Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Железо — углерод — ванадий

Сталь представляет собой сплав железа с углеродом и другими элементами, условно обозначаемыми буквами X хром, Г-марганец, Н-никель, С-кремний, Ю-алюминий, Т-титан, Ф-ванадий, В - вольфрам, М молибден.  [c.186]

Исследованные наплавки и твердые сплавы представляют собой соединения, различные по содержанию легирующих элементов. Основой их является железо, содержание углерода составляет 0,1—5%, легирующие элементы — хром, вольфрам, ванадий, молибден, бор, титан, никель, марганец, кремний.  [c.36]


Механические свойства 3 — 319 Химический состав 3 — 319 Железобетонные модели литейные — см. Модели литейные железобетонные Железо-ванадий. система — Диаграмма состояния 3 — 329 Железо-ванадий-углерод. система — Изотерми ческое сечение 3 — 336 Железо-вольфрам, система — Диаграмма состояния 3 — ЙО Железо-вольфрам-углерод, система — Изотермическое сечение 3 — 336 Железо-графит — Испытания 4 — 260  [c.76]

Основной продукт доменной плавки — чугун — сплав железа с углеродом, марганцем, кремнием, серой и фосфором. В состав легированных чугунов входят хром, никель, ванадий. Чугуны разделяются на передельные, из которых получают сталь литейные, предназначенные для отливки различных изделий, и доменные ферросплавы, предназначенные для легирования и раскисления стали.  [c.88]

Пытались также проводить подобные опыты, добавляя к железу, помимо углерода, различные вещества магний, кремний, бериллий, никель, кобальт, алюминий, медь, платину, теллур, ванадий, молибден, титан, бор, марганец, окись урана и т. д. Повлиять на расположение кристаллов в железе пытались, помещая охлаждаемую литейную форму в сильное магнитное поле.  [c.240]

Значительно более высокими механическими свойствами и рядом свойств, которых нет у углеродистых сталей, обладают легированные стали — сплавы железа с углеродом, легированные одним или несколькими элементами (марганцем, хромом, никелем, ванадием, вольфрамом, молибденом и др.).  [c.39]

В условиях водородной коррозии в первую очередь происходит взаимодействие водорода с карбидом железа как менее устойчивым по сравнению с другими карбидными составляющими стали. Эта реакция протекает быстро, и механические свойства стали при этом изменяются в зависимости от количества и размещения карбидов железа. Связать углерод в смешанные или самостоятельные карбиды других элементов, более устойчивые, чем карбид железа, можно путем легирования хромом, молибденом, вольфрамом, ванадием, титаном и некоторыми другими элементами. Степень повышения стойкости стали по отношению к водороду зависит от того, образуют ли легирующие элементы самостоятельные карбиды или растворяются в карбиде железа, стабилизируя его.  [c.59]

В природе наиболее распространены железо, алюминий, медь, олово, свинец, никель, магний, хром, вольфрам, кобальт, ванадий, молибден и др. В технике большее применение находят не чистые металлы, а сплавы, т. е. соединения металлов между собой и с другими веществами. Например, сталь и чугун являются сплавами железа с углеродом, кремнием, марганцем и др. латунь — сплав меди с цинком, оловом и др., а дюралюминий — это сплав алюминия с медью, магнием, марганцем и другими ве-ществам.и.  [c.7]


Легированная сталь представляет собой сплав железа с углеродом и другими элементами, обозначаемыми в марках следующими буквами X — хром, Г — марганец, -И — никель. С —кремний, Ю — алюминий, Т — титан, Ф — ванадий, В — вольфрам.  [c.116]

К первой группе относятся углерод, кислород, азот и алюминий ко второй — водород, железо, марганец, хром, молибден, ванадий, ниобий, тантал, кремний. Стабилизация той или иной  [c.91]

Наибольшее применение для изготовления режущих инструментов получили быстрорежущие стали. Быстрорежущая сталь является многокомпонентным сплавом и относится к карбидному (ледебурит-ному) классу сталей. В ее состав, кроме железа и углерода, входят хром, вольфрам и ванадий. Основным легирующим элементом в быстрорежущей стали является вольфрам. Наибольшее распространение получили (табл. 17) марки быстрорежущей стали Р18 (18%W) и P9(9%W).  [c.223]

