Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Газ Истечение адиабатическое

Прежде всего условимся считать изменение состояния газа при истечении адиабатическим. Это допущение достаточно обоснованно, поскольку при значительной разности давлений за счет преобразования потенциальной энергии в кинетическую в отверстии возникает столь большая скорость, что поток не успевает отдать свое тепло стенкам и окружающей среде, куда он вытекает. Для такого процесса приме-  [c.246]

Процесс истечения — адиабатическое расширение газа от постоянного давления pi до постоянного давления р2 без производства полезной работы, с преобразованием энергии сжатого газа в энергию струи. Обычно истечение организуется в коротких каналах.  [c.92]


Известна, однако, частная форма насадка, для которой при дозвуковом истечении газа коэффициент сужения струи можно найти теоретически достаточно просто. Решение этой газодинамической задачи основано на использовании интегральных законов сохранения и установленных в настояш.ем параграфе соотношений между параметрами газа при. адиабатическом обратимом течении.  [c.63]

При с1р = бр истечение из сосуда в сосуд закончится, и если сосуды адиабатически изолированы, то показатели процессов истечения после завершения смешения газов можно определить на основе рассмотрения следующих соотношений  [c.84]

Адиабатическое установившееся течение. Истечение из резервуара. Характеристики заторможенного газа  [c.292]

К. Предварительный нагрев этих газов осуществляется с помощью электрической печи. Расход газа через опытную трубу изменяется с помощью байпаса, а рассчитывается по формуле адиабатического истечения через критическое сечение соила. Состав газа, его температура и давление определяются с помощью соответствующих зондов, которые устанавливаются в форкамере после смесительной решетки. В выходной камере измеряется только температура заторможенного потока газа.  [c.246]

При установившемся адиабатическом обратимом истечении газа из большого сосуда скорость V в далеких от отверстия  [c.37]

Рассмотрим теперь случай истечения газа из сосуда через сопло Лаваля (рис. 29). Сохраним те же обозначения, что и в предыдущем случае. Используя основные соотношения на линии тока, справедливые для непрерывных адиабатических установившихся течений (5.11), (5.12 ) и уравнение состояния  [c.49]

Чтобы пользоваться критериями (30) и (31), необходимо иметь количественные оценки параметра ц в зависимости от определяю-ш,их его факторов. Примем допуш ение квазистационарности адиабатического истечения газа в дросселях. Для усилителя типа два сопла — заслонка при равенстве диаметров сопел выражения для чувствительностей с учетом режимов истечения газа запишутся [81  [c.124]

Соотношение между скоростью и скоростью с в каком-то другом промежуточном сечении согласно теории истечения газов и паров определяется уравнением при адиабатическом сжатии  [c.141]

Абсолютная температура 2, 3 Абсолютное давление 609 Авогадро закон 58 Автолы — Удельный вес 604 Агенты холодильные 151—162 Адиабата ударная 694 Адиабатический процесс 75 Адиабатическое истечение газа 139  [c.701]

Истечение газов 95, 139 --жидкости адиабатическое 139  [c.712]


При расчете форсунок воздушного (или парового) распыливания высокого напора обычно применяются весьма большие скорости. Для ряда конструкций скорость в месте распыливания доходит до критической и даже превышает ее. При расчете выходных сечений для газа (пара) можно принять, что процесс внутри форсунки является адиабатическим. Тогда для истечения газов и паров через цилиндрические и сходящиеся сопла при отношении давлений больше так называемого критического  [c.179]

С большей точностью скорость газа при Рг > 1500 -h -h 2000 мм вод. ст. можно определить по формуле адиабатического истечения  [c.45]

Механизм работы лабиринтных уплотнений в газах заключается в многократном дросселировании рабочей среды, протекающей через камеры и сужения с резко меняющимися проходными сечениями (рис. 11.1, г). В сужающейся части щели происходит адиабатическое истечение, сопровождающееся увеличением скорости и падением давления и температуры потока. В камере между соседними сужениями (гребнями) скорость газа уменьшается и происходит диссипация кинетической энергии потока при почти неизменном давлении. Температура в этом процессе восстанавливается до начального значения. В последующих сужениях и камерах процесс повторяется с той лишь разницей, что вследствие уменьшившейся плотности потока р скорость, а также падение давления и температуры под гребнем будут большими.  [c.376]

