Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коэффициент видимого

Для удобства вычислений теплофизических коэффициентов, видимо, целесообразно заранее составить для каждого образца таблицу, в которую можно будет вносить результаты измерений и расчетов (с.м., например, табл. 6-1).  [c.154]

Глазков Ю. А. Оценка красных проникающих жидкостей для цветной дефектоскопии по яркостно-цветовому коэффициенту видимости. — Дефектоскопия, 1970, ЛЬ 1. с. 114—120. >  [c.477]

В формуле (3-2) 0,00016 (°С) —коэффициент видимого расширения ртути в стекле для обычных сортов термометрического стекла. Для кварцевого стекла этот коэффициент равен 0,18-10- (°С) п — длина выступающего столбика, выраженная в градусах шкалы термометра t — температура, отсчитанная по термометру ti — средняя температура выступающего столбика.  [c.71]


Как следует из уравнения (29), видимое изменение объема жидкости всегда меньше, чем действительное. Однако температурный коэффициент расширения жидкости значительно больше, чем температурный коэффициент расширения стекла. Так, для ртути температурный коэффициент расширения приблизительно в 10 раз больше температурного коэффициента объемного расширения стекла, для спирта и толуола — приблизительно в 50 раз. Температурный коэффициент расширения стекла существенно зависит от сорта стекла, и, следовательно, коэффициенты видимого расширения одной и той же жидкости в резервуарах, изготовленных из различных сортов стекла, различны. Так, средний коэффициент видимого расширения ртути в резервуарах из стекла разного сорта для интервала О—100°С колеблется в интервале 1,6—1,8-10— град т. е. более чем на 10%.  [c.56]

Поправка на выступающий столбик ртути. Деления шкалы ртутного термометра наносят в предположении, что при измерении температуры вся находящаяся в термометре ртуть принимает измеряемую температуру. Однако в среду с измеряемой температурой обычно погружают только резервуар и часть капилляра термометра, а другая часть капилляра со ртутью находится вне среды. Температура ртути в выступающей части капилляра отличается от температуры ртути в резервуаре, и показания термометра в этом случае уже не соответствуют температуре среды. Для того чтобы узнать действительную температуру среды, иначе говоря, вычислить, какими были бы показания термометра при его полном погружении, необходимо ввести к его показаниям поправку на выступающий столбик ртути. Величина этой поправки пропорциональна длине выступающего столбика и разности между температурой резервуара и температурой выступающего столбика ртути. Коэффициентом пропорциональности является коэффициент видимого расширения ртути а в стекле. Чтобы получить величину поправки на выступающий столбик в градусах данного термометра, в этих же единицах надо выразить и длину выступающего столбика ртути. Таким образом, поправка на выступающий столбик с может быть вычислена по следующей формуле  [c.63]

Коэффициент видимых объемных потерь X/ [3] при депрессии на всасывании Ар = 0,05 бар и при депрессии на нагнетании Др = 0,1 бар у Ро— Дро Ро Грк + Др Ро — ДРо] 0,847  [c.69]

Исследованиями установлены количественные зависимости коэффициента видимости объектов от цвета фона. На этом основании определены три группы цветов.  [c.64]

Коэффициент видимости сквозь атмосферу 2. Качество самолета  [c.13]

Коэффициент видимости в пустоте Стехиометрическое отношение топливных компонентов  [c.14]

Средний коэффициент видимости F  [c.180]

С помощью табл. 40 и 41 можно определить средний коэффициент видимости лучей, проходящих через атмосферу, т. е. величину / = Л, которая одна только и представляет интерес в вопросе о цветной сигнализации (табл. 42 и рис. 100).  [c.180]


Длина волны, мк Средний коэффициент видимости сквозь атмосферу / Длина волны, мк Средний коэффициент видимости сквозь атмосферу /  [c.181]

Примечания 1. Коэффициент видимого расширения ртути в термометрическом боросиликатном стекле составляет 0,000164 К . а в кварцевом стекле 0,00018 К .  [c.66]

Разность средних температурных коэффициентов а и с в уравнении (2-3) называется средним температурным коэффициентом видимого расширения жидкости в стекле, т. е.  [c.61]

Для изготовления термометров применяется специальное термометрическое стекло, обладающее небольшим температурным коэффициентом, примерно равным 0,02 X X 10 К , что дает коэффициент видимого расширения ртути в стекле около 0,16-10" К" .  [c.62]

