Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Металлические порошки (методы получения

Межкристаллитная коррозия 5 Мел 276, 277 Мертвые сучки 233 Металлокерамика 110—115 Металлизированная фанера 238 Металлические сетки 116 Металлический лом 67 Металлический марганец 101 Металлические порошки (методы получения) ПО  [c.340]

При термическом разложении используют обычно сложные элементо- и металлоорганические соединения, гидроксиды, карбонилы, формиаты, нитраты, оксалаты, амиды и имиды металлов, которые при определенной температуре распадаются с образованием синтезируемого вещества и выделением газовой фазы. Получение высокодисперсных металлических порошков методом термического разложения различных солей подробно  [c.34]


С каждым годом все большее число работ посвяш,ается разработке новых металлокерамических материалов и технологии получения различных изделий ИЗ металлических порошков. В ходе этих исследований особое внимание уделяется операции спекания, во время которой формируются все основные свойства готового изделия. Для изучения процессов, протекающих при спекании металлических порошков и полученных из них прессованных заготовок, используются разные методы. Одним из новых путей для изучения спекания пористых тел и металлических порошков является непосредственное наблюдение за этими объектами с помощью установок для высокотемпературной металлографии [1, 2].  [c.152]

С ТОЧКИ зрения высказанных выше требований наиболее целесообразно получать металлические порошки методами распыления жидких металлов и сплавов. При этом получают достаточно гладкие частицы и размер их можно регулировать в довольно широких пределах. Технически приемлемым является также способ получения частиц сферической формы обкаткой в вихревых мельницах специально подготовленных (насеченных) кусочков проволоки или стружки. В отличие от обычного вихревого размола обкатку про-изводят короткое время.  [c.332]

Производство металлических порошков методом электролиза водных растворов в настоящее время с успехом конкурирует с другими методами, особенно в области получения таких технически важных металлов, как медь и железо.  [c.100]

В первый период своего развития металлокерамическая промышленность занималась производством таких изделий, получение которых методом порошковой металлургии по существу являлось единственно приемлемым. Это положение можно иллюстрировать, например, производством твердых сплавов, тугоплавких металлов, медно-графитовых щеток, пористых материалов и т. п. Однако по мере совершенствования технологии и удешевления стоимости исходного сырья (в первую очередь металлических порошков) методы металлокерамического производства стали успешно конкурировать с обычными методами в получении ряда деталей из черных и цветных металлов.  [c.447]

ПОЛУЧЕНИЕ МЕТАЛЛИЧЕСКИХ ПОРОШКОВ МЕТОДОМ ВОССТАНОВЛЕНИЯ ХИМИЧЕСКИХ СОЕДИНЕНИЙ  [c.56]

Последовательное наступление научно-технической революции неразрывно связано с непрерывным совершенствованием машиностроения — основы технического перевооружения всех отраслей народного хозяйства. Инженерная техническая деятельность на основе научной мысли расширяет и обновляет номенклатуру конструкционных материалов, внедряет эффективные методы повышения их прочностных свойств. Появляются новые материалы на основе металлических порошков, порошков-сплавов. Порошковая металлургия не только приводит к замене дефицитных черных и цветных металлов более дешевыми материалами, она позволяет получить совершенно новые материалы — материалы века , которые невозможно получить традиционным путем. Кроме того, изготовление изделий из порошков — практически безотходное производство. Другое направление получения дешевых конструкционных материалов состоит в применении пластмасс, новых покрытий и т. п. Тончайшая пленка из порошковых смесей на поверхности детали, образуемая плазменным напылением, повышает надежность сопрягаемых и трущихся друг о друга деталей машин, защищает их от коррозии и существенно увеличивает их износостойкость.  [c.4]


Другой метод получения порошков заключается в разложении определенных солей железа и кобальта (солей муравьиной и щавелевой кислот, гидроокисей, карбонатов) или их сплавов при низких температурах (300— 400° С) в восстановительной среде водорода, подаваемого с регулируемой скоростью. Затем пирофорный металлический порошок помещают в нейтральную среду (ацетон, эфир, бензин) и прессуют до желаемой плотности. По мере необходимости прессование осуществляют в присутствии неметаллических связок. Плотность материала определяет магнитные свойства конечного продукта.  [c.232]

Изготовление деталей машин из металлических порошков осуш,ествляется методом порошковой металлургии. Основные способы получения порошков приведены в табл. 120.  [c.442]

