Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Методы определения растворимости металлов

Методы определения растворимости металлов  [c.82]

Электрохимический метод определения растворимости металлов основан на том, что индифферентный электрод (графит, молибден), погруженный в расплавленную соль приобретает электродную функцию растворяющегося металла. В момент насыщения разность потенциалов между индифферентным электродом и растворяющимся металлом стремится к нулю. Обычно измеряют э. д. с. гальванических цепей двух типов  [c.82]

Появление водорода в жидком металле связано главным об-разом с протечкой воды в жидкий натрий через микротрещины в стенках трубок пучка парогенератора. Не исключена возможность диффузии водорода в натрий через стенку трубок из пароводяной фазы как продукта электрохимической и термической коррозии металла стенки в воде при высоких температурах. Предложены физические методы определения водорода, основанные на диффузии его через никелевую или иридиевую перегородку в вакуумную полость и измерении давления в ней [85, 86]. Датчик из иридиевой или никелевой трубки помещают в газовую подушку расширительного бака или непосредственно в поток натрия, В том и другом случае существует линейная зависимость потока водорода через стенку датчика от концентрации его в жидком металле. К сожалению, нет данных о влиянии примесей, находящихся в жидком металле и растворимых в никеле, например лития.  [c.295]


Кроме чисто химических описано большое число нехимических методов, которые иногда используют для контроля содержания кислорода в щелочных металлах это, в частности, применение индикатора закупоривания, или пробкового индикатора. Метод относится к технологическим приемам приближенного определения содержания окиси щелочного металла, растворенной в жидком металле. Устройство представляет собой трубку, включенную параллельно основному контуру, по которой принудительно или в результате естественной разницы давлений протекает жидкий металл. Участок охлаждается до нужной температуры и охлаждаемый металл пропускается через суженный участок трубы (шайбу). При достижении температуры и соответствующей концентрации насыщенного раствора, на внутренней стенке шайбы начинает выделяться осадок окиси металла, просвет уменьшается и при постоянном напоре уменьшается расход металла, что регистрируется расходомером. При температуре начала образования пробки, пользуясь кривой растворимости, можно приблизительно оценить загрязненность металла. Метод не является специфичным для кислорода. Закупоривание может произойти и вследствие выделения из раствора других примесей, например карбидов, карбонатов, гидроокисей и др. Гидриды понижают температуру закупоривания окисью натрия. Описано с хорошей оценкой испытание автоматического варианта индикатора f67].  [c.289]

Если резкие линии достаточно интенсивны, они могут быть использованы для определения периода решетки, а отсюда состава твердой фазы при температуре закалки. Успешная работа, проведенная таким методом, описана Е. А. Оуэном [104]. Преимуществом этого метода является то, что он требует очень небольших количеств исследуемого сплава и, таким образом, пригоден для изучения редких металлов. Однако и в этом случае встречается много экспериментальных трудностей, которые будут обсуждены в главе 25, где описано применение рассматриваемого метода для определения кривых предельной растворимости в твердом состоянии.  [c.196]

Можно продемонстрировать общий метод подхода к вопросу на гипотетической системе Л В, в которой чистые металлы А VL В плавятся соответственно при 1000 и 700° (рис. 113). В очень грубом приближении системы сравнимы при температурах, которые составляют равные части их температур плавления по абсолютной шкале таким путем можно подобрать время отжига. Предположим, что на рис. 113 представлены результаты, полученные при определении линий ликвидус и солидус методами термического анализа и микроисследования слитков, использованных для снятия кривых охлаждения. Здесь остановки на кривых охлаждения ясно показывают широкую растворимость компонента В в А. Растворимость ограничена перитектической горизонталью при 850° вторая пери-тектическая горизонталь при 770° дает возможность предположить, что существует промежуточная фаза, содержащая 35% (атомн.) компонента В. Микроструктура слитков дает возможность определить, стабильна ли эта вторая фаза при комнатной температуре. Как видно из рис. ИЗ, микроструктура всех сплавов при содержании 25—40% компонента В обнаруживает две фазы и более, поэтому можно предположить, что фаза, образующаяся на перитектической горизонтали при 850°,  [c.208]


