Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Железобетон Свойства

Предварительное напряжение растяжения в арматуре доводят до 150 — 250 кгс/см . Допускаемые напряжения растяжения в предварительно напряженном железобетоне составляют в среднем 100 — 150 кгс/см , допустимые напряжения сжатия 300 — 500 кгс/см . Железобетон обладает высокой циклической вязкостью, примерно в 2 раза превосходящей вязкость серого чугуна. Это свойство обусловливает повышенную способность виброгашения у железобетонных деталей.  [c.194]


В научно-популярной форме рассказывается об угрозе, которую представляют землетрясения и ураганы, о свойствах материалов и их способности выдерживать значительные нагрузки, о деформации железобетонных элементов, о коэффициенте надежности  [c.243]

При нагружении такой конструкции начальные напряжения суммируются с напряжениями, вызванными нагрузкой. Это приводит к возрастанию рабочих напряжений в одних элементах (при суммировании напряжений одного знака) или наоборот — к уменьшению этих напряжений при суммировании напряжений разных знаков. В некоторых случаях наличие начальных напряжений способствует рациональному распределению усилий в элементах конструкции и повышает качество конструкции. Например, это свойство используется в конструкциях из предварительно напряженного железобетона.  [c.65]

Начальные, исчезающие и остаточные напряжения обычно приводят к уменьшению прочности деталей. Однако умелое их использование, наоборот, дает возможность повысить прочность деталей следующими путями 1) предварительным напряжением в системе соединения тел (предварительно напряженный железобетон) 2) поверхностным наклепом (дробеструйной обработкой), при котором на поверхности детали создаются значительные напряжения сжатия, что приводит к повышению выносливости деталей 3) химико-термической обработкой (цементация, азотирование и др.), которая изменяет в верхних слоях поверхности химический состав и свойства материала 4) закалкой, при нагреве токами высокой частоты, с помощью которой в верхних слоях деталей создаются большие напряжения сжатия (для стали 700—900 Н/мм ). Все эти виды термического упрочнения дают возможность не только повысить усталостную прочность деталей, но и их износостойкость в два-три раза.  [c.245]

Как наука механика композиционных материалов зародилась сравнительно недавно, хотя идея использования комбинации металлов, керамики, стекла, полимеров и т. д. для получения материалов с уникальными свойствами известна давно. Собственно говоря, сама природа использовала принцип такой комбинации при создании, например, костей (твердый хрупкий апатит, связанный прочным мягким белковым веществом) и древесины (волокна целлюлозы, связанные лигнином). В настоящее время наиболее широко применяются следующие композиты железобетон, стеклопластики, биметаллы, графите- и боро-эпоксиды.  [c.5]

Как композит из анизотропных элементов может быть изотропным на более высоком масштабном уровне, так и материал, составленный из изотропных компонентов, может быть и в большинстве случаев является анизотропным. Та же сталь в виде проволоки, помещенной в резиновую матрицу, образует материал, обладающий анизотропией свойств. Железобетонная балка является примером армированного анизотропного материала, а хаотически ориентированные короткие стальные волокна в бетоне на масштабном уровне, существенно большем по размеру длины волокна, представляют пример квазиизотропного материала.  [c.11]


Подобные фундаменты применяются главным образом для больших вращающихся машин, турбогенераторов, турбовентиляторов и турбокомпрессоров. Сложность конструкций, неоднородность механических свойств строительных материалов, в основном железобетона, многократная статическая неопределимость,  [c.217]

Низколегированная сталь для армирования железобетонных конструкций — Механические свойства 294 — Химический состав 293  [c.484]

Магнезиальный портландцемент Для наземных бетонных и железобетонных конструкций и строительных растворов наравне с портландцементом тех же марок Для возведения подводных и подземных сооружений, а также для конструкций, которые должны иметь повышенную прочность при растяжении в условиях пропаривания Вяжущие свойства, сравнительно высокая прочность  [c.514]

Железобетон. Железобетон характеризуется высокой прочностью на растяжение и изгиб и не уступает бетону по другим свойствам. Номенклатура сборных железобетонных деталей очень разнообразна и насчитывает десятки наименований подкрановые балки, колонны, фермы, плиты, канализационные, водопроводные и другие трубы, опоры, сваи и т. п.  [c.518]