Легированными называются такие стали, в состав которых, помимо двух основных компонентов — железа и углерода, входят в качестве компонентов также специальные легирующие элементы хром, никель, вольфрам, молибден, ванадий, алюминий, титан и другие. В некоторых случаях кремний и марганец являются не примесями, а легирующими компонентами и, наоборот, хром, никель и другие типичные легирующие элементы становятся примесями.  [c.13]

Чугуном называется сплав железа с углеродом, содержащий от 2 до 6,67% углерода. Наряду с углеродом в чугуне содержатся кремний, марганец, сера и фосфор. Содержание серы и фосфора в чугуне больше, чем в стали. В специальные (легированные) чугуны вводят легирующие добавки — никель, молибден, ванадий, хром и др.  [c.174]

Сталью называется железоуглеродистый сплав, содержащий углерода менее 2%. Сталь, в зависимости от химического. состава, подразделяется на углеродистую, содержащую, кроме железа и углерода, кремний, марганец, фосфор и серу, попадающие в металл в процессе его получения, и легированную, в которую марганец, хром, кремний, вольфрам, ванадий и ряд других элементов специально вводят для изменения свойств стали.  [c.48]

Чугуны представляют собой железоуглеродистые сплавы с содержанием углерода более 1,7%. Углерод в чугуне может находиться или в связанном состоянии в виде карбидов железа, или в свободном состоянии в виде графита. В зависимости от этого чугуны подразделяются на белые и серые. В белых чу-гунах углерод находится только в связанном состоянии, в серых — главным образом в свободном. К особой группе серых чугунов относятся ковкие чугуны, получающиеся из белых путем длительного отжига (томления). Кроме железа и углерода, в чу-гунах содержатся кремний, марганец, сера и фосфор, а в легированных чугунах также могут содержаться никель, хром, ванадий и другие элементы.  [c.199]

Для состояния и свойств сварных соединений, прежде всего сталей, имеет значение диффузионное перемещение углерода, водорода, серы, фосфора, железа, марганца, хрома, молибдена, ванадия, алюминия и некоторых других элементов. Диффузия этих элементов определяет степень химической и механической неоднородности сварных соединений, протекание процессов рекристаллизации, изменение свойств при термообработке и т. п.  [c.59]

В машиностроении и строительстве для различных конструкций применяют разные марки сталей. Сталью называют сплав железа с углеродом, в котором содержится углерода до 2%. Кроме углерода и железа, в состав сталей входят марганец, кремний, сера, фосфор, а также хром, никель, молибден, ванадий, медь, ниобий, азот и другие элементы.  [c.8]

Для повышения температуры полиморфного превращения а-ти-тана вводят алюминий, кислород, азот и углерод для понижения температуры полиморфного превращения уЗ-титана добавляют цирконий, ниобий, ванадий, молибден, марганец, железо, хром, кобальт и др.  [c.298]

При избытке марганца (3,4 %) логично влияют ванадий, кремний, нием железа (содержащего 0,008% О, 0,0050 % N, 0,0003 % Н, 0,003% С) при г )=86 % приводит вначале, при наличии 0,9 % Si, к понижению порога хладноломкости от -Р10 до —80 °С, а затем при 4,7 % Si, к повышению его до -Ы40°С. Порог хладноломкости технического железа с 0,041 % О, 0,005 % N, 0,0001 % Н и 0,002 % С, равный 145 °С, также понижается при малых добавках кремния вследствие его раскисляющего воздействия [1]. Легирование 0,15 % V понижает порог хрупкости технического железа до —100°С (табл. 65, рис. 74). Железо не хладноломко межкристаллитная хрупкость вызывается примесями кислорода (рис. 75), углерода (рис. 76), серы, фосфора [1]. При одновременном присутствии некоторых при-  [c.149]


Карбиды вольфрама и молибдена в сталях менее стабильны, чем карбиды хрома, ванадия, титана и ниобия. Стойкость карбидов железа и хрома может изменяться за счет растворения ими разных металлов, усиливающих или ослабляющих прочность межатомной связи между металлом и углеродом. Как правило, элементы, сами образующие карбиды, более стойкие, чем основной карбид, растворяясь в нем, повышают его стойкость. Наоборот, элементы, образующие менее стойкие карбиды, понижают стойкость основного карбида.  [c.161]

Карбиды хрома и, в особенности, титана и ниобия (в меньшей степени ванадия и молибдена) отличаются высокой устойчивостью, значительно труднее переходят в раствор аустенита при нагревании. Углерод в железе при наличии хрома повышает способность стали к закалке, уменьшая при этом критическую скорость охлаждения.  [c.10]

