Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Потенциал анодный, наложение

Как указывалось в разд. 4.10, защита осуществляется наложением внешнего тока, который поляризует катодные участки локальных элементов до значений потенциала анодных участков при разомкнутой цепи [1]. Поверхность становится эквипотенциальной (катодный и анодный потенциал равны), и коррозионный ток более не протекает. Иными словами при достаточно большой плотности внешнего тока суммарный положительный ток протекает на всей поверхности металла (включая анодные участки), следовательно, отсутствуют условия для перехода ионов металла в раствор.  [c.215]


Такие диаграммы pH—имеются для всех металлов [7]. Они дают представление о возможном характере коррозии и о возможности электрохимической защиты путем изменения потенциала посредством наложения постоянного тока. При уменьшении потенциала в направлении области III необходимо накладывать катодный ток, а при повышении потенциала в направлении области I или к заштрихованному участку анодный защитный ток. Все это является основой как для катодной, так и для анодной защиты. Для первой оценки практических возможностей защиты нужно рассматривать и область устойчивости Н2О между прямыми а и б. За пределами этой области возможности изменения потенциала ограничиваются вследствие электролитического разложения воды. Поэтому уже на основании рис. 2,2 можно заключить, что в кислых растворах при низких значениях pH катодная защита практически невозможна и может быть обеспечена только анодная защита.  [c.52]

Катодная защита основана на наложении отрицательного потенциала от внешнего источника тока на металл, при этом значительно замедляется процесс его ионизации, а в реакцию деполяризации вступают электроны не с металла, а от внешнего источника тока. При этом положительный полюс источника тока подсоединяется к анодному заземлителю. Обязательным условием катодной защиты является наличие токопроводящей среды (природные почва, вода и т.п.) между защищаемым сооружением и анодным заземлителем. Критериями эффективности катодной защиты являются защитный потенциал и плотность тока.  [c.4]

Сопоставление приведенных выше результатов с данными по коррозионному растрескиванию титановых сплавов.в метанольных средах показывает, что характер изменения процессов растрескивания титановых сплавов в метанольных средах идентичен процессам, идущим в агрессивных коррозионных средах, в которых отсутствует репассивация. Именно отсутствием области пассивности на анодных поляризационных кривых можно объяснить наблюдаемое на титановых сплавах в метанольных средах непрерывное увеличение анодного тока с увеличением потенциала. Повышенное содержание воды в метаноле приводит на об- разцах титановых сплавов к появлению области пассивности. Особенности влияния катодной поляризации и устранение коррозионного растрескивания на образцах титановых сплавов в метаноле связано с тем, что при наложении катодной поляризации на поверхности образуется плотный слой гидридов, создающий пассивное состояние.  [c.84]


При гальваническом методе образец поляризуется катодным или анодным током постоянной величины, его выдерживают некоторое время, после чего измеряют потенциал электрода. Благодаря наложению внешнего тока процесс сдвигается от равновесного и требуется длительное время установления постоянного его значения (сутки и более). Поэтому обычно ограничиваются одной выдержкой, составляющей 1-15 мин для всех плотностей тока. Принятое время выдержки следует всегда оговаривать для сопоставимости получаемых данных.  [c.138]

Возможности применения протекторов (гальванических анодов) в отличие от анодных заземлителей (анодов с наложением тока от постороннего источника) ограничиваются их химическими свойствами. Стационарный потенциал материала протектора в среде должен быть достаточно отрицательным по отношению к защитному потенциалу защищаемого материала, чтобы можно было обеспечить достаточное напряжение для получения защитного тока. Согласно пояснениям к рис. 2.5, между стационарным и равновесным потенциалами металла нет взаимосвязи. Это объясняет различные изменения значений потенциалов в ряду стандартных потенциалов и стационарных потенциалов на рис. 7.1. В целом различия в стационарных потенциалах у металлов получаются меньшими. Кроме того, все стационарные потенциалы зависят также и от среды (см. табл. 2.4). Температура тоже оказывает на них влияние. В частности, потенциал цинка в различных водах с повышением температуры становится более положительным вследствие образования поверхностного слоя.  [c.174]