Важным для исследования движения ракет было нахождение скорости выброса газа из ракетного сопла. Расчеты истечения газа из сопла рассматривались до того в теории газовых турбин и были перенесены на ракеты, в основном без особых изменений. Из первых работ, посвященных адиабатическому истечению газов из сопел применительно к ракетам, отметим работу Д.П. Рябушинского Теория ракет (1920 г.). В 20-х гг. прошлого века в исходное уравнение движения ракет было внесено уточнение, а именно указано на необходимость учета избытка давления на внешнем срезе сопла ракеты в сравнении с атмосферным давлением.  [c.79]

Ясно, однако, что применимость этого результата должна быть ограничена, так как иначе мы пришли бы к парадоксальному заключению, что для Р1 = 0, т. е. при истечении в пустоту, вытекающее количество газа должно быть равно нулю. Разъяснением этого положения мы обязаны Осборну Рейнольдсу ). Можно показать, что есть максимум, т. е. что площадь поперечного сечения элементарной струи есть минимум, когда, как то следует из формулы (4), скорость течения равна скорости звука в газе при данном давлении и данной плотности. Из формулы (И) 23 мы имеем при адиабатической гипотезе  [c.44]

Отметим, что из-за скоротечности процесса протекания газа через сопло и вследствие этого малого времени контакта вытекающего газа со стенками сопла процесс истечения, даже в том случае, когда не принято мер к тепловой изоляции сопла от окружающей среды, является практически адиабатическим.  [c.212]

Учитывая, что продолжительность начальной и конечной стадий процесса горения водорода существенно больше продолжительности промежуточной стадии, будем полагать, что за скачком в течение периода индукции можно пренебречь влиянием химических процессов на течение по истечении периода индукции происходит воспламенение и мгновенное сгорание смеси, после чего газ вновь движется адиабатически. Как ив 1,2], отличие состава продуктов сгорания от исходной смеси учитывается путем изменения показателя адиабаты за фронтом пламени.  [c.79]

Изучение задачи Чаплыгина об адиабатическом истечении совершенного газа из сосуда с прямолинейными стенками позволило Л. В. Овсян-  [c.33]

В гл. 5 приводится общая теория истечения газов п паров. В этой главе рассматриваются следующие темы общая теория истечения адиабатическое истечение гипотеза Сен-Венана и Вентцеля диаграмма Молье проволакивание пара сопротивление движению при истечении расчет инжектора опыты Томсона и Джоуля над истечением газов отличие действительных газов от идеальных. В первых параграфах этой главы выводятся общее уравнение энергии газового потока, формулы скорости истечения, секундного расхода кри-  [c.204]


Процесс истечения газа с термодина 1ической точки зрения можно считать адиабатическим, так как на весьма коротком пути от резервуара до сечения 2 влиянием теплообмена между выходящим газом и внешним пространством можно пренебречь (нет ни отвода, ни подвода тепла).  [c.301]

Обозначим начальные параметры газа, т. е. его давление, температуру и удельный объем во входном сечении сопла, через pi, (значения их по условию стационарности поддерживаются постоянными). Начальную скорость газа в сосуде обозначим через давление внешней среды, в которую происходит ис1еченне, — через // давление, температуру, удельный объем и скорость газа на выходе из сопла (в выходном сечении) — соответственно через р2. 2 Так как истечение газа, по предположению, является адиабатическим, с /техн = и hi = 1г , то из первого уравнения выражения (4.59) следует, 410  [c.330]

Чтобы перейти к более ясным количественным оценкам параметров потока рабочего тела, рассмотрим три конкретных процесса дросселирование (рис. 4.13,а), истечение из сопла (рис. 4.13,6) и расширение газа в тур-бнне (рис. 4.13, б). Будем считать, что истечение через дроссель является обратимым адиабатическим процессом поток направлен горизонтально, соответственно скорости потока на входе и выходе равны. С учетом этих условий из (4,24) получаем  [c.71]

Абсолютная температура 2 Абсорбционные хс юдильные машины — см. Холодильные машины абсорбционные Авогадро закон 45 Автотрансформаторы 393 Автоэлектронная эмиссия 360 Агенты холодильные — см. ХолоОиль-ные агенты Адиабатический процесс 48, 520 Адиабатическое истечение газа 90 - жидкости 90  [c.533]

В практических расчетах удобно пользоваться калорическими уравнениями состояния газа (пара). При этом для случая адиабатического процесса (S = onst) выражения для скорости истечения преобразуются к виду  [c.180]