Однако для получения необходимой жесткости из условия допустимых амплитуд колебаний конструкции требуется значительный объем дорогостоящего стеклопластика. Поэтому при разработках аналогичных конструкций целесообразно использовать стеклопластики для элементов, воспринимающих вибрационную нагрузку. Жесткость конструкции необходимо обеспечивать деталями из недорогОстоящего материала, например, железобетона, который обладает хорошими звукопоглощающими свойствами.  [c.224]

Механические свойства 3 — 319 Химический состав 3 — 319 Железобетонные модели литейные — см. Модели литейные железобетонные Железо-ванадий. система — Диаграмма состояния 3 — 329 Железо-ванадий-углерод. система — Изотерми ческое сечение 3 — 336 Железо-вольфрам, система — Диаграмма состояния 3 — ЙО Железо-вольфрам-углерод, система — Изотермическое сечение 3 — 336 Железо-графит — Испытания 4 — 260  [c.76]

Мы привыкли к материалам однородным, имеющим постоянные свойства по всему своему объему и по всем направлениям. Сейчас наступает эра материалов анизотропных, многослойных, армированных. Самым привычным примером такого рода может служить железобетон. В последние годы появились пластмассы, армированные керамическими волокнами, картон и бумага, пронизанные стальными нитями, алюминиевые листы, покрытые жаропрочными пленками, и т. п.  [c.8]

Пример 10. Требуется определить теплотехнические свойства узла стыкования стеновых панелей типа ИСТ-3 (рис. 32) при следующих условиях = 10° = 0° в = 7,5 ккал/м час град-, а. = 20 ккал/м час град для железобетона = 1,33 ккал м час град для пеносиликата Xj = 0,18 ккал м час град для раствора ) з = 0,7 ккал м час град.  [c.89]

У ш к о в Ф. В., Исследо вание теплотехнических свойств стен из двуслойных железобетонных панелей. Гос. изд. литературы по строительству и архитектуре, 1954.  [c.316]

Ушков Ф. В., Исследование теплотехнических свойств стен из трехслойных железобетонных панелей. Гос. изд. литературы по строительстВ у и архитектуре, 1953.  [c.316]

Расчет железобетонных конструкций с учетом нелинейных свойств материала  [c.87]

При расчете сложных железобетонных сооружений трудность учета этих факторов, обусловленных физико-механическими свойствами железобетона, усугубляется факторами, обусловленными конструктивными особенностями сооружения — сложная геометрия, наличие отверстий, нерегулярность структуры, сложные условия опирания, внешняя и внутренняя неопределенность. Причем в процессе нагружения наблюдается перераспределение усилий и напряжений не только между бетоном и арматурой, но и между отдельными элементами и частями сооружения.  [c.88]

Сравнение работы в производственных условиях виброплощадок с системой автоматического регулирования и без нее показало, что в процессе формования железобетонных изделий изменение амплитуды перемещения формы при ручной регулировке достигает 0,2 мм, а при автоматическом регулировании не превышает 0,025 мм. Такая стабилизация амплитуды перемещения влечет за собой повышение качества формуемых изделий и поддержание постоянства их механических свойств увеличение производительности благодаря некоторому снижению продолжительности формования высвобождение квалифицированного рабочего, занятого ручной регулировкой работы машины экономию цемента за счет возможности формования изделий из несколько более жестких бетонных смесей.  [c.467]


При монтаже корпуса особое внимание уделяют электроизоляции строительных конструкций, так как разность потенциалов между элементами конструкций электролизеров и землей может достигать более 800 В (в зависимости от напряжения на серии). Для изоляции все железобетонные конструкции на высоту не менее 3,5 м от пола рабочей зоны покрывают изолирующим слоем бетона толщиной не менее 30 мм. Полы в корпусах выполняют из материалов, обладающих электроизоляционными свойствами, чаще всего из асфальта. Стальные вентиляционные решетки, располагаемые вдоль корпуса, укладывают на электроизоляционные прокладки. В таких корпусах электролизеры устанавливают на опоры в виде сборных железобетонных рам, которые одновременно служат опорами для шинопроводов. Между этими опорами и электролизерами устанавливают электроизоляционные прокладки, а шинопроводы монтируют на бетонные столбики и электроизоляционные прокладки.  [c.317]