Элементы, входящие в состав указанных инструментальных материалов углерод, кислород, кремний, алюминий, фосфор, сера, ванадий, титан, хром, марганец, железо, кобальт, никель, вольфрам — могут быть активированы. В результате активации будет получен изотоп соответствующего элемента с присущим ему излучением, периодом полураспада и другими характеристиками.  [c.98]

В белом чугуне углерод содержится только в химически связанном состоянии. В простом белом чугуне встречаются карбиды железа и марганца, в легированном могут быть карбиды хрома, молибдена, ванадия, вольфрама и других элементов.  [c.57]

При легировании стали карбидообразующими элементами в ее структуре образуются включения карбидов. Карбидообразующие элементы могут образовывать самостоятельные карбиды или замещать железо в цементите. При избытке карбидообразующих элементов по отношению к углероду эти элементы входят в твердый раствор. К карбидообразующим элементам относятся хром, вольфрам, ванадий, молибден, титан и ниобий. Включения карбидов упрочняют сталь и повышают ее твердость.  [c.50]

Сопротивляемость окислению придают стали элементы, имеющие большее сродство к кислороду, чем железо, такие, как хром, кремний и, в особых случаях, алюминий, а сопротивляемость ползучести — карбидообразующие элементы, такие, как хром, молибден и ванадий. Для изделий, работающих при относительно низкой температуре, наибольшую практическую ценность представляют добавки до 30% Сг, который придает стали очень высокое сопротивление коррозии, однако 12% является предельной добавкой хрома, которая делает ферритную матрицу пригодной для эксплуатации при высокой температуре, так как стали с более высоким содержанием хрома становятся хрупкими при 455° С. Если добавка хрома необходима для повышения стойкости против окисления при высокой температуре, то ее необходимо сочетать с добавкой никеля и, возможно, марганца, которые вместе с углеродом и азотом стабилизируют аустенит. Более высокое содержание хрома увеличивает сопротивление окислению и позволяет еще повысить рабочую температуру, однако в то же время способствует образованию а-фазы, появление которой приводит к хрупкости стали после длительных выдержек при температуре >600° С. Увеличение содержания никеля подавляет образование а-фазы. Когда требуются исключительная стойкость к коррозии и специальные механические свойства, прибегают к использованию сплавов на основе никеля. Так, например, сплав 800 имеет наилучшее сочетание механических свойств, а сплав 50% Сг и 50% Ni обладает наивысшей стойкостью против окисления.  [c.176]

На рис. 4 приведена принципиальная схема изготовления конструк ционных деталей из порошков железа или материалов на его основе. Марки порошковых сталей обозначают сочетанием букв и цифр. Первые две буквы СП указывают, что сталь получена методом порошковой металлургии. Число после буквы П показывает среднее содержание общего углерода в сотых долях процента (содержание свободного углерода при этом не превышает 0,2 %). Следующие за этим числом буквы обозначают легирующие элементы А - азот, Б - ниобий, В-вольфрам, Г - марганец, Д - медь, К - кобальт, М - молибден, Н -никель, П - фосфор, С - кремний, Т - титан,Ф - ванадий, X - хром, Ц-  [c.14]

Экспериментально и теоретически на основе учета энергий смешения элементов с железом и углеродом были получены характеристики растворения углерода в сплавах железа с марганцем кремнием серой, фосфором, кобальтом никелем молибденом ванадием мелью ото вом, алюминием, титаном [6] Поскольку растворение — это электронный процесс, то элементы, отдающие свои эпектроны в недостроенную 3d оболочку железа, умень шают растворимость углерода Поэтому все элементы че твертого периода, стоящие левее железа, уменьшают растворимость углерода Элементы третьего периода так же уменьшают растворимость углерода, однако зависи мость здесь сложнее, так как необходимо учитывать ха рактер взаимодействия элементов с железом Элементы третьего и четвертого периодов, стремясь окружить себя атомами железа и вытесняя углерод, повышают актив ность углерода Элементы, взаимодействующие с угле родом сильнее, чем железо, понижают активность угле рюда Установлена зависимость растворимости углерода в сплавах на основе железа от порядкового номера тре тьего элемента в таблице Д И Менделеева Экспери ментально также доказано, что разность между атом ной долей углерода в насыщенном им тройном ставе  [c.76]