По увеличению в весе (Kw)- В том случае, когда на поверхности металла возникают хорошо сцепленные с основой и трудно-растворимые продукты, можно производить количественную оценку коррозии по увеличению в весе. Это относится ко многим случаям химической коррозии, коррозии в электролитах, атмосфере и др. Эффективен данный метод при наличии наряду с равномерной межкристаллитной коррозии. Метод заключается в том, что подготовленные образцы взвешивают и помещают в коррозионную среду через определенное время их извлекают, промывают сильной струей воды и помещают во взвешенной фарфоровой чаше в сушильный шкаф, где при температуре 130— 150° С высушивают. Если испытания проводятся в электролите, осадок на дне сосуда для испытаний (продукты коррозии) отфильтровывают через тонкий фильтр, помещают в платиновый тигель, тоже высушивают и взвешивают. Разность между сум-26  [c.26]

В последнее время интерес к влиянию малых количеств приме-сей на свойства чистых металлов постоянно возрастает и в этой области появляется все большее количество работ. Примеси играют важную роль в исследованиях, связанных с физикой металлов. Они образуют точечные дефекты особого вида и способны взаимО действовать с другими дефектами решетки, которые определяют многие из свойств металлов. Следовательно, получение металлов высокой чистоты имеет очень большое значение. С одной стороны, это позволяет проводить исследование дефектов решетки в простых условиях в результате устранения взаимодействия с примесями. С другой стороны, влияние примесей на свойства может изучаться на сплавах, состав которых известен совершенно точно благодаря использованию металлов высокой чистоты. Значительный успех в получении чистых металлов связан с применением метода, получившего название зонной плавки. Этот метод, основанный на раз личной растворимости примесей в твердой и жидкой фазах, оказался весьма плодотворным, поскольку позволил получать металлы с содержанием примесей 10 % и менее. Чтобы эффективно использовать этот метод очистки, исследователь должен иметь в своем распоряжении аналитические способы определения столь малых количеств примесных элементов, а также очень быстрые методы контроля, позволяющие следить за процессами очистки. В рассматриваемом интервале концентраций примесей особый интерес представляют такие методы их определения, как радиоактивационный анализ и измерение остаточного электросопротивления.  [c.431]

Весовой метод широко используется при измерении коррозии металлов в чистых расплавах галогенидов, в которых продуктами коррозии являются галогениды корродирующих металлов, хорошо растворимые в солевых средах [6—19]. Однако и в этом случае могут быть существенные ошибки в определении истинной величины коррозии, если исходная поверхность образцов покрыта окисными пленками. В условиях одних опытов они могут полностью подтравливаться и механически удаляться с поверхности, в условиях других — частично оставаться. Поэтому для получения воспроизводимых результатов поверхность исследуемых металлов подвергается механической или химической обработке, чтобы снять окис-ные пленки и возможные загрязнения, которые могут сказаться на величине коррозии. Результаты весового метода не могут быть однозначной характеристикой процессов коррозии в тех расплавах, в которых продукты коррозии частично или полностью нерастворимы. Даже при сильной коррозии вес образца может меняться незначительно, иногда убывая, иногда возрастая [Ю, 20—22]. Это>, в первую очередь, относится к кислородсодержащим расплавам (нитратам [20,23],карбонатам [22, 24—31], фосфатам [32—34], сульфатам [35, 36]  [c.173]

Легирование является наиболее распространенным методом повышения механических свойств металлических материалов. Увеличение прочностных характеристик материалов происходит благодаря влиянию легируюш,их элементов на исходное состояние сплава и на его изменение в процессе пластической деформации и проявляется в повышении предела текучести и возникновении более интенсивного деформационного упрочнения. Известно, что при деформировании в металлах и сплавах происходит образование дислокаций и формирование определенной для каждого материала и условий дислокационной структуры. В связи с этим становится ясным, что в основе повышения прочности металлов и сплавов лежит взаимодействие дислокаций с барьерами, которыми могут быть различные дефекты, границы, растворимые атомы, включения или дисперсные частицы.  [c.76]


