Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пластичность и сопротивление деформированию

Приведены сведения о деформируемости тяжелых цветных металлов и сплавов диаграммы пластичности и сопротивления деформированию, таблицы технологических свойств в зависимости от содержания основных компонентов и примесей, температуры и др. Описаны физико-химические, механические и особые свойства тяжелых цветных металлов н сплавов в виде листов и лент, указаны области их применения. Рассмотрены современные схемы производства листов, полос, лент. Изложены справочные данные о технологии, инструменте, оборудовании производственных процессов прокатки листов и лент.  [c.31]


Свойствами материала, определяющими выбор способа обработки давлением, являются его технологическая пластичность и сопротивление деформированию. Технологическая пластичность (т.е. способность материала к пластическому формоизменению при конкретных схеме и условиях деформирования) особенно строго регламентируется в условиях применения холодной обработки давлением.  [c.142]

Величина пластичности и сопротивления деформированию. Допустимая степень деформации за каждое обжатие в %  [c.54]

ИЗМЕНЕНИЕ ПЛАСТИЧНОСТИ И СОПРОТИВЛЕНИЯ ДЕФОРМИРОВАНИЮ В ЗАВИСИМОСТИ ОТ НАПРЯЖЕННОГО  [c.87]

Пластичность металлов и сплавов может изменяться в широких пределах также и в зависимости от вида нагружения. Так, например, при переходе от линейного к плоскому и от плоского к объемному напряженному состоянию почти во всех случаях деформирования металлических материалов происходит повышение технологической пластичности и сопротивления деформированию.  [c.87]

Проведенное экспериментальное изучение пластической деформации в большинстве случаев касалось ограниченного числа конструкционных материалов. Для научного обоснования технологии необходимы количественные закономерности для большого числа материалов и, в частности, для высоколегированных сплавов. Таким образом, исследование пластичности и сопротивления деформированию при различных видах напряженного состояния и больших остаточных деформациях представляет еще сравнительно мало изученную область пластической деформации металлов.  [c.88]

Вместе с этим пластичность и сопротивление деформированию при температурах 1100—1150" при статической и динамической скоростях обработки практически одинаковы. При обеих скоростях сплавы, имеющие достаточный запас пластичности, оказалось возможным деформировать без разрушения на 60—65%. С другой стороны, при более низких температурах (950—1000°) скорость деформации оказывает заметное влияние на пластичность и сопротивление деформированию вследствие меньшего разупрочнения сплавов при этих температурах.  [c.148]

А. А. Казаковым [40] были изучены пластичность и сопротивление деформированию в зависимости от напряженного состояния обрабатываемых давлением сплавов на основе алюминия и магния (табл. 43).  [c.168]

Температуры начала и конца горячей обработки давлением магниевых сплавов устанавливаются на основании данных диаграмм пластичности и сопротивления деформированию. Анализ этих закономерностей показывает, что деформированные магниевые сплавы при температуре конца деформации 250° и ниже обладают большим упрочнением, высокими значениями сопротивления деформации и пониженной пластичностью. Упрочнение магниевых сплавов особенно заметно возрастает при динамической деформации. Заметное разупрочнение сплавов, снижение величины сопротивления деформации и повышение пластичности достигаются в зависимости от состава сплава при температуре конца деформации 300—325°.  [c.219]


Изменение пластичности и сопротивления деформированию в зависимости от напряженного состояния. ......................... 87  [c.315]

Пластичность и сопротивление деформированию  [c.15]

Рассмотрим влияние основных факторов на пластичность и сопротивление деформированию.  [c.30]

Изменение пластичности и сопротивление деформированию стали в зависимости от температуры можно объяснить фазовыми превращениями, происходящими в металле. Структуру и температуру фазовых превращений стали при различных температурах легко о п р е д е -  [c.35]

ВЛИЯНИЕ СКОРОСТИ ДЕФОРМАЦИИ НА ПЛАСТИЧНОСТЬ И СОПРОТИВЛЕНИЕ ДЕФОРМИРОВАНИЮ  [c.67]

Однако по схеме главных деформаций, не обращаясь к схеме главных напряжений, нельзя судить ни о сопротивлении деформированию, ни о пластичности металла в процессе деформации. Так, при схеме с двумя деформациями растяжения и при схеме с двумя деформациями сжатия пластичность металла может быть одинаковой. Пластичность и сопротивление деформированию зависят от схемы главных напряжений.  [c.143]

Из-за сложного характера зависимости пластичности материала от условий формообразования влияния температуры и скорости деформации на пластические характеристики обычно рассматривают совместно. Для реальных материалов изменение температуры или скорости деформации может приводить в одних случаях к уменьшению, а в других — к повышению пластичности. Обнаружено, что для чистых металлов зависимость пластичности и сопротивления деформированию от температуры имеет вид, близкий к следующему  [c.16]