Так, например, стационарное истечение газа 6es трения через сопло (/—2 на рис. 7-2) может быть обратимым процессом, потому что работающий без трения диффузор может в сечении 4 вернуть газ в-то же состояние, в котором газ поступал в аппарат в (Сечевии 1. Аналогично поток водяного нара, проходящий через работающую без трения турбину,, может быть обратимым потому, что уходящий из турбины пар мажет быть возвращен к первоначальному состоянию в компрессоре, потребляющем количество работы, точно равное работе, произведенной турбиной. При этом в окружающей среде не остается никаких изменений. Как в случае сопла, так и для турбины изменение состояния будет представлять собою обратимый адиабатический процесс, для которого, как показано в 3-4, duldv = —р..  [c.44]

Наиболее простым путем решения поставленной задачи является определение наиболее эффективной геометрии сопла эмпирическим путем. При этом показателем наибольшей эффективности является достижение в эксперименте максимального значения скорости при заданных начальных параметрах. Уменьшение скорости по сравнению с ее значением, найденным по описанной выше методике, будет происходить вследствие трения о стенки канала и механического и термического неравновесия фаз в процессе расширения смеси в сопле. Максимальная степень неравновесия может быть реализована в расходящейся части сопла принятием специальных мер. Как было показано ранее, можно добиться максимального выравнивания скоростей фаз на входе в расходящуюся часть сопла. Что касается термической неравновесности фаз, то можно показать, что ее влияние на коэффициент скорости при истечении газожидкостной смеси незначительно. Процесс расширения смеси может быть представлен следующим образом (рис. 7.2) жидкость охлаждается, как при обычном адиабатическом истечении, на dTl градусов и при давлении р - dp охлаждается на dT n отдает тепло газу газ адиабатически расширяется и при этом охлаждается на dT градусов и при давлении р - также изобарически нагревается на dT градусов, получая тепло от жидкости. В результате температура о еих фаз становится Т -dT, т.е. смесь охладилась на dT градусов. Очевидно, при dp -> О точка с стремится к  [c.148]

Во многих машинах, реализуюгцих нестационарные процессы, понижение температуры происходит вследствие близкого к адиабатическому расширения газа, остающемуся в сосуде при истечении, подобно тому понижению температуры, которое наблюдается в физическом опыте Клемана—Дезорма. В этом опыте, который ставится для довольно точного определения показателя адиабаты к, происходит неравновесное истечение газа из одного сосуда в другой, в результате которого в первом сосуде, где давление более высокое, происходит процесс изменения состояния, довольно близкий к адиабатическому процессу расширения.  [c.126]

Если давление газа перед соплом больше 1 ООО мм вод. ст., но P2/pi>VKp, ра1счет ведется по формулам истечения при адиабатическом расширении  [c.201]

При истечении газа (пара, воздуха) в окружающую среду под высоким давлением резко изменяется его объем. Поэтому необхо-димо учитывать сжихмаемость газа. Пренебрегая потерями в насадке, из которого происходит истечение идеального газа, и влиянием его массы, скорость адиабатического истечения можно определить по формуле Сен-Венана —Венцеля  [c.41]

При рассмотрении основных особенностей газового потока (см. гл. 3) было установлено, что при пстечении через суживающиеся сопла скорость газа не может быть больше местной скорости звука, следовательно, расширение в таких соплах осуществляется до давлений, больших или равных критическому. Поэтому суживающиеся сопла применяются для создания потоков газа дозвуковых и звуковых скоростей. Расчет таких соил сводится к определению размеров выходного сечения по заданным расходу газа и скорости истечения и к определению формы сопла. Те 1ение газа в сопле принимается адиабатическим. Обозначив, как и раньше ( 3.1), параметры полного торможения Ра, То п ро, а статическое давление в выходном сечении ра, можно определить скорость изоэнтропийного 1гстечения в выходном сечении сопла Fi по формуле  [c.205]


Анализ характеристик ракетного двигателя предполагает расчет следующих параметров тяги Fy эффективной скорости истечения продуктов сгорания из сопла г/эфф, коэффициента тяги характеристической скорости и удельного импульса /уд. При рассмотрении идеализированной одномерной схемы камеры сгорания параметры рабочего процесса можно выразить через температуру адиабатического горения в камере Гк, среднюю молекулярную массу М выхлопных газов и показатель адиабаты (отношение удельных теплоемкостей) у, а также через соответствующие величины давления и площади сопла в критичес-к( м и выходном сечениях.  [c.15]