Диаграмма состояния В1—Pd (рис. 97) построена по данным работ [I, 2] и заменяет собой диаграмму, приведенную М. Хансеном и К. Андерко (см. т. 1, рис. 189). В работе [1] исследовали сплавы в интервале концентраций О— 78% (ат. ) Pd, полученные на основе химически чистых металлов. В работе [2] исследовали сплавы в интервале концентраций О—62% (ат.) Pd для приготовления сплавов использовали металлы высокой чистоты. В обоих работах применяли методы термического и металлографического анализов. Диаграммы состояния, построенные в работах [1, 2], принципиально согласуются друг с другом, но отличаются по температурам и составам отдельных точек. Данные работы [2], взятые за основу при построении диаграммы состояния В1—Pd на рис. 97, предпочтительнее по сравнению с данными работы [1], поскольку в работе [2] было приготовлено больше сплавов и больше внимания уделяли их термическому анализу. Растворимость Pd в жидком В1, определенная в работе [3] в интервале температур 260—300° С, согласуется с данными работы [2]. Сравнение температур нонвариантных превращений и составов равновесных фаз сделано в табл. 6.  [c.213]

Определенные грани монокристалла нередко можно получить путем раскалывания. Этот метод пригоден для кристаллов с преимущественной спайностью, например, для щелочных и редкоземельных галогенидов, некоторых металлов (5Ь, В1, 2п, С(1) и материалов со слоистыми структурами (графит, слюда). Эти грани обычно покрыты ступеньками скола элементарной и микроскопической высоты, однако они содержат также более или менее протяженные атомно-гладкие зоны. При раскалывании на воздухе растворимых в воде кристаллов, например, большинства щелочных галогенидов, следует учитывать, что содержащиеся в воздухе пары НгО способствуют растворению поверхности кристалла. Поэтому некоторые поверхностные структуры получают этим методом только в том случае, когда раскалывание происходит в вакууме или в осушенной атмосфере.  [c.345]

В работе [1] повторно определен ликвидус системы. О методе, которым было проведено исследование, ничего не сообщается. При оценке растворимости Се в различных легкоплавких металлах [2] данным работы [1] отдается предпочтение перед данными М. Хансена и К. Андерко (см. т. II [1,2]). Результаты работы [1 ] приведены ниже.  [c.58]

Величину и скорость коррозии можно также определить путем анализа раствора при условии, что металл разрушается с образованием растворимых продуктов коррозии. При этом можно пользоваться обычными аналитическими методами, отбирая пробы из растворов через определенные промежутки времени. Применяя для указанных целей колориметрические методы, можно значительно упростить методику анализа раствора.  [c.92]

Второй вариант диаграммы состояния системы Аи — Р1 предполагает неограниченную растворимость золота и платины как в жидком, так и в твердом состояниях при температурах, близких к температуре солидус, и наличие разрыва растворимости в твердом состоянии несколько ниже линии солидус. Неограниченная растворимость золота и платины в жидком состоянии была установлена в работах [6—8], выполненных методом термического [6, 8] и микроструктурного (определение линии солидус) анализов [7, 8]. Определения температуры плавления 19 сплавов (5—95% Р1), выполненные в работе [9], также указали на неограниченную растворимость этих металлов в жидком состоянии.  [c.173]

Структуры электролитических сплавов по фазовому составу обычно не отличаются от литейных сплавов, но в некоторых случаях могут быть существенные отклонения. Так, электролитические и металлургические рекристаллизованные латуни практически не отличаются друг от друга. Другая картина наблюдается при рассмотрении сплава золото—медь. Литые золотомедные сплавы образуют непрерывный ряд твердых растворов, а при электроосаждении этих металлов из смешанного цианистого электролита твердый раствор образуется лишь частично, значительная часть золота и меди выделяется в виде механической смеси. В некоторых случаях, наоборот, электролитический метод позволяет расширить пределы растворимости одного компонента в другом. Примером может служить электроосаждение сплава свинца и меди, где при определенных условиях (перхлоратный  [c.4]

