во времени. Другими словами, квазимонохроматическая волна имеет модулированную амплитуду и фазу. При описании некоторых оптических явлений можно пренебречь изменением о( ) и (p(f) и исследовать распространение монохроматической волны, т. е. считать Eq и ф постоянными. В других случаях необходимо допустить, что Eo(t) и ф( ) остаются постоянными лишь в течение известного промежутка времени х, длительность которого определяется физическими процессами в источнике свега  [c.38]

Естественно, что возник вопрос о соотношении между двумя теориями света.. Довольно быстро выявилась неразумность противопоставления электромагнитной теории света и фотонной физики. Оказалось, что описание волновых свойств света (интерференция, дифракция и сопутствующие им явления) по-прежнему целесообразно проводить в рамках электромагнитной теории, тогда как некоторые энергетические характеристики из. [учения полностью описываются фотонной физикой. Существует переходная область явлений - давление света, эффект Доплера и некоторые другие. - которую можно просто истолковать в рамках как той, так и другой теории. Характерно, 4Tt> учет ре.тятивистских эффектов обязателен и в электромагнитной теории, и в фотонной физике.  [c.461]

Экспериментальное открытие электрона, радиоактивности, термоэлектронной эмиссии (испускание нагретыми металлами электронов), фотоэффекта (вырывание электронов из металлов под действием света) и других явлений — все это указывало на то, что атом вещества является сложной системой, построенной из более мелких частиц. Перед физикой встала проблема строения атома. Как устроен атом Первая (статическая) модель атома была предложена в 1903 г. Дж. Дж. Томсоном, согласно которой положительный заряд и масса распределены равномерно по всему атому, имеющему форму сферы радиуса 10 м. Отрицательные электроны расположены внутри этой сферы, образуя некоторые конфигурации, и взаимодействуют с отдельными ее элементами по закону Кулона. Электроны в атоме пребывают в некоторых равновесных состояниях. Если электрон получает малое смещение, то возникает квазиупругая сила — и электрон начинает совершать колебания около рав1Ювесного положения и излучать световые волны. Хотя модель Томсона объясняла некоторые явления, все же вскоре выяснилась ее несостоятельность.  [c.10]


Модель ядерных оболочек сравнительно удовлетворитс 1ьно объясняет и некоторые другие свойства ядер и ядерные явления.  [c.192]

Мы уже отмечали значение теории Лорентца, объяснившей с единой точки зрения весьма разнообразные оптические и электродинамические явления первого порядка. Однако после тщательной проверки опыта Майкельсона и некоторых других опытов ), также — с точностью до — не обнаруживших эфирного ветра, положение теории Лорентца стало менее прочным. Теория эта отрицала в своем основном положении принцип относительности и исходила из утверждения возможности установления абсолютной системы отсчета. В дальнейшем же она вынуждена была прибегнуть к гипотезе контракции, которая объясняла неудачу попытки обнаружения абсолютного характера движения Земли наличием случайно компенсирующихся эффектов (интерференционный эффект и эффект контракции). Это обстоятельство явилось слабым пунктом теории, тем более, что и контракционная гипотеза не объясняла результатов всех опытов второго порядка .  [c.453]

Минимум сопротивления при низких температурах. Среди вопросов, связанных с переносом электронов в металлах, основной проблемой, требующей теоретического объяснения, до сих пор является проблема сверхпроводимости, хотя многие считают, что Фрёлиху и Бардину удалось недавно показать, в чем заключается механизм этого явления. Однако существует и другое явление, которое до сих пор также не поддается удовлетворительному теоретическому объяснению—это впервые обнаруженный примерно 20 лет назад в Лейденскогг лаборатории минимум сопротивления, который появляется при низких температурах у некоторых металлов (фиг. 41). Постепенное возрастание сопротивления с понижением температуры кажется, на первый взгляд, гораздо менее поразительным, чем внезапное исчезновение сопротивления при переходе в сверхпроводящее состояние, однако для теоретического объяснения минимума сопротивления, по-видпмому, необходим такой же новый шаг в развитии теории, который нужен для полного объяснения явления сверхпроводимости.  [c.210]

С классической точки зрения волна, коттэрая удовлетворяет этому дисперсионному соотношению, может иметь любую амплитуду (в пределах выполнения закона Гука). В то же время для колебаний решетки, как и для квантов электромагнитного излучения, характерен корпускулярно-волновой дуализм. Корпускулярный аспект колебаний решетки приводит к понятию фонона, и прохождение волны смещения атомов в кристалле можно рассматривать как движение одного или многих фононов. При этом каждый фонон переносит энергию Ксй, где Ь = Ь/2я= 1,0546-эрг-с Н — постоянная Планка, и импульс Ьк. Теплопроводность, рассеяние электронов и некоторые другие процессы в твердых телах связаны с возникновением и исчезновением фононов, т. е. корпускулярный аспект таких процессов- так же важен, как и волновой. Проявление дискретной (корпускулярной) природы энергии возбуждения в других явлениях зависит от того, насколько велико количество термически возбужденных фононов.  [c.36]

Теоретические исследования явления реабсорбции позволяют сопоставлять форму контура реабсорбированной линии с температурой частиц, плотностью излучающих атомов и электронов и некоторыми другими параметрами плазмы.  [c.264]

Для исследования физических явлений применяется также метод аналогий. В природе существуют явления, имеющие различную физическую сущность, но одинаковое математическое описание. Такие явления называют аналогичными. Аналогичными, например, являются процессы передачи тепла и электричества через твердое тело. Существует аналогия и между некоторыми другими физиче-  [c.6]

Повышение прочности и уменьшение пластичности вследствие предварительной вытяжкп за предел текучести называют наклепом. При наклепе меняются механические качества материала, б материале же возникают остаточные напряжения. В некоторых случаях явление наклепа бывает нежелательным и с ним борются, в других случаях, наоборот искусственно вызывают наклеп.  [c.42]


Смотреть страницы где упоминается термин Некоторые другие явления : [c.543]    [c.95]    [c.7]    [c.48]    [c.79]    [c.409]    [c.62]    [c.521]   
Смотреть главы в:

Физика ударных волн и высокотемпературных гидродинамических явлений  -> Некоторые другие явления



ПОИСК



Явление



© 2025 Mash-xxl.info Реклама на сайте