Битумно-резиновые и битумно-полимерные композиции — наиболее распространенные продукты для защиты от коррозии наземных и подземных газо- и нефтепроводов, водопровода, кабелей, строительных конструкций, железобетонных сооружений и пр. [90, 93—94]. Они достаточно эффективны в толстых слоях, особенно при нанесении поверх активных, пассивирующих грунтовок или преобразователей ржавчины [9]. В тонких слоях, а также в условиях агрессивных сред — малоэффективны. Введение в такие композиции маслорастворимых ингибиторов коррозии значительно повышает уровень их защитных свойств.  [c.183]

Основанием для использования арматуры железобетонных фундаментов в качестве заземлителей является свойство бетона во влажном состоянии иметь проводимость, сопоставимую с проводимостью грунта, окружающего фундамент. Одновременно слой бетона защищает стальную арматуру от коррозии.  [c.110]

Реальные тела обладают такими механическими свойствами (способность изменять расстояния между точками под действием сил), которые в пределах даже малого объема при переходе от точки к точке изменяются. Более того, если в окрестности ка-кой-либо точки выделить малый объем, то в пределах этого объема можно выделить участки, различные по своим механическим свойствам. Это связано с особенностями микроструктуры тел. Например, в конструкционных материалах можно выделить микрокристаллические об]эазования, которые объединяются между собой по границам этих микрокристаллов, по-разному между собой ориентируясь, в кристаллы. Последние объединяются в зерна со сложной границей. Такая картина вносит в строение материалов различные неоднородности, от которых следует абстрагироваться, что и делается в механике твердого тела введением понятия однородности структуры, которая состоит в том, что в малой окрестности любой точки тела строение однородно и не зависит от размеров малого объема, включающего эту точку. В более детальном описании гипотеза структурной однородности состоит в том, что реальное тело с его сложной микроструктурой, которую определяют расположение атомов н кристаллических решетках, взаимное расположение микрокристаллических образований, объединяющихся в зерна, и т. д., заменяют средой, не имеюш,ей структуры, свойства которой равномерно распределены в пределах любого малого объема. Это эквивалентно тому, что, выделив малый объем тела, его структурные элементы мысленно измельчают до бесконечно малых частиц и потом этой измельченной средой вновь заполняют прежний объем, т. е. в этом однородном теле нет никакой возможности выявить в любом малом объеме какую-либо структуру строения материала. Однако в механике твердого тела рассматривают такие неоднородные по структуре тела, которые состоят из конечного числа конечных объемов, занятых структурно однородными телами. Например, железобетон, в котором бетон и металл порознь считаются однородными, но они занимают конечные объемы. В то же время в механике твердого тела различают однородные и неоднородные тела в том смысле, что механические свойства тел могут быть некоторой функцией коордииат точки (неоднородность механических свойств), хотя в окрестности каждой точки однородность строения сохраняется. Тело будет механически однородным, если его механические свойства не зависят от координат выбора точки тела.  [c.19]

Лычев А. С., Корякин В. П., Леонтьев Г. В. Использование вероятностных методов при исследовании свойств бетона и железобетонных конструкций.— В кн. Исследования надежности железобетонных конструкций.— Куйбышев Куйбышевский инж.-строит, ин-т, 1974, с. 5—80.  [c.321]

Отмеченные особенности конструкции и свойств сварных соединений определяют различные методические решения их дефектоскопии. Поэтому ниже рассмотрены методические приемы при контроле сварных соединений разных типов, на дефектоско-пичность которых влияют один или несколько факторов. Разная кривизна поверхности сосудов (практически плоские поверхности) и труб малого и среднего диаметра (менее 500 мм) в определенной мере обусловливает различия в методиках их контроля. Ограниченная площадь сечения шва, большая кривизна поверхности и неровностей периодического профиля арматуры железобетона предопределяют нетрадиционную методику их контроля. Крупный размер зерна и высокая анизотропия механических свойств ау-стенитных швов существенно затрудняют проведение УЗ К, поэтому для повышения достоверности контроля таких швов применяют специальные преобразователи и дефектоскопы, обеспечивающие повышение амплитуды полезного сигнала. Трудность УЗК сварных швов, выполненных контактной, диффузионной сваркой и сваркой трением, заключается в различии дефекта типа слипания, прозрачного для ультразвука. Особую группу конструкций составляют угловые, тавровые и нахлесточные соединения, в которых иногда ограничен доступ к месту контроля, а возможное расположение опасных дефектов в шве затрудняют их обнаружение.  [c.316]