Методом электросопротивления пользуются для решения ряда металловедческих вопросов, в частности для определения структурных изменений в металле, растворимости одного элемента  [c.68]

Мокрые методы разделения к-тами основываются на нерастворимости золота и растворимости серебра и других металлов в азотной и кипящей крепкой серной к-те. Р. серной к-той состоит из следующих операций 1) приготовление слитка, отвечающего определенной пробе, необходимой для дальнейшего процесса разделения 2) растворение в серной кислоте  [c.106]

Метод может быть применен также для определения теллура и в других металлах, образующих растворимые аммиакаты, например, в цинке, кадмии и кобальте.  [c.50]

Методы определения растворимости металла в солевых расплавах можно разделить на три типа изотермическое насыщение, термический анализ и электрохимический метод. При изотермическом насыщении систему металл — расплав выдерживают при постоянной температуре в герметическом сосуде и большей частью в индифферентной атмосфере до установления равновесия. Затем систему либо быстро охлаждают (закаливают), либо разделяют металлическую и солевую фазы в самих реакционных сосудах, либо отбирают пробы для анализа при температуре опытов [9, 13, 29, 33]. Количество растворенного металла определяют по убыли металла и путем анализа солевой и металлической фаз. При взаимодействии металла с солевой фазой по реакции (VI—1) определяют условную константу гетерогенного равновесия в конденсированных системах [9]. Растворимость металла и величины констант равновесия можно рассчитать на основании фазовых диаграмм. Последние строят как по кривым охлаждения, так и по визуальным политермам [91.  [c.82]

Образование оксида алюминия по реакциям гидролиза и окисления происходит преимущественно в расплаве и частично в парогазовой фазе над ним, а также в возгонах солей над расплавом. В связи с отсутствием совершенных методов определения растворимых форм оксида алюминия в расплавах и возгонах в настоящее время не представляется возможным составить полный материальный баланс по кислороду при взаимодействии рассматриваемых хлоридных расплавов с влажным воздухом. Поэтому методика наших исследований заключалась в барботировании (со скоростью 6,6 л/ч в течение 1,5 ч) влажного воздуха через расплавы различного катионного состава в кварцевом реакторе при температуре 700° С с улавливанием газообразных продуктов реакций (1, 2). На основании количества выделившихся газов рассчитывали суммарную скорость образования в реакторе оксидов металлов в пересчете на AI2O3.  [c.28]


Олеатный метод определения жесткости. Этот метод основан на малой растворимости в воде олеатов кальция и магния, т. е. олеиновокислых солей этих металлов. Растворимость олеата магния выше, чем кальция, и это сказывается на результатах определения, если доля магниевой жесткости в общей жесткости велика, как это наблюдается, например, для морских вод, конденсатов от аппаратов, охлаждаемых морской водой, и т. п. Для обычных вод электростанций доля кальция в общей жесткости, как правило, преобладает, поэтому результаты олеатного определения близки к истинной величине жесткости. Добавление раствора олеата калия к порции анализируемой воды вызывает осаждение содержащихся в ней ионов кальция и магния. Затем избыток олеата калия при взбалтывании создает устойчивую пену, что служит признаком окончания титрования, т. е. своеобразным индикатором.  [c.251]

Сущность метода. Комплексометрический метод определения общей жесткости воды наиболее точный и распространенный. Он основан на образовании катионами Са + и Mg + прочных внутриком-плексных соединений с трилоном Б. Трилон Б — натриевая соль этилендиаминотетрауксусной кислоты, образующая растворимые в воде внутриком-плексные соединения с катионами различных двух-и трехвалентных металлов. Трилон Б образует также комплексные соединения с катионами меди, цинка, марганца, кадмия, никеля, двух- и трехвалентного железа, алюминия и др.  [c.154]