Характеристика основных методов получения металлических порошков  [c.322]

Сведения о металлических и других порошках приведены в справочнике непосредственно за описанием основного металла, а методы получения и форма частиц — в табл. 1.  [c.198]

Основные методы получения металлических порошков  [c.528]

Физико-химические свойства металлических порошков зависят от метода и режима их получения.  [c.256]

Порошковая металлизация является современным методом получения покрытий или электрических схем. Метод состоит в наложении на шероховатую поверхность полимерного материала слоя смеси, содержащей 20% эфира целлюлозы или метакриловой смолы, 10% растворителя и 70% металлического порошка. Под прессом паста прижимается к поверхности материала, образуя тонкий слой, отличаюш,ийся высокой адгезией. Этот слой в дальнейшем можно нарастить гальваническим методом.  [c.109]

Эти поиски привели к разработке метода насыш,ения политетрафторэтиленом пористых втулок, полученных путем спекания металлических порошков.  [c.249]

Распространенным методом создания высокодисперсных металлических порошков является восстановление соединений металлов (гидрооксидов, хлоридов, нитратов, карбонатов) в токе водорода при температуре ниже 500 К. Достоинства этого метода — низкое содержание примесей и узкое распределение частиц порошков по размерам типичные распределения частиц по размерам в некоторых металлических нанопорошках, полученных восстановлением в токе водорода, показаны на рис. 1.3.  [c.36]

Суш,ность метода порошковой металлургии заключается в последовательном осуш,ествлении в едином цикле операций получения металлического порошка и превраш,ения его в изделие. Основы его заложены русскими учеными П.Г.Соболевским и В.В.Любарским в 1826 г. Выпуск изделий (тиглей, монет и др.) из губчатой платины, начатый в 1827 г., закрепил приоритет русской науки в деле создания технологических основ метода, которому в последуюш,ем пришлось испытать взлеты и падения, в начале XX века возродиться и начиная с 50-х годов занять достойное место в научно-техническом прогрессе.  [c.6]

Прокаткой металлических порошков и последующим спеканием в настоящее время получают материалы со специальными свойствами, получение которых традиционными способами невозможно. Способ получения материалов-методом прокатки из металлических порошков имеет сравнительно небольшую историю и практическое применение его началось в 50-х годах XX в. Материалы из металлических порошков получают различной степени пористости, изделия из порошков твердосплавных смесей широко используют в качестве режущих инструментов, вне конкуренции антифрикционные и магнитномягкие материалы, пористые детали и др.  [c.322]

Формование —это технологическая операция получения изделия или заготовки заданной формы, размеров и плотности обжатием сыпучих материалов (порошков). Уплотнение порошка осуществляют прессованием в металлических пресс-формах или эластичных оболочках, прокаткой, шликерным литьем суспензии и другими методами. Способ подготовки порошков к формованию выбирают исходя из технологических характеристик порошка, метода формования и последующей термообработки (спекания), требуемых свойств в условиях эксплуатации.  [c.130]

Методы получения металлических порошков и дальнейшее изготовление из них изделий.  [c.399]

Возможность применения порошка для изготовления конкретных изделий определяется его свойствами, которые зависят от метода получения и природы металла порошка. Металлические порошки характеризуются технологическими, физическими и химическими свойствами.  [c.781]


В качестве матрицы в этих материалах используют никель и его сплавы с хромом ( 20 %) со структурой твердых растворов. Сплавы с хромоникелевой матрицей обладают более высокой жаростойкостью. Упрочни-телями служат частицы оксидов тория, гафния и др. Временное сопротивление в зависимости от объемного содержания упрочняющей фазы изменяется по кривой с максимумом. Наибольшее упрочнение достигается при 3,5 - 4 % НЮ2 (<Тв = 750. .. 850 МПа (т / рд) = 9. .. 10 км й = 8. .. 12 %). Легирование никелевой матрицы W, Ti, А1, обладающими переменной растворимостью в никеле, дополнительно упрочняет материалы в результате дисперсионного твердения матрицы, происходящего в процессе охлаждения с температур спекания. Методы получения этих материалов довольно сложны. Они сводятся к смешиванию порошков металлического хрома и легирующих элементов с заранее приготовленным (методом химического осаждения) порошком никеля, содержащим дисперсный оксид гафния или другого элемента. После холодного прессования смеси порошков проводят горячую экструзию брикетов.  [c.443]

