Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Дифференциальные уравнения ламинарного пограничного слоя

Возвращаясь в уравнениях (14), (15), (18) к размерным переменным и присоединяя уравнение неразрывности (12), получим дифференциальные уравнения ламинарного пограничного слоя для установившегося плоскопараллельного течения сжимаемого совершенного газа  [c.287]

Метод состоит в решении следующей системы дифференциальных уравнений ламинарного пограничного слоя с химическими реакциями [56].  [c.234]

Запись уравнений пограничного слоя для турбулентного режима после введения понятий турбулентной вязкости и турбулентной теплопроводности можно осуществить в форме, аналогичной системе дифференциальных уравнений ламинарного пограничного слоя (14.45), однако при этом необходимо сделать одну существенную оговорку. Если в стационарном ламинарном потоке рассматривается поле вектора скорости, касательного к линии тока в данной точке пространства (при этом ни длина, ни направление этого вектора не изменяются во времени), то для турбулентного потока все значительно усложняется. Вектор скорости нерегулярным, хаотическим образом изменяется как по модулю, так и по направлению, Конечно, и в этом случае можно сказать нечто  [c.361]


Дифференциальные уравнения ламинарного пограничного слоя имеют частные решения почти при любых граничных условиях. Однако точные аналитические решения получены лишь для определенных классов задач. Для решения более общих задач применяются численные методы. Если процесс решения задачи становится очень трудоемким, имеет смысл попробовать решить ее приближенными методами, например интегральными. Интегральные уравнения пограничного слоя, лежащие в основе этих методов, сами по себе являются точными, по крайней мере в рамках теории пограничного слоя. Приближенный характер решений этих уравнений обусловлен способом их применения.  [c.60]

Дифференциальные уравнения ламинарного пограничного слоя 241  [c.241]

Используем для оценки членов уравнения (4) все полученные выше результаты, перейдем в упрощенных уравнениях (1). .. (4) к размерным координатам и получим дифференциальные уравнения ламинарного пограничного слоя, которые называются уравнениями Прандтля (1904 г.) и замыкаются уравнением состояния  [c.279]

Дифференциальные уравнения динамического пограничного слоя получаются на основе дифференциальных уравнений движения и сплошности. Получим диф ренциальные уравнения ламинарного пограничного слоя.  [c.320]

Анализ полей энтальпий и концентраций, полученных на основе решения дифференциальных уравнений турбулентного пограничного слоя на плоской пластине с вдуванием инородного газа с учетом неравенства чисел Рг и Ргв в ламинарном подслое, позволил получить формулу для соотношения Sto /St, характеризующую из-  [c.426]

Таким образом, структура турбулентного пограничного слоя значительно сложнее структуры ламинарного слоя. Дифференциальные уравнения турбулентного пограничного слоя можно получить из уравнений Рейнольдса, оценив значения  [c.367]

Дифференциальные уравнения турбулентного пограничного слоя при внешнем обтекании можно получить из уравнений Рейнольдса (6.12) аналогично тому, как были получены уравнения ламинарного пограничного слоя (15.15). .. (15.18). Однако, решить эти уравнения, даже для простейших случаев, пока не удается. Поэтому теория пограничного слоя для турбулентного течения является полуэмпирической.  [c.286]

Аналогично получается дифференциальное уравнение ламинарного теплового пограничного слоя.  [c.321]

Для расчета параметров ламинарного пограничного слоя необходимо проинтегрировать дифференциальное уравнение [19]  [c.689]


Итак, для определения параметров ламинарного пограничного слоя имеем дифференциальное уравнение  [c.690]

Дифференциальное уравнение энергии для ламинарного пограничного слоя записывается после упрощения следующим образом  [c.288]

Система дифференциальных уравнений (9.2), (9.3) и (9.4) решена для ламинарного пограничного слоя [86].  [c.177]