Здесь же только отметим, что наиболее простым и общим методом определения химической стойкости металлов является определение растворимости их в кислотах путем взвешивания после определенного времени выдержки в растворителе. Этот метод и будем главным образом иметь в виду при характеристике химических свойств металлов и сплавов. Конечно, при этом не может быть большой точности в определении, так как в различных кислотах и при их разной концентрации металлы могут вести себя по-разному. Но все же в одинаковых условиях испытания Сольшая или меньщая растворимость в кислотах может служить количественным показателем стойкости металла (сплава) против химического воздействия. Этот показатель будет представлять ценность и в том отношении, что он может до некоторой степени характеризовать и протравимость шлифов, т. е. скорость, с которой тускнеет блестящая поверхность шлифа при травлении его реактивом большей частью кислотного характера.  [c.125]

Термодинамические данные для всех изучавшихся сплавов получены впервые. Однако, несмотря на отсутствие в литературе термодинамических данных по исследованным системам и, следовательно, невозможность сопоставления с литературными данными полученных результатов, последние можно считать достаточно надежными, поскольку в работе была доказана обратимость электродов, содержащих вместо сплава чистые металлы — молибден и ниобий. Вычисленные из величин э.д.с. термодинамические константы N50 и МоОг практически совпадают с литературными данными. Недавно Рапп и Маак [4] исследовали этим методом сплавы в системе Си—N1. Найденные ими величины совпали с данными других методов. Полученные методом э. д. с. с твердым окисным электролитом данные пока еще весьма немногочисленны, но, по-видимому, как в случае сложных окислов и кислородсодержащих солей, метод привлечет внимание исследователей, тем более что, как и прочие термодинамические методы, наряду с определением термодинамических свойств, его можно использовать в качестве весьма надежного метода физико-химического анализа в довольно широком интервале температур (1100—1700°К). Практически верхний предел температур исследования ограничивается началом химического взаимодействия электродов с электролитом. Метод может быть использован также для определения растворимости кислорода в металлах и сплавах.  [c.205]

Поскольку установлено, что стали типа 18-8, закаленные на аустенит, не склонны к межкристаллитной коррозии и достаточно коррозионно стойки в кипящей азотной кислоте концентрации ниже 65%, правильность термической обработки металла, предназначенного для работы в указанных условиях, проверяется в США [6] по кинетике потери веса металла. Этот метод определения также имеет ограниченное применение не только в отношении количества сред, но и в отношении сортамента металлов, подлежащих иопытанию. Так, например, этот метод, по существу, не применим при испытании молибдспосодержащих сталей типа 18-12, т. е. стале , в которых всегда вероятно содержание некоторого количества а-фазы, обладающей новьинеино растворимостью в азотной кислоте, и >при испытании еложиолегироваиных сталей типа 23-28, содержащих также медь и молибден.  [c.5]

Определение растворимости углерода приведенным методом нельзя признать надежным, так как очень трудно фиксировать в твердой пробе все количество углерода, содержащееся в жидком металле. Поэтому для определения зависимости [С]тах от температуры обычно изучают равновесие реакций [С]+ СОг =2 С0 , Сграф+ С02 =2 С0 .  [c.144]

Особенностями аналитического метода являются различная валентность ионов железа, которые могут присутствовать в анализируемой среде (Ре-+, Ре +), а соответственно и различные свойства, присущие этим формам, различная растворимость их соединений. Соединения двухвалентного железа в воде в обычных условиях не устойчивы, т.к. оно легко окисляется кислородо.м воздуха. Все это, как правило, учитывают стандартные методы. Нерастворимые в исследуемом растворе продукты коррозии растворяются в растворах с низким pH. В растворенную форму переводятся продукты, находящиеся в виде взвеси и осадков в среде, а также в виде отложений на образцах, подвесках, мешалках и стенках испытательного сосуда. Растворение продуктов коррозии с образцов необходимо проводить в растворах, не вызывающих растворения металла, так, как это делается в гравиметрическом методе. Растворенные продукты обьединяются в исследуемой среде. Двухвалентное железо переводится в трехвалентное и анализируется. При определении содержания общего железа в водных прозрачных растворах можно использовать ГОСТ 4011-72 (Вода питьевая. Методы определения общего железа).  [c.23]