Порошки металлические Методы получения 94  [c.744]

Рис. 55. Схема установки для получения металлических порошков методом плазменного распыления в атлюсфере аргона Рис. 55. Схема установки для <a href="/info/199302">получения металлических</a> порошков методом плазменного распыления в атлюсфере аргона
Производство металлических порошков методом электролиза водных растворов в настоящее время с успехом конкурирует с другими методами, особенно в области получения такого технически важного металла, как медь. Это объясняется рядом преимуществ электролиза по сравнению с другими методами производства порошков. К числу этих преимуществ прежде всего можно отнести высокую чистоту получающихся порошков и хорошие технологические характеристики (прессуе-мость и спекаемость). При использовании этого метода  [c.128]

Электромагнитное формование. Метод использует для уплотнения порошков энергию мош,ного импульсного магнитного поля. Техника прямого деформирования металлов импульсными электромагнитными полями была разработана в начале 60-х годов, когда было установлено, что поле напряженностью 300 кЭ развивает давление порядка 400 МПа, вполне достаточное для уплотнения большинства металлических порошков. Для получения магнитных импульсов различных конфигураций применяют плоские, спиральные, соленоидные и другие индукторы. При прохождении тока через индуктор между ним и формуемой массой создается магнитное поле высокой интенсивности. Во время кратковременного импульса наведенные вихревые токи в пористом теле ограничивают электромагнитное поле на его внешней поверхности и взаимодействие магнитного поля и наведенных токов создает силы, прижимающие порошковое тело к матрице прессформы.  [c.311]

Дефектами контакторов из сплава Ag— dO при критических режимах нагрузки являются глубокие межкристал-лические разрывы, возникающие из-за термических напряжений. Такие дефекты особенно характерны для крупнокристаллической структуры. В данное время разработан новый метод получения мелкозернистого материдла на основе серебра с дисперсными равномерно распределенными включениями dO. Мелкодисперсную смесь Ag и dO получают совместным осаждением гидроокисей кадмия и серебра из раствора нитратов этих элементов. Выделившиеся порошки превращаются при нагреве в металлическое серебро и dO. В противоположность обычному порошковому методу в данном случае прессуют не готовые детали, а блоки. Блоки спекают по особому тем-пературно-временному режиму и затем горячей и холодной деформациями с общим обжатием более 95% изготовляют необходимые полуфабрикаты. Таким методом получают предельно плотную матрицу с мелкодисперсными, равномерно распределенными включениями dO. Для предотвращения образования крупнозернистой структуры в основе должно содержаться 10—15 вес. % dO. Даже после критической деформации и многочасового рекри-сталлизационного отжига при 800° С средний размер зерна основы составляет менее 10 мкм, что соответствует среднему расстоянию между частицами dO. Изделия, полученные таким методом из сплава Ag— dO, проявляют при особо критических-условиях работы значительно лучшие свойства (низкую свариваемость при высоких токах включения и равномерное обгорание).  [c.249]

В опытах авторов работы [54] кипение осуществлялось на трубах из нержавеющей стали 1Х18Н9Т диаметром 5,45X0,2 мм с пористым покрытием, полученным электрохимическим методом. Пористый слой осаждался электрохимическим способом из водных растворов солей и представлял собой композиции Fe—Ni, Fe—Ni— МО, Fe. После нанесения покрытия производилось спекание его в атмосфере водорода. Толщина слоя изменялась в пределах от 10 до 140 мкм. В работе приводятся зависимости q = f(At), полученные при кипении фреонов-12 и 22, а также аммиака на стальных и медных трубах диаметром 20—25 мм с металлизационным покрытием и с покрытием, полученным методом спекания металлических порошков. На рис. 7.22 приведены осредненные зависимости q = =f At), полученные в указанных опытах. Из рисунка видно, что интенсивность теплообмена на пористых металлических покрытиях, нанесенных металлизационным способом и методом спекания, при-  [c.220]