Температурный коэффициент видимого расширения ртути в стекле зависит от сорта термометрического стекла и может быть в среднем принят равным 0,16 10 K .  [c.75]

Проведенные на основании зависимости (4.28) оценки показывают, что для материалов оболочек твэлов, таких как графит, максимальная разность температуры на поверхности между точкой касания и точкой с максимальным локальным коэффициентом теплоотдачи не превышает 10% среднего температурного перепада в оболочке, что, по-видимому, не приведет к существенному изменению температурных напряжений в теплопроводной оболочке шарового графитового твэла.  [c.86]

Экспериментальные исследования показали, что относительное расстояние от днища до края бокового входного отверстия практически не оказывает влияния на коэффициент сопротивления входного участка аппарата. При центральном входе потока вниз аппарата сопротивление входного участка с решеткой получается на 10—15 % меньше, чем при центральном входе вверх. Объясняется это, по-видимому, тем, что при выходе струи из подводящего участка вниз создается некоторый диффу-зорный эффект, обусловленный радиальным растеканием, а следовательно, более плавным расширением потока, при котором происходит частичный  [c.190]

Анализ условия, что стенки полости должны быть полностью отражающими, является значительно более трудным, чем рассмотрение чисто геометрических ограничений. Если коэффициент отражения стенок меньше единицы, то должны, по-видимому, присутствовать еще дополнительные поправочные члены. Однако сами эти члены должны стремиться к нулю, если стремится к нулю коэффициент отражения стенок, так как в соответствии с законом Кирхгофа коэффициент излучения при этом стремится к единице, что вновь приводит к идеальным условиям черного тела внутри полости.  [c.317]

Как видно из графика, нанесение покрытий в 2 — 4,5 раза увеличивает силу сдвига. Несущая способность соединений, собранных с охлаждением вала, превышает прочность сборки под прессом, в 2 раза для соединений без покрытия и в 1,2 —1,3 раза для соединений с мягкими покрытиями (ей, Си, 2п). Для соединений с твердыми покрытиями (N1, Сг) несущая способность при сборке с охлаждением ниже, чем при сборке под прессом. Увеличение сцепления при гальванических покрытиях, по-видимому, обусловлено происходящей при повышенных давлениях взаимной диффузией атомов покрытия и основного металла, сопровождающейся образованием промежуточных структур (холодное спаивание). Этим и объясняются высокие, приближающиеся к единице значения коэффициента трения в подобных соединениях (правая ордината диаграммы). Понятие коэффициента трения в его обычной механической трактовке в этих условиях утрачивает смысл величина коэффициента трения здесь отражает не  [c.484]

Пользуясь формулой (6.1), можно экспериментально определять время химической реакции в модели Зельдовича — Неймана. Таким способом А. И. Сербинов, Я. К. Трошин и К. И. Щелкин (1962) измерили температурный коэффициент (видимая энергия активации) реакции воспламенения бензола с кисло  [c.394]

Интенсивное внедрение электроники в автомобильные информационные системы ставит перед разработчиками необходимость реик-иия эргономических задач при организации приборных панелей. При разработке новых приборных и электронных панелей необходимо учитывать как закономерности восприятия информацин со стрелочных приборов, так и фотометрические характеристики приборов и индикаторов (яр-костные, колориметрические и др. . При этом необходимо учитывать возможные резкие изменения яркостиых нолей внутри кабины и вне ее, при эксплуатации автомобиля в дневное и ночное время. Для расчета коэффициента видимости изображения иа индикаторе можно вос-по.1ьзоваться выражением  [c.305]


Компжсация температуры свободных концов 8.11 Конвекция 1.19 Конвекция вьшужденная 1.21 Конвекция свободная 1.20 Конденсация 1.67 Конец рабочий 8.3 Контакт тепловой 4,4 Контраст пороговый 11.26 Контраст яркости 11.27 Конус Зегфа 9.9п Концы свободные 8,4 Концы холодные 8.4п Коэффициент видимого расширения 5.52 Коэффициент излучения 10.9 Коэффициент излучения интегральный 10,11 Коэффициент излучения направлений 10,12 Коэффици етт излучения нормальный 10.13 Коэффициент излучения полусферический 10.14 Коэффициент излучения спектральный 10,10 Коэффициент излучшия эффективный 10.15 Коэффициент темп )атур-ный термометра сопротивления 7,13 Коэффициент температуропроводности 1.28п Коэффициент теплопроводности 1.27п Кривая парообразования 2,36 Кривая плавления 2.35 Кривая сублимации 2.37 Кривая фазового равнове-  [c.66]

