Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Влияние температуры на сопротивление деформированию и пластичность

Влияние температуры на сопротивление деформированию и пластичность стали. Холодная деформация сопровождается интенсивным упрочнением металла, что снижает пластичность и повышает сопротивление деформированию (рис. 2.3.1). Поэтому в холодном состоянии целесообразно деформировать пластичные сплавы и стали с содержанием углерода не более 0,3—0,35%. Холодная деформация высокоуглеродистых и легированных сталей нерациональна ввиду их низкой пластичности и низкой стойкости инструмента из-за увеличенных нагрузок.  [c.19]


Чтобы правильно установить температуру нагрева металла перед последующей штамповкой, необходимо знать влияние температуры на свойства металлов. На рис. 18 показана зависимость механических свойств среднеуглеродистой стали от температуры ее нагрева. Прочность стали, характеризующая ее сопротивление деформированию, с повышением температуры уменьшается. Нагреб стали уменьшает предел прочности стали Ов с 57 кгс/мм при 15° С до 3,8 кгс/мм при 1000° С, т. е. в 15 раз. Пластичность стали (в данном случае она выражается относительным удлинением б) при нагреве возрастает с 28 до 76%, т. е. приблизительно в 2,7 раза. При 1000° С сталь обладает высокой ковкостью, т. е. имеет высокую пластичность и незначительное сопротивление деформированию.  [c.34]

Влияние температуры. Как правило, температура оказывает наибольшее влияние на сопротивление металла деформированию и пластичность. С увеличением температуры увеличивается амплитуда колебаний и подвижность атомов, облегчается их взаимное с.мещение под действием внешних сил. Прочность и соответственно сопротивление деформированию уменьшаются, а пластичность увеличивается. В качестве примера на рис. 5 дан график изменения предела прочности и относительного удлинения б в зависимости от температуры для сталей, содержаш,их  [c.30]

Металлы и сплавы технической чистоты, как правило, имеют более сложные зависимости пластичности от температуры и скорости деформации. Несколько конспективное изложение материала, относящегося к этому разделу, связано с тем, что пластичность и сопротивление деформации в известной степени взаимосвязаны, поэтому, чтобы избежать повторений, дается краткий обзор, но относящейся только к пластичности. Физические механизмы при этом одинаковы, поэтому данный раздел необходимо рассматривать в совокупности с влиянием температурно-скоростных условий деформирования на сопротивление деформации.  [c.511]

Иногда рекомендуется верхнюю границу температурного интервала горячей обработки давлением устанавливать на основании определения критических температур роста зерна стали при нагреве (табл. 3). Однако при этом следует иметь в виду, что величина зерна стали при обработке давлением не оказывает существенного влияния ни на пластичность стали, ни на ее сопротивление деформированию. Для установления верхней границы более важное значение имеет обследование температуры пережога стали (табл. 4 и 5). Также не имеет принципиального значения и определение интервала критических деформаций, например при осадке в результате рекристаллизации обработки (построение диаграмм П рода).  [c.27]


Влияние концентрации напряжений на сопротивление усталости при повышенных температурах связано с упруго-пластическим перераспределением напряжений, чему способствует ослабление сопротивления пластическим деформациям -с ростом температуры. Используя циклические диаграммы деформирования для различного накопленного числа циклов, можно построить кривые усталости в истинных напряжениях и показать для сталей с выраженной циклической пластичностью, что эти кривые при растяжении-сжатии и переменном изгибе как  [c.224]

Сопротивление деформированию инструментальных Сталей в основном зависит от процентного содержания углерода. Чем больше в них углерода, тем ниже пластичность и выше сопротивление деформированию. Наличие в этих сталях вредных примесей (особенно серы и фосфора) приводит к понижению пластичности из-за появления красно- или синеломкости. Влияние легируюш,их элементов иа пластичность и механические свойства инструментальных сталей происходит вследствие замещения в решетке атомов железа атомами легирующего элемента. На основе физико-химических (коэффициента теплопроводности, температуры фазовых превращений и др.) и механических свойств (пластичности, сопротивления деформирования устанавливают температурный режим нагрева металла под ковку, температуру начала и конца ковки, выбор схемы процесса ковки и формы бойков, а также степень и скорость деформации.  [c.495]