Наиболее рациональным методом устранения склонности нержавеющей стали к межкристаллитной коррозии является понижение содержания углерода в ней до значений, не превышающих предела растворимости при низких температурах и, следовательно, исключающих выпадение карбидов из твердого раствора. Содержание углерода в такой стали не должно превышать 0,02%-Эта сталь не требует закалки, она ие чувствительна к нагревам и охлаждениям в процессе эксплуатации и обладает во много раз более высокой стойкостью против воздействия определенных агрессивных сред по сравнению со сталью Х18Н10Т, имеющей обычное содержание углерода. Высокая пластичность металла с 0,02% С и отсутствие в нем карбидных включений позволяют, например, деформировать листовую сталь до самых незначительных толщин—0,01 мм (фольга), а из трубной заготовки изготовлять электрополированные тонкостенные трубы.  [c.154]

При использовании этого метода отжиг должен быть достаточно продолжительным для того, чтобы быть уверенным, что достигнуто равновесие. Трудность определения мелких вы-делившхся частиц при низких температурах при этом устраняется. Рентгеновский метод имеет то преимущество, что если только кривая зависимости периода решетки от состава была опредмена тщательно, достаточно двух или трех сплавов двухфазной области для построения всей кривой растворимости. Поэтому рентгеновский метод удобен для работы с редкими или с сильно летучими металлами, из которых трудно изготовить образцы точно желаемого состава. Теоретически достаточно только одного двухфазного сплава, но для подтверждения воспроизводимости результатов, полученных этим методом, рекомендуется изготовить и исследовать по крайней мере два сплава.  [c.216]

Это в равной мере относится к образцам, выдержанным непрерывно в течение определенного срока, и к параллельным, которые по 2—3 штуки снимали через определенные интервалы времени. После окончательного осмотра образцы можно использовать для количественной оценки коррозии. Для атмосферных испытаний характерно то, что количественную оценку коррозии на открытых станциях можно производить только по потере веса, а по увеличению в весе — лишь при испытании на закрытых установках, когда есть гарантия сохранения продуктов коррозии на поверхности металла. Техника измерений такая же, как и при лабораторных испытаниях. В добавление можно указать, что для очистки от продуктов коррозии оцин-кованых образцов рекомендуется обработка их 10%-ным раствором персульфата аммония. Нерастворимые в воде продукты коррозии на стальных образцах с гальваническими покрытиями и без покрытий удаляют катодной обработкой в 5— 10%-ном растворе едкого натра при плотности тока 1—2 а1дм . По данным работы [319], для удаления продуктов коррозии с цинковых и кадмиевых покрытий такая обработка продолжается не более 2 мин. Для удаления продуктов коррозии с указанных покрытий, кроме того, применяют обработку без тока в растворе 150—200 г/л хромового ангидрида при 20—22° С. Применяются и другие методы очистки поверхности, многие из которых приведены выше при рассмотрении весового показателя коррозии. При наличии продуктов коррозии, растворимых в воде, их удаляют кипячением в дистиллированной воде. Последующий анализ воды на содержание ионов металла и анионов  [c.207]


Повышение установившейся концентрации азота над стандартной растворимостью в два-три раза необходимо рассматривать как перенасыщение. Еще больше концентрация азота оказалась в кромках плазменного реза сталей. При послойном определении концентрации азота спектральноэмиссионным методом установлено, что максимальное содержание азота в кромке воздушно-плазменного реза в 50 раз больше, чем в исходном металле, и почти в десять раз превышает предел растворимости азота в стали [57].  [c.112]