Нерви [19, 20] показал, что при высоком массовом содержании упрочнителя и его равномерном распределении можно получить водонепроницаемый однородный материал с механическими свойствами, отличными от свойств бетона, упрочненного обычным способом, обладающий высоким уровнем упругости и сопротивлением растрескиванию. Нерви провел ударные испытания железобетонных плит толщиной до 6,3 см. Результаты показали, что при ударах появляются только трещины в цементе и происходит деформация упрочнителя, но не образуется отверстий. Были проведены испытания с целью установления оптимального соотношения между размером ячеек стальной сетки и составом раствора для по.лучения максимальной податливости материала без растрескивания. В 1943 г. Итальянское военно-морское ведомство утвердило железобетон в качестве материала для корпусов. После второй мировой войны в Италии из железобетона были построены различные суда, в том числе и 165-тонная моторная яхта и 12-метровое двухмачтовое судно, которые функционируют и в настоящее время. Из-за консерватизма в судостроительной промышленности железобетоны широко не использовались в качестве строительного материала для изготовления корпусов вплоть до 1959 г., когда они снова были применены в Великобритании для изготовления корпусов прогулочных лодок. При этом был несколько изменен состав материала, что обусловило интерес к этому материалу со стороны новозеландских фирм и некоторых других стран. До настоящего времени применение железобетонов как материалов для строительства судов ограничивалось в основном корпусами из-за того, что изготовители должны были иметь собственные упрочняющие системы, разработанные технологические процессы изготовления и замешивания бетона. Информация по железобетонам и их применению была недостаточна.  [c.256]

Кроме того, изготовление корпусов судов из железобетона обеспечивает отсутствие загрязнения или запахов, влагопогло-щения достаточно хорошие изоляционные свойства по сравнению с металлами легкость проведения ремонтных работ отсутствие течи в отличие от деревянных или стальных корпусов. В состав бетона можно ввести ингибиторы коррозии, а арматуру защитить антикоррозионным покрытием. Прочность железобетонных конструкций со временем возрастает.  [c.258]

В металлическую ванную 1. заполненную влажным грунтом 2, вдавливались поочередно железобетонные образцы 3 и 4, на один из них одевались металлические кольца 5, электрически соединенные с арматурой образца 4. Через каждый образец пропускался одинаковой величины ток в течение 48 часов от выпрямительной установки 6. В результате эксперимента установлено следующее образец 3 полностью разваливался, а образец 4 не имел даже трещин, зато кольца 5 подвергались значительному разрушению. Опыт показал, что для возникновения и развития процесса электрокоррозии арматуры достаточно постоянного тока небольших величин, поэтому для ее защиты необходимо создать направленный отвод наведенных токов в землю. Стойкос-Л железобетона к электрокоррозии определяется электроизоляционными и электрохимическими свойствами соответственно бетона и арматуры.  [c.55]

Рельсы на главных путях электрифицированных железных дорог должны быть уложены на щебеночном, гравийном или равноценном им по изоляционным свойствам балласте. Шпалы деревянные, укладываемые в путь, должны быть пропитаны масляными антисептиками, не проводящими электрический ток. Рельсы и рельсовые скрепления, металлически связанные с ними, на железобетонных шпалах или подрельсовых основаниях должны быть изолированы от бетона и арматуры шпал и подрельсовых оснований, что обеспечивается установкой специальных конструктивных элементов (прокладок, втулок и т. п.). Не допускается загрязнение или заполнение  [c.34]

Шпалы деревянные, укладываемые в путь, пропитываются масляными антисептиками, не проводящими электрический ток. Торцы шпал, распиливаемых при укладке в путь, и вновь просверленные шурупные отверстия трижды промазываются масляными антисептиками. Изолирующие свойства рельсовых путей, улон енных на железобетонных шпалах или каком-либо другом подрельсовом основании, должны быть не ниже, чем при применении деревянных шпал.  [c.37]

Гвоздев А. А., Некоторые механические свойства беюна, существенно важные для строительной механики железобетонных конструкций, сб. Исследования свойств бетона и железобетонных конструкций , Госстройиздат, 1959.  [c.358]