Рис. 14.6. Распределение потенциала по длине специального кабеля с катодной защитой, имеющего броню из оцинкованной стали (цинковое покрытие уже про-корродировало), без наложения защитного тока I и с защитным током 9,3 А II / — стандартный кабель 2 — специальный кабель 3 — станция катодной защиты 4 — анодный заземлитель 5 — радиостанция Рис. 14.6. Распределение потенциала по длине специального кабеля с <a href="/info/6573">катодной защитой</a>, имеющего броню из оцинкованной стали (<a href="/info/6719">цинковое покрытие</a> уже про-корродировало), без наложения защитного тока I и с защитным током 9,3 А II / — стандартный кабель 2 — специальный кабель 3 — <a href="/info/39790">станция катодной защиты</a> 4 — <a href="/info/39582">анодный заземлитель</a> 5 — радиостанция
При электрохимической защите от коррозии резервуаров, сосудов—ре-акторов, транспортных устройств или трубопроводов в химической и нефтеперерабатывающей промышленности часто приходится иметь дело со средами высокой коррозионной активности. Здесь встречаются среды начиная от обычной пресной и более или менее загрязненной речной, солоноватой и морской воды (часто применяемые для охлаждения) или реакционных растворов и сточных вод химического производства и кончая крепкими рассолами, которые нужно хранить и транспортировать при добыче нефти. Целесообразно ли даже при наличии существенных коррозионных влияющих факторов опробовать электрохимическую защиту и какой именно способ лучше всего можно применить — это зависит от конкретных условий в каждом отдельном случае. Так, при наличии материалов, поддающихся пассивации в соответствующих средах, кроме известной катодной защиты может ставиться вопрос и о применимости анодной защиты. Этот способ можно успешно применить в тех случаях, когда потенциал свободной коррозии ввиду слишком слабого окислительного действия среды располагается в области активной коррозии, но при наложении анодного тока от постороннего источника может быть легко смещен в область пассивности и поддержан на этом уровне (см. раздел 2,3.1.2 и рис. 2.12).  [c.378]

Различают три возможности анодной защиты применение анодного тока от внешнего источника, формирование локальных катодов и применение пассивирующих ингибиторов. При способе с наложением тока от внешнего источника сначала должны быть определены области защитных потенциалов путем исследования зависимости показателей коррозии от потенциала (см. соответствующие данные в разделах 2.3 и  [c.390]

В литературе пока имеются лишь отдельные сведения о формировании окисных пленок на тугоплавких металлах и рассматривается этот процесс не с металловедческих позиций. Подробное освещение результатов этих работ выходит за рамки обсуждаемых вопросов и общей направленности данной книги. В связи с этим ограничимся некоторыми общими сведениями об окисных пленках, образующихся на тугоплавких металлах. Выше было сказано, что тантал, наиболее коррозионностойкий из тугоплавких металлов, весьма стоек во многих агрессивных средах вследствие устойчивости в этих средах его окисла Т 2 Os. Однако окисел Таг Os растворяется в плавиковой кислоте, чем и объясняется малая устойчивость тантала в этой кислоте. Окисел тантала растворяется также в щелочах с образованием танталатов. Таким образом, в тех средах, в которых окись тантала растворима, тантал нестоек. Для образования поверхностной пленки необходимо наложение анодного тока, причем, чем вьппе плотность тока, тем быстрее достигается потенциал вьщеления кислорода (линейный участок кривой на рис. 51). Тем не менее образование пленки наблюдается и без наложения  [c.57]


Зарождение трещин в металле при наложении растягивающих напряжений обычно происходит в средах, которые вызывают локализованную коррозию. Образование первичных трещин может быть связано с возникновением туннелей (порядка 0,05 мкм) или с начальными стадиями зарождения питтингов. Всевозможные нарушения кристаллического строения (границы зерен, включения, дислокации), риска, субмикроскопические трещины в металле или на защитной пленке могут стать местами зарождения трещин и значительно повышать склонность к КР. Интенсивная коррозия металла на отдельных ограниченных участках поверхности напряженного металла, испытывающего растягивающие напряжения, может привести к образованию очень узких углублений, величина которых может быть соизмерима с межатомными расстояниями. Отмечается, что существует критический потенциал КР, отрицательнее которого КР не будет происходить. Например, критический потенциал КР стали типа 18-8 в кипящем хлориде магния составляет — 0,14 В. При более положительных потенциалах (анодная поляризация) происходит  [c.67]