Прессование. Основной операцией процесса изготовления композиционных материалов методом диффузионной сварки под давлением является прессование. Именно в процессе этой операции происходит соединение отдельных элементов предварительных заготовок в компактный материал (формирование изделий). В отличие от прессования как метода обработки давлением металлов и сплавов, заключающегося в выдавливании металла из замкнутой полости через отверстие в матрице и связанного с большими степенями деформации обрабатываемого материала, данный процесс по своему существу ближе к процессу прессования порошковых материалов, применяемому в порошковой металлургии. Прессование заготовок композиционных материалов в большинстве случаев осуществляется в замкнутом объеме (в пресс-формах, состоящих из матрицы и двух пуансов типа пресс-форм, применяемых для получения изделий из металлических порошков) и с незначительной пластической деформацией материала матрицы, необходимой только для заполнения пространства между волокнами упрочнителя и максимального уплотнения самой матрицы. При этом, как и в процессе горячего прессования порошков, наряду с пластической деформацией матрицы, на границе раздела 126  [c.126]


Кафедра физической и коллоидной химии, зав. кафедрой докт. хим. наук, проф. О. К. Кудра научное направление — физикохимическое исследование растворов и электродных процессов. Проф. О. К. Кудрой с сотрудниками разрабатываются теория и методы электролитического получения металлических порошков и методы электроосаждения различных металлов и сплавов из комплексных электролитов. При кафедре работает исследовательская лаборатория радиохимии под руководством проф. Ю. Я. Фиалкова, успешно решающая серьезные проблемы физико-химического анализа изучение механизмов электролитической диссоциации и переноса тока в растворах, разработка методов количественного физико-химического анализа жидких систем и др. Часть этих исследований обобщена в монографии Ю. Я- Фиалкова Двойные жидкие системы .  [c.121]

Металлокерамичеекие материалы (235). Основные методы получения порошков (236). Условное обозначение стандартных металлических порошков (237). Химический состав железного порошка  [c.535]

Свойства металлических порошков. Степень чистоты конечного продукта, получаемого методом порошковой металлургии, зависит не только от термодинамики процесса на стадии восстановления, во и от активности металлического порошка в процессе его получения, особенно в отношении образования двуокиси. Из-за большой общей поверхности порошков обычно образуется 0,1—0.2% окислов, загрязняющих продукт, если они не удаляются в процессе дальнейшей обработки, например при литье. Это наблюдается в случае таких металлов, как торип, титан и цирконий.  [c.794]

Следует упомянуть о двух других методах получения специальных форм урана. Для получения урана высокой степепи чистоты 175] применялся метод Ван-Аркеля и де Бура [137], который заключается в термическом разложении галогенида, обычно иодида, па накаленной нити и используется дли получения тугоплавких металлов. Мелкозернистый порошок урана удобно получать путем обратимого разложения гидрида UH3. Для непосредственного получения неиирофорного порошка можно использовать восстановление окиси металлическим кальцием или магнием 1161.  [c.831]

Попытки получить методами цементации металлические порошки с необходимыми физико-химическими свойствами предпринимали неоднократно. Наибольшее число работ посвящено получению медных порошков. Так, была изучена [ 112] зависимость состава и физических свойств медных порошков, получаемых цементацией железом, от состава раствора, температуры и способа цементации. Наилучшие результаты бьши получены в растворах, кг/м 4 - 7 Си < 12Fe <7Н 2SO4 при непрерывном осаждении меди в барабанном цементаторе чистым железом. Очистку порошка от железа проводили доработкой его в растворах с содержанием меди 20 кг/м при pH = 1,8 2,5 и г = 50°С. Наиболее чистый порошок имел содержание меди 99,8 %. Получению медных порошков цементацией железом посвящены также работы [ 40, с. 34 60, с. 4, 113 - 115]. Было установлено, что дисперсность получаемых порошков тем выше, чем отрицательнее значение стандартного потенциала металла-цвментатора, чем ниже концентрация меди и серной кислоты в растворе и чем выше температура. На дисперсность порошков и их физические свойства существенное влияние оказывают ПАВ. Присутствие иона хио-ра в растворах приводит к образованию губчатых некачественных порошков [ 39]. В работе [ 116] получение медных порошков цементацией проводили в ультразвуковом поле. Получению медных порошков цементацией цинком посвящены работы [ 117 - 119]. В них показана возможность получения кондиционных порошков. Следует отметить, что получение порошков с заданными свойствами способом цементации является задачей весьма сложной. При ее решении исследователь сталкивается зачастую с непреодолимыми препятствиями, легко устранимыми при электролитическом способе получения порошков. По этой причине цементационные способы получения порошков пока не нашли широкого применения в промышленности.  [c.49]