Объемный вес обычного бетона 2200—2600 кг/м . Марки бетона 25, 35, 50, 75, 100, 150, 200, 300, 400, 500 и 600 (обозначают величину прочности в кГ см при сжатии образцов 20X20X20 см в 28-дневном возрасте). Для сборных железобетонных конструкций и деталей применяется бетон марки 200—250, а для предварительно напряженного железобетона — 300—600. Плотность, водонепроницаемость, морозостойкость и другие свойства бетона подвергаются регулировке и могут быть высокие. Коэффициент температурного расширения бетона 0,00001. Коэффициент усадки 0,00015 (на 1 м длины 0,15 см). Бетон не обладает упругими свойствами, но  [c.517]

В период деятельности В. Г. Шухова древесина являлась одним из наиболее широко применяемых конструкционных строительных материалов, и, конечно, она нашла место в его сооружениях. Исследователи творчества В. Г. Шухова " справедливо указывали на то, что практически все строительные конструкции В. Г. Шухова, осуществленные в металле, и идеи, заложенные в них, могут быть реализованы в дереве. Наиболее ярко это можно продемонстрировать на примере строительства деревянных башен-градирен системы Шухова, которые нашли широкое применение при строительстве теплоэлектростанций в СССР. В своей основе эти башни имели конструкцию сетчатой гиперболической башни, которая многократно реализовывалась В. Г. Шуховым в металле для различных сооружений, — от водонапорных башен до Шаболовской радиомачты в г. Москве. Деревянные башни-градирни системы Шухова отличались большой экономичностью и функциональной целесообразностью. Кроме того, применение древесины в условиях эксплуатации градирен, т. е. в условиях переменного температурно-влажностного режима, давало этим башням преимущества iio долговечности по сравнению с аналогичными из стали и железобетона. Однако в тех случаях, когда сам В. Г. Шухов задумывал сооружения в дереве, он учитывал специфику этого материала, максимально использовал положительные свойства древесины и старался свести до минимума влияние ее отрицательных свойств.  [c.75]

Приемы связаны с весом системы и иными свойствами применяемых материалов и рабочих процессов разделение системы на две части — тяжелую и легкую , передвижение только легкой части удаление частей системы, ставших излишними после разделения (железобетонные шпалы из двух половинок, связанных стальной трубой, двутавр) составление системы из заведомо неравнопрочных элементов, создание местного качества (пластмассовые крошки, армированные проволокой) дробление технологического процесса на ряд ступеней разделение твердых, жи 1ких или газообразных тел на части, дезынтеградня угля, глины, гипса, соли, формовочных смесей, очистка газов от пыли и сажи отделение мешающей части, мешающего свойства, локализация вредной части системы, одного из вредных качеств системы (защита при облучении рентгеновскими лучами всех частей тела, кроме просвечиваемых целенаправленно различные мероприятия по звукоизоляции, шумоза-  [c.104]

Переходя к конструированию железобетонных фундаментов, остановимся прежде всего на некоторых свойствах железобетона, которые, как известно, зависят от его состава, способо1В обработки, промывки, укладки и т. д. Бетон характеризуется также ползучестью и усадкой. В отличие от металла он является сложным материалом и применение его в конструкциях,, работающих под динам игчеакой агруакой, требует умета всех указанных факторов. Применение напряженно-армированного бетона требует особой осторожности ввиду малой изученности его свойств.  [c.195]


К основным недостаткам железобетона как судостроп-тельного материала относятся его пониженная сопротивляемость механическим усилиям, особенно знакопеременным нагрузкам, и существенна.ч зависимость названных прочностных качеств от свойств и пропорции составных материалов и от условий производства работ .  [c.140]

При расчете железобетонных плит и оболочек с применением многослойных конечных элементов арматурная проволока представляется слоем эквивалентной толщины с однонаправленными свойствами. Зависимость между напряжениями и деформациями для эквивалентного слоя представляется в виде (2.136), где  [c.86]

Строительной машиной называют устройство, которое посредством механических движений преобразует размеры, форму, свойства или положение в пространстве строительных материалов, изделий и конструкций. Например, камнедробилка измельчает каменные материалы до размеров меньше исходных формовочная машина в производстве железобетонных изделий укладывает бетонную смесь в опалубку, придавая будущему бетонному или железобетонному изделию определенную форму поверхностные или глубинные вибраторы уплотняют уложенную в инженерное сооружение бетонную смесь, преобразуя ее плотность башенный кран перемещает строительное изделие или иной груз (железобетонную плиту перекрытия, металлоконструкцию арки, контейнер и т. п.) из одного пространственного положения в другое. Изменяемые факторы (размеры, форма, свойства, положение в пространстве) не обязательно должны быть целевыми, как это имеет место в приведенных примерах. Многие машины преобразуют отдельные из этих факторов попутно при преобразовании других факторов. Например, разрабатывая грунтовую выемку, одноковшовый экскаватор отделяет часть грунта от массива, переносит его в ковше и отсыпает в кузов автосамосвала или в отвал, изменяя его положения в пространстве. Попутно исходный материал - массив грунта - претерпевает также изменения по форме (измельченные куски грунта в процессе его разработки) и по свойству (изменение объема пор, плотности).  [c.9]