Большое влияние на структуру металла заготовки, величину и стабильность его прочностных и пластических характеристик оказывает температурный режим ковки, степень и скорость деформации. При выборе температуры нагрева титанового сплава под ковку н температурного интервала горячего деформирования определяющим фактором следует считать температуру полиморфного превращения. Чем выше температура полного полиморфного превращения, тем выше температурный интервал горячего деформирования. Режимы ковки промышленных титановых сплавов выбирают по данным диаграммы пластичности с учетом скорости деформации, сопротивления деформированию, структуры металла, а также температуры полного полиморфного превращения.  [c.526]

Жаропрочные сплавы представляют собой многокомпонентные и многофазные системы. Причем, несмотря на то, что роль дисперсных фаз в упрочнении сплавов велика, определяющим фактором, особенно при высоких температурах, является прочность твердого раствора. В этой связи интересно выяснить влияния отдельного и совместного воздействия компонентов, входящих в состав твердого раствора жаропрочных сплавов, на механические свойства последних при различных температурах. Для этого можно воспользоваться измерением микротвердости, которая характеризует сопротивление изучаемого материала пластическому деформированию и может служить критерием для оценки свойств прочности и пластичности [2, 3, 6].  [c.25]

Деформация никеля и его сплавов осуществлялась до 9—10%, за исключением образцов сплава никеля с хромом при 800° С. При данной температуре растяжения образцы нихрома разрушались при значительно меньшем общем удлинении. Необходимо также отметить, что напряжения сопротивления деформированию образцов нихрома при 800° С выше, чем у образцов никеля и его сплавов с титаном и совместно с титаном и хромом. Таким образом, легирование никеля одним хромом вызывает снижение пластичности и приводит к хрупкому разрушению в условиях испытания при 800° С, в то время как легирование никеля только титаном не оказывает существенного влияния на пластичность твердого раствора [2].  [c.78]

Влияние температуры. Температура металла оказывает существенное влияние на его механические свойства. Повышение температуры увеличивает пластичность стали и снижает сопротивление деформированию.  [c.362]


Вместе с этим пластичность и сопротивление деформированию при температурах 1100—1150" при статической и динамической скоростях обработки практически одинаковы. При обеих скоростях сплавы, имеющие достаточный запас пластичности, оказалось возможным деформировать без разрушения на 60—65%. С другой стороны, при более низких температурах (950—1000°) скорость деформации оказывает заметное влияние на пластичность и сопротивление деформированию вследствие меньшего разупрочнения сплавов при этих температурах.  [c.148]

Повышение температуры металла оказывает существенное влияние и на его механические характеристики. О ходе изменения показателей прочности и пластичности с увеличением температуры можно судить по приведенным на рис. 2.3 графикам. Из графиков видно, что нагрев углеродистой стали примерно до 100°С несколько увеличивает пластичность и уменьшает сопротивление деформированию. Дальнейшее увеличение температуры примерно до 300° С значительно уменьшает пластичность и увеличивает прочность (зона синеломкости). Это предположительно объясняется выпадением мельчайших частиц карбидов по плоскостям скольжения аналогично процессу старения. Дальнейшее увеличение температуры приводит к постепенному, но значительному уменьшению прочности. При температурах порядка 1000° С предел прочности уменьшается более чем в 10 раз.  [c.56]

Из-за сложного характера зависимости пластичности материала от условий формообразования влияния температуры и скорости деформации на пластические характеристики обычно рассматривают совместно. Для реальных материалов изменение температуры или скорости деформации может приводить в одних случаях к уменьшению, а в других — к повышению пластичности. Обнаружено, что для чистых металлов зависимость пластичности и сопротивления деформированию от температуры имеет вид, близкий к следующему  [c.16]

Критерии разрушения. Одной из наиболее важных задач сопротивления материалов является определение механических условий, вызывающих пластическую деформацию и разрушение в элементах машин и инженерных сооружений. Как общее правило, допускается, что во всяком твердом теле возможно возникновение таких напряженных состояний, которые способны повлечь за собой значительные изменения его формы или же разрушение. При оценке степени опасности разрушения, могущего произойти в той или иной конструкции, следует иметь в виду несколько критериев. В гл. III было уже указано, что с возрастанием напряжений остаточная или пластическая деформация в пластичных металлах может развиваться либо внезапно, либо очень постепенно, в зависимости от того, обладает ли металл четко выраженным пределом текучести или не обладает там же указывалось, кроме того, что наблюдаемый предел текучести зависит от тех нагружений и пластических деформаций, которым материал подвергался прежде. Помимо прочих условий, решающее влияние на величину сил, приводящих тело в деформированное состояние, оказывает температура.  [c.197]