Прежде всего, одно и то же воспринимаемое глазом количество энергии вызывает совершенно различные ощущения в зависимости от цвета лучей. В табл. 40 (см. также рис. 100) приведены данные Кобленца и Эмерсона относительно коэффициента видимости лучей F в зависимости от длины их волны. Кривая относится к области наиболее слабой силы света, которая именно нас и интересует в области больших значений силы света кривая имеет иной вид. Известно, например, что при одной и той же силе синего и красного света то один, то другой из них кажется нам более интенсивным, в зависимости от того, будет ли абсолютная величина силы света малой или большой (явление Пуркинье).  [c.180]

Химическая инертность гелия и возможность высокой степени его очистки от примесей в контуре опытных реакторов ВГР позволяют использовать в качестве оболочек твэлов не только нержавеющие стали, но и ванадий, пироуглерод, карбид кремния и другие керамические материалы [21]. По-видимому, одно из основных преимуществ применения гелия — это возможность использовать в качестве топлива карбиды урана и плутония, что сулит существенное увеличение коэффициента воспроизводства по сравнению с окисным топливом. Нулевая активация гелия, отсутствие существенного замедления им быстрых нейтронов при прохождении через активную зону реактора БГР, а также успешное решение задачи удержания продуктов деления в микротвэлах с керамическими защитными слоями при больших значениях глубины выгорания и возможность непосредственного охлаждения микротвэлов газовым теплоносителем — все эти положительные факторы позволяют реактору БГР конкурировать с реактором-размножителем БН. Основной недостаток гелиевого теплоносителя по сравнению с натриевым — трудности отвода тепла остаточного тепловыделения в аварийных ситуациях при потере герметичности основным  [c.31]

ТОЧНО далеких от поверхности теплообмена частиц. Необходи.мо также учесть, что обмен излучением между стенкой п частицей гораздо продолжительнее. Он происходит не только во время пребывания частицы у поверхности, но и во время продвижения ее из ядра слоя. Таким образом, по-видимому, при оценке существенности переноса излучения следует сравнивать коэффициенты межфазового и лучистого теплообмена.  [c.184]

Для жидкостных дисперсных потоков Р р, видимо, значительно превышает 3% и близко к 20%. В любом случае все величины, входящие в расчетные зависимости (6-15) и (6-16), являются физическими характеристиками либо компонентов потока (с, Ст, р, рт, v. К, К. ..), либо всей дисперсной системы (р, Сп, об, Фь ф )> которые необходимо наперед знать или оценить. Очевидно, что полученные выражения, устанавливающие в относительной форме связь между интенсивностью теплообмена и гидродинамическим сопротивлением дисперсного потока, могут быть использованы либо для анализа влияния факторов на особенности теолопереноса, либо для прямого, несомненно приближенного, расчета теплообмена лишь при знании закономерностей для А и т/ - Сведения, позволяющие оценить симплекс коэффициентов гидродинамического сопротивления, приведены в гл. 4 и в 6-9. Они не являются достаточно обобщенными и зачастую носят частный характер.  [c.190]

Первое опытное исследование было выполнено, видимо, в [Л. 210]. Изучались горизонтальные потоки воздушной взвеси песка при весьма небольших расходных концентрациях (ц 0,2). В результате было установлено увеличение коэффициента теплоотдачи до 257о-В 1957 г. были опубликованы данные по теплоотдаче вертикального потока полидисперсиого алюмосиликатного катализатора [Л. 358], которые аппроксимированы при и Re= 13 500- 27 ООО формулой  [c.217]