Расчетные формулы, полученные аналитически для ламинарного пограничного слоя при свободной конвекции, не всегда точно совпадают с экспериментальными данными. Например, при малых значениях чисел Грасгофа (Gr < 10 ) результаты, полученные по формулам, не совпадают с экспериментальными данными, так как в этом случае толщина пограничного слоя слишком велика по отношению к размерам тела, и уравнения пограничного слоя оказываются непригодными для описания реальной физической обстановки. В этом случае необходимо решать полную систему дифференциальных уравнений Навье—Стокса, неразрывности и энергии без каких-либо упрощений. Эта задача весьма трудоемка.  [c.180]

Трудно учесть влияние переменности физических констант жидкости на теплоотдачу. Для ламинарного пограничного слоя, в принципе, эта задача может быть решена при численном интегрировании системы дифференциальных уравнений пограничного слоя и даже полных уравнений Навье—Стокса, неразрывности и энергии. Однако эта задача весьма трудоемка. Отметим, что теплоотдача в условиях турбулентного пограничного слоя при Gr > 10 не может  [c.180]

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ СЖИМАЕМОГО ЛАМИНАРНОГО ПОГРАНИЧНОГО СЛОЯ  [c.203]

НЕКОТОРЫЕ РЕЗУЛЬТАТЫ РЕШЕНИЯ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ СЖИМАЕМОГО ЛАМИНАРНОГО ПОГРАНИЧНОГО СЛОЯ  [c.208]

Система дифференциальных уравнений (28.2), (28.3) и (28.4) решена для ламинарного пограничного слоя на пластине [62],  [c.331]

Дифференциальные уравнения сжимаемого ламинарного пограничного слоя  [c.341]

Существует класс так называемых автомодельных задач, решение которых путем специальных преобразований переменных сводится к интегрированию обыкновенных дифференциальных уравнений. Основная идея состоит в том, что поперечная координата у измеряется в масштабе толщины пограничного слоя б(х). Для ламинарного пограничного слоя S У х . поэтому автомодельная переменная пропорцио-  [c.40]

На участке ламинарного течения уравнение теплового пограничного слоя можно представить после некоторых подстановок как дифференциальное уравнение  [c.237]

В основе этой теории лежит гипотеза Прандтля, согласно которой силы вязкости играют существенную роль только в пределах пограничного слоя, а в остальной части потока ими можно пренебречь. Исходя из уравнений движения и энергии получены дифференциальные уравнения для ламинарного и турбулентного пограничных слоев. Кроме дифференциальных уравнений, в теории пограничного слоя часто применяются интегральные уравнения. Уравнения теплового пограничного слоя позволяют в конечном итоге определить коэффициент теплоотдачи, а уравнения динамического пограничного слоя — напряжения трения на поверхности теплообмена.  [c.198]

Как будет показано в дальнейшем, теплоотдача существенно зависит от режима течения. Полученная нами система дифференциальных уравнений (4-28) — (4-30) описывает теплообмен только в ламинарном пограничном слое.  [c.143]

Сначала мы рассмотрим семейство автомодельных решений уравнения движения стационарного ламинарного пограничного слоя. Поскольку большинство эффективных решений уравнений пограничного слоя, в том числе теплового и диффузионного, являются автомодельными, мы достаточно подробно обсудим понятие автомодельности решений дифференциальных уравнений в частных производных. На основе понятия автомодельности разработаны методы отыскания решений и некоторых других типов уравнений в частных производных.  [c.102]

Для определения коэффициента теплоотдачи вблизи передней критической точки при обтекании осесимметричного тела диссоциирующим воздухом Фэй и Ридделл решили дифференциальные уравнения ламинарного пограничного слоя численным методом для условий движения со скоростью 1,77—7 км сек на высоте 7,6 — 37 км при температуре стенки = 300 — 3000° К. В расчетах принималось Рг = 0,71 Le =1 — 2. Расчеты выполнены для равновесного состава диссоциирующей смеси с учетом изменения физических па-  [c.385]


Метод последовательных приближений решэния дифференциальных уравнений является по существу точным методом, если доказана его сходимость. Изложим здесь метод последовательных приближений для интегрирования уравнений ламинарного пограничного слоя, предложенный Г. А. Тирским. Для простоты рассмотрим только уравнение движения и неразрывности в случае плоского течения  [c.295]