Металлы и сплавы технической чистоты, как правило, имеют более сложные зависимости пластичности от температуры и скорости деформации. Несколько конспективное изложение материала, относящегося к этому разделу, связано с тем, что пластичность и сопротивление деформации в известной степени взаимосвязаны, поэтому, чтобы избежать повторений, дается краткий обзор, но относящейся только к пластичности. Физические механизмы при этом одинаковы, поэтому данный раздел необходимо рассматривать в совокупности с влиянием температурно-скоростных условий деформирования на сопротивление деформации.  [c.511]

Наряду с высокой пластичностью стремятся получить возможно меньшее сопротивление деформированию. Поэтому во многих случаях представляет интерес получение не максимальной пластичности, а максимальной ковкости, в понятие которой входят как пластичность, так и сопротивление деформированию. Ковкость улучшается с повышением пластичности и уменьшением сопротивления деформированию. Хорошая ковкость облегчает проведение обработки давлением.  [c.475]

Для штамповки никельсодержащих сталей может быть применен способ вытяжки с глубоким охлаждением. В данном случае в полый пуансон подается жидкий воздух или азот, который охлаждает среднюю часть заготовки. При этом прочность охлажденного участка (дно и наиболее нагруженная переходная от дна к стенке часть заготовки) повышается в 2—2,3 раза при незначительном уменьшении пластичности, а сопротивление деформированию фланца заготовки, сохраняющего первоначальную температуру, не изменяется. Это позволяет значительно улучшить коэффициент вытяжки.  [c.169]

Таким образом, все металлы и сплавы имеют наибольшую пластичность при температурах, которым соответствуют малые показатели предела прочности и сопротивления деформированию. Опасными зонами температур являются зона синеломкости и зона фазовых превращений, а также зона температур, близких к температуре плавления.  [c.363]

Ковкость металлов определяется их пластичностью п сопротивлением деформированию. Поэтому нагрев слитков и заготовок имеет целью  [c.122]

Увеличение сопротивления деформированию отражается на характере диаграммы — направление выпуклости кривой изменяется (ср. рис. 222 и 225). Образец из пластичного материала при сжатии не может быть доведен до разрушения, следовательно, для этих материалов предела прочности при сжатии не существует.  [c.221]

Окружающая среда может вызывать 1) растворение поверхностных слоев деформируемого тела 2) коррозию этих слоев 3) изменение химического состава поверхности 4) адсорбционное облегчение деформации. Эти факторы оказывают существенное влияние на пластичность металла и его сопротивление деформированию.  [c.477]


Например,-критерий типа (4.9), как отмечалось выше, не способен отразить влияние двухосных равных растяжений на сопротивление разрушению. В то же время необходимо иметь в виду, что в материале с пониженными. характеристиками пластичности и повышенным сопротивлением деформированию напряженность металла в зонах микронеоднородности сохраняется длительное время, увеличивая вероятность преждевременных (по сравнению с оценками по результатам испытаний при одноосном растяжении) хрупких разрушений при сложном напряженном состоянии. Это является еще одним подтверждением  [c.139]

В заключение следует подчеркнуть, что чувствительность к нестационарности определяется в первую очередь следующими факторами усилением диффузионных процессов, которые способствуют снижению сопротивления деформированию и разрушению степенью поврежденности материала, который подвергается температурным и силовым перегрузкам ускорением исчерпания деформационной способности — величины предельной пластичности, после достижения которой наступает разрушение.  [c.172]

Вязкость разрушения, или сопротивление материала распространению трещины, может быть определена также при помощи понятия критических скоростей высвобождения энергии при продвижении трещины ди, связанных с Ki - Многочисленные авторы (см., например, [18—23]) исследовали распространение разрушения, изучая механизмы рассеяния энергии, например выдергивание волокна, нарушение связи волокно — матрица, релаксация напряжения, разветвление трещины и пластическое деформирование матрицы. Механизмы рассеяния энергии, знание которых позволяет определить вязкость разрушения, сложны по своей природе и зависят от прочности связи волокно — матрица, типа матрицы (хрупкая или пластичная), диаметра волокна, прочности волокна и т. д. Поэтому только тщательное исследование поверхностей, образовавшихся в результате разрушения, дает основание для установления соответствия экспериментально определенных значений Gu тому или иному механизму. Так, например, было сделано предположение о том, что вязкость разрушения стекло- и боропластиков связана главным образом с величиной упругой энергии, накопленной в волокнах, а соответствующая характеристика углепластиков на эпоксидном связующем — с работой докритического распространения микротрещины и работой выдергивания разорванных волокон.  [c.53]