В 1874 г. В. Л. Кирпичев [15] предложил и доказал теорему о подобии при упругих явлениях , в которой сформулировал закон подобия (впоследствие перенесенный и на деформации в пластической области). Н. Н. Давиденков [13], применяя анализ размерностей, дал подробное исследование закона подобия для статических и динамических испытаний материалов. Однако имеется много случаев, когда закон подобия оказывается несправедливым. Отклонения от подобия при обработке давлением изучались С. И. Губкиным [11], который показал, что с увеличением объема сопротивление деформированию и пластичность уменьшаются, особенно при высоких температурах из-за различных тепловых условий и влияния контактных сил трения. Наибольшие и наиболее частые отклонения от подобия наблюдаются при разрушении. Поскольку эти отклонения связаны с изменением размеров, они часто обозначаются как масштабный фактор.  [c.313]

Таким образом, несмотря на то, что влияние п редварительной деформации индивидуально и зависит от сплава и температурно-временнйх условий, для материалов реальных конструкций, работающих при малых упругопластических деформациях (до 0,2—0,5%), возможно принимать кривые ползучести и характеристики длительной прочности, не зависящими от предварительного пластического деформирования, а. мгновенные диаграммы растяжения и характеристики кратковременной прочности, не зависящими от предварительно накопленной деформации ползучести. Большие степени холодных пластических деформаций, возникающие на поврежденных слоях при механической обработке, оказывают значительное влияние на характеристики прочности и пластичности при длительном статическом разрушении. Снижение сопротивления длительному статическому разрушению и способности к пластическому деформированию материала, наклепанного при механической обработке (фрезерование, шлифование абразивом), являются в ряде случаев причиной образования статических трещин в поверхностных слоях деталей, работающих при высоких температурах.  [c.36]

Влияние скорости деформации. При выполнении технологических операций ковки и штамповки скорости деформации изменяются в широком диапазоне. Наименьшие скорости деформации (lO 1/с) можно наблюдать при штамповке на прессах, а наибольшие — (10 1/с) —при штамповке на высокоскоростных молотах. В литературе имеется много противоречивых сведений о влиянии скорости деформации на сопротивление пластическому деформированию, в том числе и применительно к холодной штамповке выдавливанием. Это объясняется тем, что при увеличении скорости деформации наблюдаются два взаимно противоположных эффекта. Во-первых, при увеличении скорости деформации повышается температура заготовки, поскольку с быстротечностью процесса резко уменьшается рассеяние (отвод) теплоты от заготовки, а с повышением температуры уменьшается напряжение текучести. Во-вторых, при повышении скорости деформации сопротивление деформированию возрастает из-за необходимости преодоления инерционных нагрузок. В результате взаимодействия этих явлений можно наблюдать различное проявление влияния скорости деформации. Так, В. Е. Фаворский при скоростях выдавливания 0,5 м/с наблюдал повышение температуры для алюминия до 230 С, для меди до 380° С и для сталей 10 и 15 до 410° С, что во многих случаях сопровождалось понижением сопротивления деформированию и увеличением пластичности. Экспериментальные исследования, выполненные В. Ф. Ураковым, показывают повышение температуры не более 120° С. Он пришел к выводу, что при скоростях деформирования в пределах 4 — 20 м/с выдавливание осуществляется в адиабатических условиях. Напряжение текучести при переходе от статических условий нагружения (0,002 м/с) к динамическим (4 м/с) возрастает для алюминия на 15%, а для свинца увеличивается в 2,5 раза.  [c.20]


На основании общих физических представлений о поведении материала под нагрузкой его сопротивление деформированию определяется мгновенными условиями нагружения (температурой, скоростью деформации и другими ее производными в момент регистрации), а также структурой материала, сформированной в процессе предшествующего деформирования, который в п-мерном пространстве характеризуется траекторией точки, проекции радиуса-вектора которой — составляющие тензора напряжений (или деформаций) и время (начальная температура является параметром, характеризующим исходное состояние материала, и изменяется в соответствии с адиабатическим характером процесса деформирования). Специфической особенностью процессов импульсного нагружения является сложный характер нагружения (составляющие тензора напряжений меняются непропорционально единому параметру) и влияние времени. Невозможность экспериментального исследования материала при различных процессах нагружения (траекториях точки указанного выше л-мерного пространства) вынуждает исследователей использовать упрощенные модели механического поведения материала. Это обусловило развитие исследований по разработке теорий пластичности, учитывающих температурновременные эффекты [49, 213, 218] наряду с изучением физических процессов скоростной пластической деформации [5, 82, 175, 309]. Так, для первоначально изотропного материала исходя из гипотезы изотропного упрочнения связь тензоров напряжений и деформаций полностью определяется связью их инвариантов соответственно Ei, Ег, Ез и Ii, h, h- С учетом упругого характера связи средних напряжений и объемной деформации для металлических материалов (а следовательно, независимость от истории нагружения первых инвариантов тензоров напряжений и деформаций Ei, А) процесс нагружения определяется связью четырех оставшихся инвариантов и величины среднего давления. В классической теории пластичности  [c.11]