При подключении экранных заземлений в районе участка, где имеется превышение наложенной разности потенциалов сверх допустимой, поступление тока анодного заземления в трубопровод ограничивается, и тем самым снижается потенциал на этом участке.  [c.47]

Влияние потенциала на КР представляет интерес в нескольких аспектах. В реальных условиях службы алюминиевые сплавы могут контактировать с разнородными металлами, являясь анодом, либо катодом в гальванической ячейке. Наложение анодного потенциала часто применяется в испытании образцов на КР в ускоренных лабораторных испытаниях. Кроме того, эффект действия электродного потенциала часто используется для того, чтобы понять и изучить механизм процесса КР высокопрочных алюминиевых сплавов. И, наконец, катодная защита иногда используется для предотвращения возникновения и роста коррозионных трещин.  [c.205]

Кривая 1 на рис. 17, а отвечает тому случаю, когда металл в отсутствие внешней поляризации находится в равновесии с собственными ионами (идеализированная анодная кривая) и потенциал до наложения тока отвечает обратимому потенциалу металла При смещении потенциала в положительную сторону скорость растворения металла увеличивается и достигает максимального значения при Е = Е ,п, где н.п — потенциал начала пассивации. В области потенциалов между ЕгиЕ ,п происходит так называемое активное растворение металла, наклон на этом участке положителен  [c.49]

При большей эффективности катодного процесса вероятен случай, когда катодная кривая на рис. 37, а) не доходит до петли активного анодного растворения и пересекается с анодной кривой только на участке полного пассивного состояния (точка G). В этом случае система будет находиться в самопроизвольно устойчиво-пассивном состоянии и растворяться с ничтожной скоростью коррозии в пассивном состоянии, соответствующей току Exfi. Стационарный потенциал коррозии такой системы Ех, будет положительнее потенциала полного пассивирования Еап но отрицательнее потенциала анодного пробивания пассивной пленки Еа или потенциала перехода в транспассивное состояние т, т. е. Елп< Ех, < -Бпр или ЕапК < E-t. Очевидно, что для этого случая плотности катодных токов при потенциале пассивирования и потенциале полной пассивности превосходят предельную плотность тока пассивирования, и соответственно плотность тока полного пассивирования in и гк, > г пп (см. рис. 37, а), В этом случае обш,ая реальная кривая анодной поляризации системы изображается линией E fiS (см. рис. 37, б). Для данной системы устойчиво (даже без наложения внешнего анодного тока) только одно пассивное состояние. И если каким-либо образом система искусственно будет выведена из пассивного состояния (катодной поляризацией, механической зачисткой), то после снятия внешнего воздействия система опять возвратится в пассивное состояние. Это — самопроизвольно пассивирующаяся коррозионная система.  [c.63]

По этому методу нержавеющая сталь поляризуется анодно от внешнего источника тока и измеряется ее потенциал. По мере увеличения приложенного извне напряжения потенциал нержавеющей стали все более и более облагораживается. При достижении некоторой величины наложенного потенциала электродный потенциал анодно поляризованной стали достигает максимального значения, после чего начинает падать (разблагораживается). Допускается, что в этот момент происходит разрушение защитной пленки в одной или нескольких точках поверхности и это вызывает падение потенциала стали. Максимальное значение электродного потенциала, с которого начинается падение потенциала (рис. 136), носит название потенциала пробоя и характеризует, по мнению многих авторов, устойчивость нержавеющих сталей по отношению к питтингу или склонность к питтингообразованию.  [c.281]