Таким образом, ЭДТА и ее соли обладают следующими характерными для определенного интервала температур специфическими свойствами комплексованием всех лрисутствующих в воде катионов термическим разложением комплексонатов с образованием оксидной пленки на поверхности металла при термолизе комплексонатов железа. Эти особенности комплексона легли в основу разработанного Союзтехэнерго и МЭИ метода комплексонной обработки питательной воды блоков СКД. Сущность метода состоит в связывании катионов примесей питательной воды в растворимые комплексы, а затем в принудительном высаживании (в результате термолиза комплексонатов) твердой фазы на поверхности нагрева, расположенной в зоне температур 260—300°С. Для коррекции питательной воды используется аммонийная соль ЭДТА.  [c.201]

Существование соединения Рс121п было подтверждено в работе [2]. В работах [3, 4] было сообщено о существовании также соединения Р(151па (39,21% 1п). Во всем интервале составов система 1п — Рс1 была изучена в работе [5] методами термического, микроструктурного и рентгеновского анализов. Сплавы для исследований были приготовлены из металлов чистотой более 99,9% плавкой в платиновой печи сопротивления в графитовом тигле с крышкой или (богатые палладием сплавы) в индукционной печи в тиглях из АЬОз в атмосфере аргона. Образцы сплавов для исследований превращений в твердом состоянии гомогенизировали при температурах несколько ниже линии солидус, охлаждали с печью до температуры последующей термообработки, выдерживали при этой температуре и закаливали. Диаграмма состояния системы 1п — Р(1, построенная по результатам этих исследований, приведена на рис, 265. Состав и количество фаз согласуются с определенными в работе [1]. Граница растворимости индия в палладии несколько ниже линии солидус проходит между 20 и 21 ат.% (21,2—22,23% 1п).  [c.401]

О природе растворимости данного металла можно сделать правильное заключение ьа основании результатов различных физико-химических методов исследования определения величины растворимости изучения окраски растворов металлов синтеза субсоединений, криоскопических исследований термического анализа, измерения упругости пара над расплавом определения объемных эффектов, изучения электропроводности магнитных и спектроскопических исследований потенциометрических методов Определить состав субсоединений образующихся при растворении металла в его соли, можно на основании измерения понижения точки замерзания расплава, расчета теплоты плавления из уравнения Шредера, изучения парамагнитных и диамагнитных свойств растворов, потенциометрических исследований. Подробный обзор э их методов дан в работе 1221  [c.85]

Удаление свободных жирных к-т (нейтрализация масел) производится путем а) омыления щелочами и удаления образующегося мыла б) растворения жирных кислот в растворителях, не действующих на нейтральный -жир в) перегонки жирных кислот с водяным паром. В практике применяется гл. обр. первый метод, причем условия работы сильно варьируют в зависимости от употребляемых химич. реагентов, их концентрации, 1° и других факторов. Из щелочей чаще всего применяются каустическая сода, аммиак, окиси и. гидроокиси щелочноземельных металлов и др. соединения. Сода мало пригодна для этой цели, т. к. образует при нейтрализации большое количество пены. Аммиак не действует на жир и образует легко разлагаемое мыло, но применение его усложняет процессы работы. Известь и магнезия как мало растворимые в воде употребляются в виде суспензий (молока), благодаря чему реакция с ними затруднена и их приходится брать в избытке кроме того известковое мыло дает иногда стойкую эмульсию и удерживает значительное количество масла. Самый процесс обработки масла щелочью заключается в следующем. В нейтрализатор, снабженный мешалкой и подогревателем, спускается из расположенного выше мерника в виде тонкой струи (при перемешивании) раствор каустич. соды в количестве, определенном заранее путем анализа. Щелочь омыляет свободные жирные к-ты и смолистые вещества образующееся при этом мыло в виде хлопьев оседает на дно сосуда, увлекая с собою белковые, красящие, слизистые и другие примеси, находящиеся в масле. Концентрация щелочи берется для различных масел в пределах 5—30° Вё. Слишком концентрированные растворы разлагающе действуют на нейтральный жир, слишком разбавленные—образуют иногда очень стойкие эмульсии, создающие большие неудобства в производстве. Температура смеси держится не выше 30° и лишь под конец ее повышают до 50—60°, чтобы получить более плотный осадок мыла. Отстаивание масел происходит или в нейтрализаторе или в особых сборниках для ускорения отстаивания и разрушения эмульсий прибавляется раствор поваренной соли. Отстой, соапсток, содержит кроме мыла и примесей часто значительное количество нейтрального жира, который м. б. в значительной части отделен при помощи центрифугирования, после чего мыло разлагают серной к-той для получения жирных кислот. Масло после отделения соапстока поступает в промывочно-сушильный аппарат, где оно тщательно промывается несколько раз горячей водой до полного удаления мыла и затем сушится. Для отделения жирных к-т при помощи растворителей выбираются такие растворители, у которых уд. вес сильно отличается от уд. веса масла, напр, метиловый и амиловый спирты. Жир промывают несколько раз растворителем, который после отстаивания образует два слоя нижний, состоящий из нейтрального жира, и верхний— из раствора жирных кислот в растворителе. Этот метод имеет различные недостатки жир  [c.101]