Не делая каких-либо предположений о длине гидродинамического начального участка, определим прежде всего распределение скорости при полностью развитом ламинарном течении жидкости с постоянной вязкостью. В качестве исходного уравнения используем дифференциальное уравнение движения пограничного слоя при осесимметричном течении в круглой трубе (4-11). Очевидно, что при развитом профиле скорости Ur=0, (ди1дх)=0, и уравнение (4-11) упрощается  [c.76]

Из-за математических трудностей точное решение уравнений ламинарного пограничного слоя возможно лишь в случае, когда скорость внешнего потока выражена как простая функция расстояния вдоль стенки. Для более сложных скоростных распределений необходимо прибегать к приближенному методу решения, в котором уравнение количества движения интегрируется по толш,ине пограничного слоя и, следовательно, удовлетворяется только в среднем. Задаваясь формой скоростного профиля в функции расстояния, нормального к стенке, получаем обычное дифференциальное уравнение, в котором расстояние вдоль стенки является независимой переменной. В хорошо известном методе Польгаузена  [c.166]

Дальнейшим развитием приближенных аналитических методов явилось исследование Л. Г. Лойцянского (1965), выдвинувшего идею переведения параметров ламинарного пограничного слоя (в частности, только что выше упомянутых) в число независимых переменных для преобразованных дифференциальных уравнений. Такое преобразование позволяет получить уравнения ламинарного пограничного слоя в универсальном виде, одинаковом для всех частных заданий распределения продольной скорости на внешней границе слоя. Характерной особенностью этих универсальных уравнений является то, что последовательные отрезки этих уравнений, содержащие только один, два, три и т. д. параметра, приводят соответственно к однопараметрическому, двухпараметрическому и вообще многопараметрическим решениям, учитывающим последовательно влияние только уклона кривой внешней скорости, затем уклона и кривизны этой кривой и далее более детальные геометрические ее свойства. Рационально обоснованным с этой точки зрения оказывается однопараметрический метод Л. Хоуарта (Ргос. Roy. So . London, 1938, А164 919, 547—579), использующий класс точных решений с линейным распределением скорости на внешней границе (второй и все следующие параметры равны нулю). Вместе с тем указывается рационально обоснованный путь построения следующих (двухпараметрического и многопараметрических) приближений. Было рассчитано некоторое, промежуточное между однопараметрическим и двухпараметрическим локально-двухпараметрическое приближение, представляющее решение универсального двухпараметрического уравнения, в котором сохранен второй параметр, но опущены производные по этому параметру. В этом смысле известное приближенное однопараметрическое решение Н. Е. Кочина и Л. Г, Лойцянского (1942) может рассматриваться как локально-однопараметрическое решение универсальных уравнений ламинарного пограничного слоя. График на рис. 7 показывает сравнение кривых зависимости приведенного коэффициента местного трения С = (U/6 ) (du/dy)y Q от первых двух параметров Д = U 6 /v и f2 — UU" вычисленных согласно локально-двухпараметрическому решению, со старым приближением К. Польгаузена, локально-однопараметрическим решением Кочина — Лойцянского и однопараметрическим решением Хоуарта, Как можно заключить из графика, старый польгаузеновский метод более пригоден при 2 <С О, что соответствует ии" <С О, т, е. выпуклым кривым распределения внешней скорости U (а ), а локально-однопараметрический  [c.521]

Большое значение как для упрощения вычислений, так и для уяснения сущности явлений приобрели дифференциальные преобразования уравнений к новым переменным. Эти преобразования сблизили уравнения ламинарного пограничного слоя в газе с собтветствующими уравнениями для несжимаемой жидкости.  [c.524]