В зависимости от стационарного потенциала или наложенного анодного потенциала и состава раствора можно создать условия, при которых будет наблюдаться наибольшая разница в скоростях растворения отдельных структурных составляющих, и, наоборот, могут быть достигнуты условия, при которых разница в скоростях будет наименьщей. Этот эффект, объясняемый с помощью дифференциальных анодных кривых, может быть использован для выяснения механизма химической и электрохимической обработки металлов и сплавов, пспользуемо в настоящее время в практике.  [c.68]

Пересечение идеальных поляризационных кривых, построенных на основании реальных (экспериментальных) поляризационных кривых, определяет величину тока коррозии, обусловленную не наложением внешнего тока, а работой внутренних микрогальва-нических пар. Реальные поляризационные кривые получают путем смещения потенциала электрода от Екарр в анодную или катодную сторону за счет тока от внешнего источника. При малых внешних токах реальные и иде-  [c.55]


Влияние несимметричности реакций фарадеевское выпрямление) наблюдается особенно часто при вызываемой переменным током коррозии пассивных металлов (в основном, по определению 1 в гл. 5). Показано, что нержавеющие стали корродируют под действием переменного тока [4], алюминий в разбавленных растворах соли разрушается при 15 А/м на 5 %, а при 100 А/м на 31 % по отношению к разрушениям, вызванным при 100 А/м постоянным током той же силы. Феллер и Рукерт [4] изучали воздействие наложения переменного тока (1 В, 54 Гц) на постоянный на никель в 1 и. H2SO4. Оказалось, что на потенцио-статических поляризационных кривых полностью исчезла пассивная область, а высокая плотность анодного тока сохранялась во всей области положительных потенциалов. Чин и Фу [5] отметили аналогичное поведение мягкой стали в 0,5т N82804 при pH = 7. Плотность пассивирующего тока возрастала с повышением плотности наложенного переменного тока, достигая при плотности тока 2000 А/м и частоте 60 Гц критического значения (отсутствие пассивной области). Они нашли также, что при плотности переменного тока 500 А/м потенциал коррозии снижался на несколько десятых вольта, одновременно в отрицательную сторону сдвигалась и область Фладе-потенциала, но  [c.209]

Рис. 47. Схема к расчёту анодной зашиты протяжённой конструкции в пусковом режиме а - распредели,тока по длине зашишаемого трубопровода 6 -распределение наложенного анодного тока по длине защищаемого трубопровода в - распределение потенциала по длине защищаемого трубопровода / -дпина пассивного участка - длина активного участка (р - потенциал в точке дренажа <р - потенциал полной пассивации металла <р - стационарный потенциал металла конструкции d, - внутренний диаметр трубопровода Рис. 47. Схема к расчёту анодной зашиты протяжённой конструкции в пусковом режиме а - распредели,тока по длине зашишаемого трубопровода 6 -распределение наложенного анодного тока по длине защищаемого трубопровода в - распределение потенциала по длине защищаемого трубопровода / -дпина пассивного участка - длина активного участка (р - потенциал в точке дренажа <р - <a href="/info/161104">потенциал полной пассивации</a> металла <р - <a href="/info/39792">стационарный потенциал</a> металла конструкции d, - внутренний диаметр трубопровода
Для получения полной анодной кривой бьша применена разработан ная И.Л. Розенфельдом методика предварительной активации поверх кости, которая дает поляризационные кривые, характерные для пассиви рующегося металла с областями активного растворения, активно-пас сивного и пассивного состояния. На рис. 22 приведены анодные поляри зационные кривые алюминия АД1 и алюминиевых покрытий при ско рости наложения потенциалов 10 мВ/с в средах 0,01 н. Na l. В 0,01 н растворе Na l стационарный потенциал стали с электрофоретическим покрытием при гидростатическом обжатии на 0,1 Вис гидроимпульс ным - на 0,2 В положительнее потенциала чистого алюминия и состав ляет - 1,3 и -1,2 В соответственно.  [c.82]