Химическая обработка (кондиционирование) котловой воды. Вышеописанными методами из воды можно удалить почти все растворимые вещества, однако небольшие следы их можно найти даже в очень тщательно подготовленной воде, добавляемой для восполнения убыли К моменту, когда большая часть воды в котлах превратится в пар, остающаяся жидкость может стать пересыщенной в отношении какого-либо соединения выделение твердого соединения в первую очередь обычно происходит немного ниже местоположения пузырьков пара, образующихся на стенках металла. Важно знать, будут ли частицы этого соединения приставать к поверхности металла (что приводит к образованию накипи) или к поверхности пузырьков (чта приводит к образованию пены, а, в конце концов, шлама) или не будут приставать ни к тому, ни к другому (в этом случае непосредственно образуется шлам) Американский специалист Холл первый указал, что при благоприятных обстоятельствах, пользуясь произведениями растворимости, можно предсказать, что будет образовываться накипь или шлам он использует эти данные для определения количества фосфата или карбоната, которое следует добавить к воде, содержащей, например, сульфат кальция, чтобы обеспечить такие условия, когда в результате парообразования вода пересытится фосфатом кальция или карбонатом кальция (образующими шлам) до Toroi как она пересытится сульфатом кальция (образующим накипь). Имея данные о произведениях растворимости фосфата, карбоната и сульфата  [c.398]

Поэтому в дальнейшем Даркен и Гурри [42] для определения пределов растворимости элементов привлекли понятие электроотрицательности. Построенные ими эллипсы растворимостей в координатах атомный радиус — электроотрпцательность позволили более точно предсказать тип взаимодействия. Такие эллипсы растворимостей для иттрия впервые были построены Гшнейднером [7]. Оказалось, что иттрий может образовывать непрерывные или, по крайней мере, обширные области твердых растворов с редкоземельными и некоторыми актиноидными (Ас, Th), щелочными (Na, Li) и щелочноземельными (Са, Mg) металлами. Однако этот метод не дает никаких указаний о типах диаграммы состояния для металлов, находящихся за пределом внешнего эллипса. Причем встречались даже случаи, когда металлы, образующие с иттрием ограниченные твердые растворы и полностью растворимые в жидком состоянии (например, W) оказывались расположенными дальше от центра эллипса, чем металлы, образующие двухфазные жидкие смеси (например, V). Несоответствия наблюдались также в системе Y — Na, в которой компоненты не смешиваются как в жидком, так и в твердом состояниях [4].  [c.15]


Смотреть страницы где упоминается термин Методы определения растворимости металлов : [c.312]    [c.660]    [c.192]    [c.253]    [c.173]    [c.18]    [c.329]   
Смотреть главы в:

Электрическое лужение из солевых расплавов  -> Методы определения растворимости металлов



ПОИСК



Растворимость

Растворимость металлов



© 2025 Mash-xxl.info Реклама на сайте