Титановые сплавы. Соединение титана с углеродом (до 20%) образует карбид титана, обладающего высокой температурой плавления (3140°) и твердостью, и поэтому широко применяемому в твердых сплавах. Соединения технического титана с железом, марганцем, хромом, молибденом, ванадием, оловом и другими легирующими компонентами образуют титановые сплавы, обладающие повышенными прочност ныьш свойствами и лучшей обрабатываемости резанием по сравнению с титаном Химический состав промышленных титановых сплавов приведен в табл. 51 а их свойства — в табл. 52.  [c.149]


Новым металлическим материалом, занимающим видное место в машиностроении, являются титан и сплавы на его основе. Это серебристо-белый металл с температурой плавления 1660° и удельным весом 4,5 г/сж . Технический титан высокой чистоты содержит не более 0,1% примесей (Ре Мп А1 С 51 N1), имеет невысокую прочность, хорошую пластичность, по свойствам приближаясь к чистому железу с углеродом образует очень твердые карбиды титана. Татан удовлетворительно обрабатывается давлением (ковкой, прессованием, прокаткой), сваривается дуговой сваркой в атмосфере защитных газов. Имеет высокую стойкость против коррозии в пресной, морской воде и в некоторых кислотах. Примеси резко повышают прочность, одновременно снижая пластичность титана. Изготовляемый в СССР технический титан, содержащий до 0,5% примесей имеет 6в =55—75 кГ1мм 6 = 20—25%. К к конструкционные материалы Б машиностроении применяются сплавы титана с ванадием, молибденом, хромом, марганцем, вольфрамом, танталом, ниобием, углеродом, алюминием, оловом. Наибольшее применение  [c.191]

Сталью называют сплав железа с углеродом и другими элементами с содержанием до 2 % С (точнее до 2,14 % С —точка Е на диаграмме Ре —РсдС, см, рис. 6.1). Если сталь имеет в своем составе железо и углерод и некоторое количество постоянных примесей — марганец (до 0,7 %), кремний (до 0,4 %), серу (до 0,06 %), фосфор (до 0,07 %) и газы, то такую сталь называют углеродистой. Если Б процессе выплавки углеродистой стали к ней добавляют легирующие элементы—хром, никель, ванадий и др., а также марганец и кремний в повышенном количестве, то такую сталь называют легированной (см. приложение).  [c.83]

Специальной или легированной сталью называется сталь, в которой, кроме железа и углерода, содержатся легирующие (специальные) примеси, например, хром (Сг), никель (N1), вольфрам (Ш), ванадий (V), молибден (Мо), титан (Т1), кобальт (Со) и др., или повышенное против обычной нормы количество постоянных примесей—более 1 % марганца (Мп), более0,5% кремния (З ).  [c.273]

Задача определения предела усталости сводится к экспериментальному определению такого напряжения, которое вызыва ет разрушение за критическое число циклов Мк- С этой целью испытывают ограниченное число образцов, доведенных до разрушения при числах циклов как меньших, так н несколько (на полпорядка) больших Мк, и строят зависимость а —1пЛ для получения интерполированного значения Ок- При легировании железа хромом, никелем и ванадием, а также углеродом до 0,4% значения Мк соответствуют указанным для чистого железа. В тех случаях, когда Мк неизвестно, его можно определить по имеющимся экспериментальным кривым усталости для аналогичных материалов. Термическая обработка не оказывает влияния на значения М и а.  [c.65]

Сплавы железа с углеродом (сталь и чугун). Широко- применяемые в технике общеизвестные железо, сталь и иугун являются сложными, многокомпонентными сплавами на железной основе. Постоянными составляющими этих сплавов являются углерод, марганец, кремний, сера, фосфор, кислород и азот. Кроме того часто умышленно добавляют и другие элементы никель, хром, вольфрам, молибден, ванадий, кобальт, алюминий, а иногда и титан, уран, цирконий, бор. Сплавы, содержащие кроме железа только те примеси, к-рые попадают в чугун в процессе восстановительной плавки руд и в процессе передела чугуна в сталь, называются простыми, или углеродистыми, т. к. углерод является основной примесью в этих сплавах железа. Сплавы, содержащие какую-нибудь ив постоянных примесей в искусственно увеличенном количестве, и сплавы, содержащие умышленно введенные добавки, называются специальными сталями и чугунами. Понятие чугун охватывает сплавы со сравнительно высоким содержанием углерода (не менее 2,5% С), применяющиеся в литом состоянии и не поддающиеся никакой механич. обра-  [c.386]