По представлениям 3. Ф. Чуханова Л. 316, 317], основанным на анализе процессов в слое с точки зрения внешней задачи, влияние соседних частиц и их точек соприкосновения проявляется в ранней турбулизации газовой фазы. По-видимому, эта турбулизация охватывает часть свободно омываемой поверхности твердых частиц, но не затрагивает газовую прослойку, непосредственно примыкающую к местам контакта и образующую застойную зону. По данным [Л. 7] коэффициент массо-передачи в широком диапазоне чисел Рейнольдса очень неравномерен по поверхности шариков продуваемого неподвижного слоя. Он резко уменьшается в точках контакта частиц н увеличивается в свободно обдуваемых местах. Аналогичный результат был получен Дентоном [Л. 351] при Re = 5 000 ч-50 ООО. В движущемся слое при прочих равных условиях можно ожидать уменьшения застойных зон на поверхности частиц. Исходя из предположения, что теплообмен в слое является типично внешней задачей, 3. Ф. Чуханов [Л. 316] на основе гидродинамической теории теплообмена показал, что для турбулентного режима  [c.318]

Это выражение дает заметно более высокие значения коэффициентов теплообмена, чем формулы (10-19) и (10-20). Определенным объяснением такого результата может служить, по-видимому, большая равномерность газораспределения (в камере противотока слой формировался как продолжение камеры типа поперечно продуваемый наклонный слой ). Результаты, полученные в Л. 328] по теплообменнику с однотипными противоточными камерами типа нагрев — охлаждение насадки, рассматриваются в гл. 11. Теплообмен в движущемся слое при его продувке по смешанной схеме (последовательное чередование противоточного и прямоточного движения газа) имеет место в аппаратах со встроенными многорядными коробами раздачи и отвода газа (шахтные зерносушилки, многозонные теплообменники и т. п.). Согласно [Л. 200] при охлаждении слоя сухого зерна пшеницы (Уф = 0,1- 0,4 м1сек, расстояние между коробами 120 мм, а = 860 м 1м и Кесл = 18-н 100)  [c.323]


При малых концентрациях (а2< 0,05), получаемые значения ц согласуются с формулой Эйнштейна, но при больших определяемые из таких опытов вязкости (х существенно превышают значения (3.6.51) и, кроме того, имеют значительный разброс у разных авторов и при разных комбинациях фаз (рис. 3.6.1). Этот разброс, но-видимому, отражает неньютоновость концентрированных вязких дисперсных смесей и недостаточность величин р и ц, для определения их механических свойств. В связи с этим на практике приходится для каждой смеси и реальных устройств в рассматриваемом диапазоне режимных параметров (например, расходов) проводить эксперименты по определению потери напора, привлекая для их обработки различные реологические модели, в частности, модель вязкой жидкости с эффективным коэффициентом  [c.171]

Приведенный анализ, по-видимому, справедлив при близких значениях коэффициентов диффузии частиц и турбулентной диффузии потока, т. е. при малых размерах частиц. В литературе п.меются сведения о том, что коэффициент турбулентной диффузии практически постоянен по высоте канала. Настоящий анализ позволил выявить второстепенность влияния стенки на коэффициент диффузии частиц. Показано, что присутствие стенки оказывает весьма существенное влияние на интенсивность движения  [c.65]

Дански и др. [180] выполнили измерения коэффициента теплоотдачи от движущейся поверхности к слою частиц шлака. Относительная скорость составляла от 0,01 до 0,1 м1сек. Исследуемая система, очевидно, соответствует рассмотренной модели многократного рассеяния при локальной концентрации твердых частиц от 0,4 до 0,1 и коэффициенте аккомодации между частицами и стенкой в ламинарном слое, равном 0,8 [181]. При скорости ниже 0,01 м1сек, по-видимому, становится существенным эффект теплопроводности пористого слоя, примыкающего к скользящей поверхности. Экспериментальная система Дански и др. может быть использована для проверки данных по теплообмену между стенкой и частицами для моде.ли однократного рассеяния при достаточно высоких относительных скоростях.  [c.234]


Смотреть страницы где упоминается термин Коэффициент видимого : [c.24]    [c.212]    [c.212]    [c.38]    [c.26]    [c.121]    [c.193]    [c.112]    [c.74]    [c.75]    [c.96]    [c.75]    [c.58]    [c.266]    [c.242]    [c.344]    [c.215]   
Основные термины в области температурных измерений (1992) -- [ c.0 ]



ПОИСК



1— видимое

Видимость

Видимый коэффициент лучистого теплообмена

Зависимость дальности видимости черных объектов от коэффициента

Коэффициент видимого расширения

Коэффициент масштабный видимый

Коэффициент теплопередачи «видимый

Расчет интегрального коэффициента пропускания светофильтра для видимой области спектра при сложном излучений



© 2025 Mash-xxl.info Реклама на сайте