Следует отметить, что при известных условиях адсорбция может привести к пассивации и тогда, когда ингибитор не восстанавливается. В этом случае, однако, требуется либо присутствие в коррозионной среде каких-нибудь других окислителей, либо наложения-некоторой анодной поляризации. Примером могут служить бензоат-ионы, которые при определенных условиях переводят металл, в частности железо, в пассивное состояние и обеспечивают его защиту от коррозии [14 194 195 205 239]. При этом оказывается, что смещение потенциала в положительную сторону и пассивное состояние металла достигаются лишь в присутствии растворенного кислорода и при определенной минимальной степени покрытия поверхности металла ингибитором. Чем положительнее потенциал образца, тем меньшие объемные концентрации ингибитора требуются для достижения такой степени покрытия. После того, как металл запассивирован на его поверхности не обнаруживается значительных количеств бензоата. Можно предположить поэтому, что при смещении потенциала в положительную сторону и формировании оксидной пленки относительно слабо связанные с поверхностью ионы бензойной кислоты (их удельный заряд мал, а специфическая адсорбиру-емость выражена слабо) вытесняются либо ионами гидроксила, обладающими большим удельным отрицательным зарядом и повышенной специфической адсорбируемостью, либо атомами кислорода, либо растущей пленкой оксида.  [c.51]

Электрохимически гетерогенный сплав в высокоэлектропроводных средах практически следует рассматривать как полностью поляризованную многоэлектродную систему, так как роль омического фактора крайне незначительна. Скорость коррозии различных участков гетерогенного сплава определяется поэтому не столько различием в потенциалах структурных составляющих и физически неоднородных участков, сколько различием б плотностях анодного тока на различных участках металла, что oispe-деляется значениями стационарного потенциала сплава при коррозии или наложенного анодного потенциала при анодном растворении сплава.  [c.32]

На основе локальной катодной защиты (защиты опасных мест ) в последние 10 лет была разработана технология совместной катодной защиты подземного оборудования и коммуникаций всего комплекса электростанций и промышленных агрегатов [51]. Эта технология целесообразна в том случае, когда системы трубопроводов уже нельзя надежно или экономично изолировать от железобетонных фундаментов или заземляющих устройств [52]. При наложении защитных токов в несколько сот ампер и применении глубинных анодных заэемлителей в этом случае можно было предотвратить образование протяженных макроэлементов путем снижения потенциала катодно защищаемых поверхностей [53]. В ФРГ с 1974 г. катодная защита магистральных газопроводов с давлением свыше 0,4 или 1,6 МПа считается обязательной и регламентируется рабочими нормалями Западногерманского объединения специалистов газового и водопроводного дела (DVQW Q-462 и Q-463) это относится и к нефтепроводам, защита которых регламентируется нормалью па магистральные трубопроводы для транспортирования опасных (горючих) жидкостей (TRbF301). В настоящее время общая длина трубопроводов, имеющих катодную защиту, превыщает в ФРГ 40 тыс. км.  [c.39]

Рис. 11.1. Работа системы с наложением тока от постороннего источника для катодной защиты трубопровода (схема) I — анодные заземлители в коксовой обсыпке 2 — преобразователь СКЗ, питаемый от сети 220 В стрелками показано направление тока штриховые линии — потенциал труба — грунт до включения станции катодной защиты при свободной коррозии сплошные — потенциал включения Vпри работе станции катодной защиты Рис. 11.1. <a href="/info/478000">Работа системы</a> с наложением тока от постороннего источника для <a href="/info/237352">катодной защиты трубопровода</a> (схема) I — <a href="/info/39582">анодные заземлители</a> в <a href="/info/39670">коксовой обсыпке</a> 2 — преобразователь СКЗ, питаемый от сети 220 В стрелками показано направление тока <a href="/info/1024">штриховые линии</a> — потенциал труба — грунт до включения <a href="/info/39790">станции катодной защиты</a> при <a href="/info/39778">свободной коррозии</a> сплошные — потенциал включения Vпри <a href="/info/303228">работе станции</a> катодной защиты
Все эти результаты, хорошо согласующиеся с данными последних исследований, позволяют связать пассивное состояние металлов с наличием на их поверхности хемосорбированных слоев кислородсодержащих частиц I 8,80 > 108]. Для хрома [ 109, 110] и никеля [lili установлено, что пассивация обеспечивается наличием на поверхности металла примерно монослойных покрытий. Для железа, по-видимому, характерно образование более толстых слоев [112]. Уже сравнительно давно было отмечено [ 1,3,8] J что отсутствие зависимости (или слабая зависимость) стационарной скорости растворения пассивного металла от потенциала ни в коей мере не характеризует истинную кинетику самого процесса растворения. В этом случае влияние потенциала является более сложным, поскольку его рост приводит не только к обычному ускорению анодного растворения металла, но и к изменению состояния металлической поверхности, которое равноценно повышению перенапряжения того же процесса. По-видимому, в случае железа и хрома эти эффекты полностью компенсируют друг друга, что и приводит к независимости стационарной скорости растворения этих металлов в пассивном состоянии от потенциала. Поскольку, однако, характерное для каждой величины потенциала стационарное состояние поверхности устанавливается относительно медленно, эти два эффекта удается разделить, если применить метод быстрого наложения поляризации. Так, например, для хрома ШО показано [ 8], что при быстрых измерениях (постоянное состояние поверхности) сохраняется  [c.25]