Важным методическим моментом расчета повреждений в форме деформационно-кинетического критерия малоцикловой прочности является вопрос о возможности использования известных корреляционных зависимостей характеристик сопротивления усталостному разрушению от статической и длительной пластичности материала. В исследовательских работах, связанных с обоснованием применимости критерия, необходимо получать прямые опытные данные путем постановки базовых экспериментов в соответствующем диапазоне условий (температурный режим, частота и скорость деформирования, предельные базовые числа циклов и общая продолжительность статических и циклических испытаний). При наличии  [c.53]

Пластичность и сопротивление деформированию исследовались при статическом и динамическом деформировании. Сплав изучался в литом и предварительно деформированном состоянии. Динамическое деформирование осуществлялось на вертикальном копре Амслера, скорость деформации при этом составляла примерно от 1,5 до 3,5 м1сек. Осадка образцов в литом состоянии производилась на деформации 35, 45, 55, 65, 70 и 75% образцы нагревались до температуры 1100, 1200, 1300, 1400, 1500 и 1600°. Пластичность сплава в литом состоянии исследовалась на образцах диаметром J5 мм и высотой 20 мм. Сплав в предварительно деформированном состоянии исследовался на образцах диаметром 12 мм и высотой 16 мм.  [c.296]

Влияние скорости и степени деформации на пластичность и сопротивление деформированию носит очень сложный характер. Объясняется это тем, что скорость и степень деформации одновременно оказывают как упрочняющее, так и разупрочняющее действие на деформируемый металл. Так, увеличение степени деформации, с одной стороны, увеличивает упрочнение металла, но, с другой стороны, уменьшая температуру рекристаллизации, одновременно интенсифицирует разупрочнение. В свою очередь, увеличение скорости деформации уменьшает время протекания процесса рекристаллизации и, следовательно, увеличивает упрочнение. Но с увеличением скорости деформации увеличивается количество теплоты пластической деформации, которая не успевает рассеяться в окружающую среду и вызывает разогрев металла. Увеличе 1ие же те.адпературы ведет к более интенсивному разупрочнению.  [c.31]

Таким образом, для оценки термоусталостной прочности материалов необходимо иметь информацию о кинетике циклической и односторонне накопленной деформации, получаемой из экспериментов на термоусталостных установках с непрерывной автоматизированной регистрацией параметров процесса деформирования и нагружения [34, 102, 104], а также получить данные-о располагаемой пластичности и сопротивлении неизотермической усталости с использованием программных установок со следящимп системами нагружения и нагрева, позволяющих воспроизводить, в частности, требуемые режимы неизотермического статического разрыва и жесткого усталостного нагружения в условиях заданной формы цикла нагрева [91].  [c.49]

Легированные и высоколегированные стали при низких температурах нагрева имеют малую скорость рекристаллизации. Поэтому в зависимости от скорости деформации может измениться характер обработки при больших скоростях деформации обработка из горячей может обратиться в неполную горячую со снижением пластичности металла и увеличением сопротивления его деформированию. В другом случае тепловой эффект может способствовать повышению пластичности и уменьшению сопротивления деформированию. В табл. 9 приведены данные о взаимосвязи между скоростью, степенью деформации, температурой и сопротивлением деформирования сталей Х12 иР18.  [c.501]


Общим ноложенпем для все.ч. металлов и сплавов является к), что наибольшую пластичность они имеют при температурах рекристаллизации, т. е. в условия.х горячего деформирования, которым одновременно соответствуют и малые значения показателей прочности, а следовательно, и сопротивления деформированию.  [c.57]

Влияние размера зерна деформированных сплавов. Характер и степень влияния размера зерна на свойства жаропрочных сталей и сплавов зависят от типа материала, условий, в которых получен металл с различными размерами зерен, режима термической обработки после закалки и условий испытания. Изменение размера зерна может оказывать различное влияние на сопротивление ползучести, длительную прочность, пластичность и сопротивление усталости. Дес рмационная способность при увеличении размера зерна обычно понижается [85]. Что касается сопротивления ползучести, то наравне с большим пределом ползучести металлов, имеющих крупнозернистую структуру, по сравнению с мелкозернистыми, в некоторых условиях рост зерна может сопровождаться понижением сопротивления ползучести.  [c.240]

Превде всего необходимо проводить механические испытания материалов, чтобы получить количественные показатели сопротивления деформированию и показатели пластичности данного материала в определенных условиях (в нашем случае гфи температуре штамповки).  [c.28]