Существенное влияние на водородное охрупчивание титана оказывают наклеп и повышение содержания примесей внедрения — кислорода, азота, углерода. Оба указанных фактора повышают сопротивление титана деформированию и в этом отношении действуют подобно внешним охрупчивающим факторам (температура, объемность напряженного состояния и т. п.). Вместе с этим они снижают пластичность а-матрицы, уменьшают пределы растворимости водорода (примеси) и, по-видимому, интенсифицируют процесс выделения гидридов (наклеп). Все это вместе взятое приводит к уменьшению безопасных пределов содержания водорода в титане.  [c.117]

Результаты испытаний приведены на рис. 96, 97. Увеличение скорости деформации при растяжении от б-Ю " сек-1 до 10 сек практически не влияет на характеристики пластичности при комнатной температуре, но существенно влияет на них при повышенных температурах. Интервал температур динамического деформационного старения и температура максимального развития его значительно повышается, температурный интервал динамического деформационного старения расширяется, а абсолютная величина эффекта по сравнению со статическим растяжением практически не изменяется Г95, с, 20 440 463]. Подобные данные получены Г. Н. Мехедом [464] при испытании на динамическое растялсение технического железа, В. С. Зотеевым [465] при испытании армко-железа и сталей Ст.З, 45, У10. Систематические исследования Л. Д. Соколова [466, 467] по изучению влияния температурно-скоростных условий деформирования на сопротивление различных металлов и сплавов пластической деформации, выполняемые преимущественно при деформации осадкой, также показывают, что с увеличением скорости деформации температура динамического деформационного старения повышается. Это обусловлено значительным повышением скорости перемещения дислокаций при увеличении скорости деформации. Динамическое взаимодействие между дислокациями и примесными атомами при возрастании скорости перемещения дислокаций возможно лишь при повышении температуры, стимулирующей соответствующее повышение скорости диффузии примесных атомов. При нарушении этого условия динамического взаимодействия между дислокациями и примесными атомами не происходит, эффект динамического деформационного старения отсутствует.  [c.239]

Легируюш,ие добавки (хром, никель, вольфрам и др.) оказывают сложное влияние на сопротивление сталей деформированию и их пластичность. Так, например, титан, никель, вольфрам значительно увеличивают сопрот1 вле-ние стали деформированию при повышенных температурах (выше 700 °С).  [c.31]

Влияние скорости и степени деформации на пластичность и сопротивление деформированию носит очень сложный характер. Объясняется это тем, что скорость и степень деформации одновременно оказывают как упрочняющее, так и разупрочняющее действие на деформируемый металл. Так, увеличение степени деформации, с одной стороны, увеличивает упрочнение металла, но, с другой стороны, уменьшая температуру рекристаллизации, одновременно интенсифицирует разупрочнение. В свою очередь, увеличение скорости деформации уменьшает время протекания процесса рекристаллизации и, следовательно, увеличивает упрочнение. Но с увеличением скорости деформации увеличивается количество теплоты пластической деформации, которая не успевает рассеяться в окружающую среду и вызывает разогрев металла. Увеличе 1ие же те.адпературы ведет к более интенсивному разупрочнению.  [c.31]


Смотреть страницы где упоминается термин Влияние температуры на сопротивление деформированию и пластичность : [c.259]    [c.523]    [c.430]    [c.269]    [c.97]   
Смотреть главы в:

Теория обработки металлов давлением Издание 3  -> Влияние температуры на сопротивление деформированию и пластичность



ПОИСК



Влияние Влияние температуры

Пластичность и сопротивление деформированию

Сопротивление деформированию

ч Влияние температуры



© 2025 Mash-xxl.info Реклама на сайте