Основным материалом для изготовления частей подъемного крана — моста, тележки, крюка, канатов, колес и валов — является сталь. Сталь — это ковкий сплав железа с углеродом (0,04—2 %) и другими элементами. Углеродистая сталь наряду с железом и углеродом содержит марганец (0,1—1 %), юэемний (до 0,4 %), а также вредные примеси — серу (не более 0,08 %) и фосфор (не выше 0,09 %). Важное значение в технике имеет также легированная сталь, в состав которой помимо указанных компонентов входят легирующие элементы хром, никель, молибден, ванадий, вольфрам, марганец и др.  [c.27]

Группа элементов (хром, молибден, вольфрам, ниобий, титан, алюминий и ванадий) наряду с растворением в а- или у-железе образует соединения с углеродом, железом и другими элементами. Эти соединения, имеющие малую скорость коагуляции и обладающие термической стойкостью, способны сохранять механические свойства сплавов при высоких температурах в течение продолжительного времени. Кроме того, обладая ограниченной рас1Воримо-стью в твердом растворе, они участвуют в процессах термической обработки, обеспечивая дисперсионное твердение сплавов.  [c.50]

Ко второй группе относят металлы, сохраняющие пластичность при охлаждении до температуры —100 С. Это стали, содержащие 0,20—0,35 % углерода, легированные никелем, хромом, ванадием, молибденом, иногда — цирконием и бором. Например, ферритные малоникелевые стали с 2,25—5 % никеля пригодны для использования при температурах от —60 до —130 °С. К этой же группе относят сплавы титана на основе Р-фазы, а также композиционные материалы на основе железа и меди.  [c.309]

Стабильность твердого раствора сплава Ni с 28—30% Мо может быть существенно повышена снижением содержания углерода (<0,005—0,01%), железа (<1,0%), а также введением кар-бидообразующйх элементов [21, 122]. Причем, среди таких элементов, как Ti, W, Zr, V и Nb только два последних уменьшают склонность сплава к МКК в среднетемпературной области (600— 8й0° С) [17,21, 92]. Из сопоставления коррозис1нных и структурных диаграмм (рис. 61) следует, что полбжйтельное влияние ванадия определяется тем, что он замедляет выделение карбидов по границам зерен и развитие упорядочения [17].  [c.145]

В котельных сталях, являющихся многокомпонентными системами, легирующие элементы находятся в свободном состоянии, в форме интерметаллических соединений с железом илн между собой в виде оксидов, сульфидов и других неметаллических включений, в карбидной фазе, в виде раствора в цементите или самостоятельных соединений с углеродом. Молибден, хром, ванадий растворяются в основных фазах углеродистых сплавов - феррите, аустените, цементите или образуют специальные карбиды. При этом твердость и ударная вязкость феррита возрастают. В процессе эксплуатации происходит интенсивный переход молибдене и хрома из твердого раствора феррита в карбиды. Наибольшая интенсивность перехода молибдена наблюдается при наработках немногим более 2 10 ч. Далее процесс сглаживается. В исходном состоянии в малолегированных сталях содержится от 3 до 8 молибдена. После наработки около 1,5 10 ч его сод жание возрастает до 80%. Разброс значений содержания молибдена по отдельным трубам существенно увеличивается с наработкой времени. Соответственно происходит разупроч-ненне.  [c.154]

Как ВИДНО из таблицы, электролитический хром при йодид-ном рафинировании очищается от кремния, титана, меди, железа, азота, кислорода, водорода и углерода, в то время как содержание алюминия, свинца, висмута и кадмия остается после рафинирования практически на том же уровне. В рафинированном металле полностью отсутствовали марганец, никель, ванадий, молибден, вольфрам, мышьяк, сурьма и бор (в исходном металле эти примеси не определяли). Металлический хром после йодид-ного рафинирования пластичен в литом состоянии (удлинение при растяжении 9—16%).  [c.160]


Смотреть страницы где упоминается термин Железо — углерод — ванадий : [c.396]    [c.178]    [c.659]    [c.396]    [c.498]    [c.157]    [c.174]    [c.139]    [c.99]    [c.100]   
Смотреть главы в:

Металловедение и термическая обработка стали Том 1, 2 Издание 2  -> Железо — углерод — ванадий



ПОИСК



Ванадий 273, 275, ЗСО

Ванадий — углерод

Ванадит

Диаграмма состояний железо—титан железо—углерод—ванадий

Железо и углерод

Железо — ванадий

Углерод

Углерод— углерод



© 2025 Mash-xxl.info Реклама на сайте