Закалка из жидкого состояния. Это основной метод получения МС. Закалка осуществляется различными способами. Для производства лент струя жидкого металла направляется на вращающийся охлаждаемый барабан. Изготовляют фольгу в виде ленты шириной 1—200 мм и толщиной 20— бОмкм. Аморфную тонкую проволоку Получают извлечением жидкого металла йз ванны быстро вращающимся диском, Погруженным вертикально торцом в расплав. Этот же способ применяют и Для производства аморфных металлических порошков. Гранулометрический состав порошков и их конфигурация вадаются профилем рабочей кромки Диска. Известен способ аморфизации охлаждением струи расплава в газообразной или жидкой средах. Для изготовления тонких аморфных нитей в стеклянной изоляции металл помещают в стеклянную трубку, расплавляют с помощью токов высокой частоты, вытягивают и быстро охлаждают. Нити имеют диаметр от 5 мкм до нескольких десятков микрометров.  [c.582]

Получение металлического урана. Уран получают в виде порошка методом химического восстановления из оксидов (UO2, UO3, UaOa), а чаще всего из тетрафторида (UF4) чистым кальцием или магнием. Гранулы или стружку из кальция предварительно тш,а-тельно смешивают с оксидом урана, уплотняют или брикетируют. Процесс ведется при температуре 1200°С с индукционным нагревом в герметичных сосудах (графитовыхтиглях). Получающиеся расплавы солей кальция и магния легкоплавки и просто отделяются. Их щлаки, содержащие доли процента урана, регенерируют. При восстановительной плавке много примесей переходит в металлический уран. Для получения более чистого металла проводят рафинировочные плавки в вакуумных печах. Получение урана в чистом виде — процесс довольно сложный и специфичный, если учесть все изложенные выше особенности и свойства урана. Черновой или окончательный слиток урана непирофорен.  [c.152]

Физико-химические методы получения порошков связаны с изменением химического состава исходного материала в результате физикохимических превращений. Металлические порошки получают восстановлением металлов из оксидов, солей, ангидридов активным веществом (водородом, магнием, алюминием, кальцием, углеродом, оксидом углерода). Восстановление осуществляют в твердом состоянии, парогазовой фазе, из расплава, в плазме. Металлические порошки получают также электролизом водных растворов или расплавов, термической диссоциацией (разложением) карбонидов металлов, термодиффузионным насыщением, методом испарения — конденсации. Композиционные порошки получают механическим легированием в энергоемких размольных агрегатах — аттриторах, вибромельницах.  [c.129]

Основным сырьем порошковой металлургии являются порошки чистых металлов и сплавов, а также порошки неметаллических элементов. Под терхмином порошковая металлургия в соответствии с ГОСТ 17359—82 принято понимать область науки и техники, охватывающую область производства металлических порошков, а также изделий из них или их смесей с неметаллическими порошками . Порошковая металлургия — один из наиболее прогрессивных процессов превращения металла в изделие, с помощью которого обеспечиваются свойства изделия, полученного традиционными методами, или свойства, которые не могут быть достигнуты при использовании иных технологических процессов.  [c.779]

Механохимический синтез порошков боридов, карбидов, силицидов, оксидов, сульфидов переходных металлов был осуш е-ствлен взрывным методом в вибромельницах [96,97] инициирование быстро протекаюш ей реакции синтеза осуш ествлялось механоактивацией порошков исходных компонентов (металл и углерод, бор или кремний) в течение нескольких минут. Изучение порошков карбидов бора, титана, циркония, гафния, ванадия, тантала, вольфрама, полученных механохимическим синтезом в мельницах, показало, что средний размер частиц составляет 6-20 нм [98]. Порошки нитридов переходных металлов с размером частиц несколько нанометров синтезированы размолом металлических порошков в вибромельнице в атмосфере N2 [99].  [c.41]



Смотреть страницы где упоминается термин Металлические порошки (методы получения : [c.440]    [c.275]    [c.541]    [c.793]    [c.32]    [c.226]    [c.399]    [c.332]   
Машиностроительные материалы Краткий справочник Изд.2 (1969) -- [ c.110 ]



ПОИСК



Металлические порошки получение

Методы получения

Порошки

Порошки Получение

Порошки металлические

Порошки металлические — Методы

Порошки методы получения



© 2025 Mash-xxl.info Реклама на сайте