Различие между этими разделами механики состоит, во-первых, в рассматриваемых объектах (так, например, в курсе сопротивления материалов рассматривается главным образом брус, в теории упругости помимо бруса изучаются нанряжеиное и деформированное состояния пластин, оболочек, массива, а в строительной механике объектами изучения являются системы, состоящие из стержней (фермы), балок (рамы), пластин и оболочек) во-вторых, в принимаемых допущениях (теории упругости, пластичности и ползучести отличаются друг от друга тем, что в них принимаются различные физические законы, устанавливающие связь между напряжениями и деформациями, но не вводится каких-либо деформационных гипотез, а в сопротивлении материалов физический закон тот же, что и в теории упругости (закон Гука), но, кроме того, принимается дополнительно ряд допущений — гипотеза плоских сечений, ненадавлпвания волокон и т. д.) в-третьих, в методах, используемых для решения задач (в теории упругости приходится решать существенно более слопшые уравнения, чем в сопротивлении материалов, и для их решения приходится прибегать к более сложным математическим методам).  [c.7]

Работоспособность жаропрочных материалов в значительной степени зависит от сопротивления деформированию и разрушению при ползучести, а также от деформационной способности при ддитедьном разрыве. От характеристик пластичности зависит способность материала выравнивать напряжения в зоне их концентрации, ослаблять влияние кратковременных перегрузок, и, наконец, исчерпание деформационной способности приводит к преждевременным разрушениям.  [c.67]

В соответствии с этим представляется целесообразным располагать данными по ползучести, длительной прочности и разрушающим деформациям при соответствующих уровнях постоянных напряжений в широком диапазоне времени до разрушения, в том числе и для кратковременной ползучести. С другой стороны, было бы важно получить данные о сопротивлении циклическому деформированию и разрушению без учета в.пияния времени для того, чтобы оценить деформацию ползучести и циклическую пластическую деформацию, а также соответствующие им повреждения. Такие данные получить непосредственно из опыта представляет известные трудности, поскольку время цикла и общее время до разрушения в этом случае должны быть достаточно малы, чтобы не происходило развития деформаций ползучести и падения во времени пластичности и прочности. Следует заметить, что приемлемые в этом смысле частота и время до разрушения существенно зависят от температуры.  [c.211]

Иначе обстоит дело при микроударном нагружении мартенсита. При таком виде воздействия мартенсит ведет себя как структура с высокой пластичностью и большой упрочняемостью [152]. Это обстоятельство авторы объясняют особенностями деформации перенасыщенного твердого раствора (каким является мартенсит), характеро.м приложения нагрузки и условиями деформации. Контактный способ приложения нагрузки также создает объемное напряженное состояние микроучастков. Таким образом, при ударном воздействии абразивных зерен сопротивление металла изнашиванию определяется свойством поверхностных слоев выдерживать многократное пластическое деформирование без разрушения.  [c.168]

На основании общих физических представлений о поведении материала под нагрузкой его сопротивление деформированию определяется мгновенными условиями нагружения (температурой, скоростью деформации и другими ее производными в момент регистрации), а также структурой материала, сформированной в процессе предшествующего деформирования, который в п-мерном пространстве характеризуется траекторией точки, проекции радиуса-вектора которой — составляющие тензора напряжений (или деформаций) и время (начальная температура является параметром, характеризующим исходное состояние материала, и изменяется в соответствии с адиабатическим характером процесса деформирования). Специфической особенностью процессов импульсного нагружения является сложный характер нагружения (составляющие тензора напряжений меняются непропорционально единому параметру) и влияние времени. Невозможность экспериментального исследования материала при различных процессах нагружения (траекториях точки указанного выше л-мерного пространства) вынуждает исследователей использовать упрощенные модели механического поведения материала. Это обусловило развитие исследований по разработке теорий пластичности, учитывающих температурновременные эффекты [49, 213, 218] наряду с изучением физических процессов скоростной пластической деформации [5, 82, 175, 309]. Так, для первоначально изотропного материала исходя из гипотезы изотропного упрочнения связь тензоров напряжений и деформаций полностью определяется связью их инвариантов соответственно Ei, Ег, Ез и Ii, h, h- С учетом упругого характера связи средних напряжений и объемной деформации для металлических материалов (а следовательно, независимость от истории нагружения первых инвариантов тензоров напряжений и деформаций Ei, А) процесс нагружения определяется связью четырех оставшихся инвариантов и величины среднего давления. В классической теории пластичности  [c.11]


Смотреть страницы где упоминается термин Пластичность и сопротивление деформированию : [c.148]    [c.343]    [c.74]    [c.20]    [c.216]    [c.15]    [c.60]    [c.488]   
Смотреть главы в:

Обработка металлов давлением и конструкции штампов Издание 2  -> Пластичность и сопротивление деформированию



ПОИСК



Влияние различных факторов на пластичность металлов и сопротивление пластическому деформированию

Влияние различных факторов на пластичность, сопротивление деформированию, структуру и свойства металла

Влияние скорости деформации на пластичность и сопротивление I деформированию

Влияние температурно-скоростных условий деформирования на сопротивление деформации и пластичность металлов

Влияние температуры на сопротивление деформированию и пластичность

Сопротивление деформированию



© 2025 Mash-xxl.info Реклама на сайте