Поскольку коррозионное растрескивание, так же как и питтинговая коррозия, является по своей природе электрохимическим процессом, развивающимся в результате депассивации части металлической поверхности, стойкость металла к данному виду разрушения определяется прежде всего стабильностью возникающей на нем пассивирующей пленки [152,15 3] и может регулироваться за счет регулирования электродного потенциала металла. В настоящее время хорошо известно, что наложение катодной поляризации затрудняет, а анодной - облегчает развитие коррозионного растрескивания. Так, например, катодная поляризация аустенитной нержавеющей стали в кипящем растворе Mg l2 током 3 10" а/см обеспечило защиту ее от растрескивания на протяжении всего опыта, длившегося 24 ч [154]. Показано также [ 155], что полную защиту стали 18/9 в кипящем 42%-ном растворе Mg l2 удается обеспечить катодной поляризацией ее током 1,5 10-4 а/см2.  [c.35]

В основе метода анодной защиты лежит пассивация поверхности металла при наложении анодного тока. Анодный ток вызывает анодную поляризацию, т.е. возрастание электродного потенциала, и должен быть таким, чтобы превысить потенциал пассивации. Однако, если электродный потенциал слишком увеличивается, то область пассивности может оказаться пройденной и тогда начинается питтингообразование или так называемая транспассивная коррозия (перепассивация). На практике анодную защиту больше всего применяют для нержавеющей стали, т.е. сплава железа с хромом, который обладает ярко выраженными пассивационными свойствами. Ее применяют также для титана и в некоторых случаях для углеродистой стали.  [c.71]

При наложении анодного потенциала ускорение роста коррозионных трещин в присутствии галоидных ионов иногда сильно увеличивается, как показано на рис. 21 на примере сплава 7075-Т651. Видно, что в условиях потенциостатического режима в растворе, содержащем галоидные ионы, рост коррозионных трещин в области независимости скорости от напряжений намного  [c.201]

Аналогично сильное увеличение скорости развития коррозионных трещин в результате наложения анодного потенциала в концентрированных растворах хлоридов, бромидов и цодидов наблюдалось также на сплаве 7175-Т66 (см. рис. 48), сплаве 7178-1651  [c.202]


Смотреть страницы где упоминается термин Потенциал анодный, наложение : [c.486]    [c.15]    [c.36]    [c.400]    [c.42]    [c.43]    [c.43]    [c.44]    [c.364]    [c.340]    [c.35]    [c.87]    [c.51]    [c.79]    [c.68]    [c.198]    [c.228]    [c.366]    [c.387]    [c.57]    [c.335]   
Достижения науки о коррозии и технология защиты от нее. Коррозионное растрескивание металлов (1985) -- [ c.201 ]



ПОИСК



Анодный

Наложение

Потенциал анодный, наложение коррозионного растрескивания



© 2025 Mash-xxl.info Реклама на сайте