Повышение текучести вызывают следующие явления. Во-первых, вибрационное проскальзывание зерен заполнителей относительно соприкасающихся с ними других зерен приводит к снижению видимого коэффициента трения между зернами при действии сравнительно слабых сил постоянного направления, причем диссипативное сопротивление действию этих сил принимает характер вязкого (точнее, нелинейно вязкого) сопротивления. Чем меньше сила постоянного направления, тем меньше сопротивление проскальзыванию в ее направлении, хотя меньше и скорость необратимого проскальзывания. Поэтому даже очень малые силы могут обеспечить с течением времени заметные сдвижки зерен заполнителей. Во-вторых, вследствие колебаний нормального давления зерен заполнителей на прилегающие к ним другие зерна из-за вибрирования минимальное значение действительной силы трения между зернами становится меньше среднею ее значения, что дает дополнительную возможность малым силам постоянного направления вызывать необратимые сдвижки зерен заполнителей. В-третьих, благодаря вызываемым вибрацией сдвиговым деформациям цементного теста, снижается его структурная вязкость и могут проявиться тиксотролные свойства. В-четвертых, вибрация, вызывающая проскальзывания н соударения твердых частиц бетонной смеси, приводит к освобождению некоторой доли воды, абсорбированной в близком к поверхности частиц слое, в результате происходит обогащение бетонной смеси свободной водой и действительное снижение вязкости жидкой фазы. Последнее способствует удалению избыточной влаги в процессе формования, что ведет к повышению качества готового железобетонного изделия. На повышение текучести жестких бетонных смесей преимущественно влияет снижение видимого коэффициента трения между частицами при наложении вибрации. Чем меньше размеры зерен заполнителей, тем более высокая частота вибрирования необходима для эффективного  [c.372]

Подготовку поверхности железобетонных наливных сооружений проводят после проверки их на прочность и герметичность заливом водой. При наличии дефектов очищают бетонную поверхность и заделывают дефекты строительным раствором. В особо ответственных случаях рекомендуется применять полимерцемент-ные растворы (с добавкой поливинилацетатной эмульсии), обеспечивающие высокие прочностные свойства, сцепление с бетонной поверхностью и стойкость покрытий к ударным нагрузкам.  [c.167]

Латексные покрытия под общим названием полан — эластичные, бесшовные, применяются в качестве непроницаемого подслоя под футеровку штучными кислотоупорными материалами. Покрытие полан получают на основе защитной композиции (ТУ 38-106473—84) — водной дисперсии подвулканизованного латекса типа ревультекс, модифицированного метилцеллозольвом. Выбор этого типа латекса обусловлен его хорошими иленкообра-зующими свойствами, возможностью получения прочной пленки без применения высокотемпературной обработки, химической стойкостью. В настоящее время разработаны следующие виды покрытия полан-М, -2М, -Б, -ПЭ, -хлор. Промышленное применение имеют латексные покрытия полан-М, -2М и -Б. Покрытие полан применяется для защиты оборудования, железобетонных сооружений, эксплуатирующихся в диапазоне температур от —30 до 100 °С в следующих агрессивных средах фосфорная экстракционная, фосфорная термическая, полифосфорная, плавиковая, кремнефтористоводородная кислоты и растворы фторсодержащих солей любых концентраций, а также в серной кислоте (до 60%).  [c.220]


Смотреть страницы где упоминается термин Железобетон Свойства : [c.66]    [c.217]    [c.54]    [c.253]    [c.41]    [c.138]    [c.142]    [c.315]   
Основы конструирования Справочно-методическое пособие Кн.3 Изд.2 (1977) -- [ c.192 , c.195 ]



ПОИСК



Железобетон



© 2025 Mash-xxl.info Реклама на сайте