Широкое рассмотрение течений сжимаемой жидкости (газа) было проведено на рубеже века в прошедшей тогда почти не замеченной докторской диссертации G. А. Чаплыгина О газовых струях (1902). В ней Чаплыгин разработал метод решения струйных задач кирхгофовского типа для дозвуковых адиабатических течений газа, опирающийся на решение соответствующих задач для несжимаемой жидкости. В частности, им были построены и проанализированы решения для истечения струи газа из отверстия и для симметричного обтекания пластинки струей .  [c.285]

Вопрос этот, по-видимому, впервые рассмотрел в 1923 г. П. Лан-жевен при исследовании баллистических эффектов истечения из сопла ракет пороховых газов. Анализируя скорость адиабатического истечения газа из емкости высокого давления через сопло с неполным расширением, он обнаружил, что тяга Т ракеты не равна силе реакции истекающих газов —V (1М/(И, но складывается из нее и из силы (р — Ра) и, действующей на входное сечение сопла с площадью и за счет разности давлений в этом сечениии р и атмосферного Ра-  [c.79]

Наибольшее развитие, в связи с задачами, вставшими перед создателями паровых турбин, получила газовая гидравлика, предметом изз чения которой явились одномерные течения сжимаемого газа с большими до- и сверхзвуковыми скоростями по трубам и соплам, вопросы истечения газа из резервуаров и тому подобные явления. Это направление механики сжимаемого газа нашло опору в общих теоремах количеств движения, теореме Бернулли, баланса энергии, а также в основных закономерностях термодинамики газа. Наиболее популяр-цым и важным результатом этого направления следует признать классическую формулу Сен-Венана и Ванцеля (1839), связывающую скорость адиабатического истечения газа с давлением и плотностью газа в резервуаре и с противодавлением.  [c.29]

Последнее равенство называется формулой Сан-Венана и Ванцеля для скорости адиабатического истечения газа. Если, например, воздух, находящийся в резервуаре под атмосферным давлением, вытекает в пустоту, то по формуле Сан-Венана и Ванцеля получаем )  [c.98]

В этом частном случае, когда вход не зависит от давления в резервуаре, а выход прямо пропорционален давлению в резервуаре, постоянная времени равна вре- мени пребывания. При сверхзвуковых скоростях истечения газа его расширение происходит по адиабате, и значение скорости при определенном давлении до клапана может быть найдено в справочниках. При сверхзвуковых скоростях истечения через очень малые выходные отверстия значение расхода лежит где-то между соответст-вуюшим значением для адиабатического расширения и несколько большим значением, соответствующим изотермическому расширению. Точное значение расхода в этих случаях предсказать трудно.  [c.60]

Формула Сен-Венана — Ванцеля для адиабатического истечения идеального газа через сопло (сужающийся насад о к) из резервуара неограниченно большой емкости. Если ро — давление газа в резервуаре и — давление  [c.466]

В работе [1] наблюдалась стационарная волна детонации при истечении из сопла перерасширенной водородно-воздушной струи. В работе [2] изучались нормальные и косые детонационные волны в такой же смеси внутри рабочей части аэродинамической трубы. В исследованиях [3, 4] стационарное обтекание тела горючей смесью моделировалось выстреливанием тела в покоящуюся среду. При этом было обнаружено, в частности, что волна детонации, образующаяся перед телом, на некотором расстоянии от тела распадается на обычный адиабатический скачок уплотнения и на фронт медленного горения, распространяющийся по несгоревшему газу за скачком. Несмотря на полученные интересные сведения, экспериментальное исследование стационарных детонационных волн и фронтов медленного горения в сверхзвуковом потоке все еще находится в первоначальной стации накопления и систематизации фактов.  [c.34]


Смотреть страницы где упоминается термин Газ Истечение адиабатическое : [c.105]    [c.304]    [c.169]    [c.185]    [c.207]    [c.376]    [c.199]    [c.151]    [c.341]   
Справочник машиностроителя Том 2 Изд.3 (1963) -- [ c.139 ]



ПОИСК



Адиабатический процесс истечения. Критическое отношение давлений

Адиабатическое истечение газа

Адиабатическое истечение газа жидкости

Адиабатическое установившееся течение. Истечение из резервуара. Характеристики заторможенного газа

Время адиабатического истечения из постоянного объема

Время адиабатического истечения наполнения постоянного объема

Движение Истечение адиабатическое

Жидкости Истечение адиабатическое — Скорость

Истечение

Истечение газов жидкости адиабатическое

Скорость установившегося адиабатического истечения газа в вакуум



© 2025 Mash-xxl.info Реклама на сайте