Существует два способа расчета параметров жидкости в пограничном слое. Первый способ заключается в численном решении системы дифференциальных уравнений пограничного слоя, впервые полученных Прандтлем, и основывается на использева-нии вычислительных машин. В настоящее время разработаны различные математические методы, позволяющие создавать рациональные алгоритмы для решения уравнений параболического типа, к которому относится уравнение пограничного слоя. Такой подход широко используется для определения характеристик ламинарного пограничного слоя. Развиваются приближенные модели турбулентности, применение которых делает возможным проведение расчета конечно-разностными численными методами и для турбулентного потока. Второй способ состоит в нахождении методов приближенного расчета, которые позволяли бы получить необходимую информацию более простым путем. Такие методы можно получпть, если отказаться от нахождения решений, удовлетворяющих дифференциальным уравнениям для каждой частицы, и вместо этого ограничиться отысканием решений, удовлетворяющих некоторым основным уравнениям для всего пограничного слоя и некоторым наиболее важным граничным условиям на стенке и на внешней границе пограничного слоя. Основными уравнениями, которые обычно используются в этих методах, являются уравнения количества движения и энергии для всего пограничного слоя. При этом, однако, необходимо задавать профили скорости и температуры. От того, насколько удачно выбрана форма этих профилей, в значительной степени зависит точность получаемых результатов. Поэтому получили распространение методы расчета параметров пограничного слоя, в которых для нахождения формы профилей скорости и температуры используются дифференциальные уравнения Прандтля или их частные решения. Далее расчет производится с помощью интегрального уравнения количества движения.  [c.283]


Выведем дифференциальные уравнения для ламинарного пограничного слоя при установившемся илоскопараллельном течении вязкого сжимаемого газа, используя отмеченный ранее факт, что для маловязких жидкостей (при больших числах Рейнольдса) влияние вязкости и теплопроводности сосредоточено в тонком слое вблизи обте1 аемой поверхности, т. е.  [c.283]

Уравнение (81) называется дифференциальным уравнением возмущающего движения. Исследование устойчивости решения этого уравнения представляет собой задачу о собственных значениях дифференциального уравнения (81) при граничных условиях (78). Предположим, что основное течение задано, то есть известно распределение скоростей в ламинарном пограничном слое и (у). Тогда уравнение (81) будет содержать четьхре параметра R, а, Сг, Си Для каждой выбранной пары R и а можно найти собственную функцию ф и комплексное собственное значение с = Сг + i i, причем здесь Сг — безразмерная скорость распространения возмущений, а i — безразмерный коэффициент  [c.310]

Для ламинарного пограничного слоя как несжимаемой жидкости, так и сжимаемого газа при переменном давлении во внешнем потоке суп] ествуют различные методы расчета. Наиболее точные методы основываются на численном интегрировании дифференциальных уравнений и требуют применения вычислительных машин. Для турбулентного пограничного слоя несжимаемой жидкости разработаны приближенные, полуэмпириче-ские методы расчета. В случае небольшого градиента давления во внешнем потоке расчет турбулентного пограничного слоя сжимаемой жидкости может быть произведен при условии, что влияние градиента давления учитывается лишь в интегральном соотношении количества движения (59). При этом считается, что профили скорости и температуры, а также зависимость напряжения трения от характерной толщины пограничного слоя имеют такой же вид, как и в случае обтекания плоской пластины.  [c.338]

Дифференциальные уравнения пограничного слоя при больших скоростях течения газа отражают изменение плотности в зависимости от температуры и давления, а также зависимость других теплофизических параметров от температуры. Кроме того, они учитывают взаимное превращение тепловой и кинетической энергий и выделение теллоты за счет работы сил давления. Система дифференциальных уравнений плоского ламинарного пограничного слоя состоит из  [c.380]


Смотреть страницы где упоминается термин Дифференциальные уравнения ламинарного пограничного слоя : [c.181]    [c.241]    [c.233]    [c.217]    [c.259]   
Смотреть главы в:

Аэродинамика  -> Дифференциальные уравнения ламинарного пограничного слоя

Основы теплопередачи в авиационной и ракетно-космической технике  -> Дифференциальные уравнения ламинарного пограничного слоя



ПОИСК



Дифференциальные уравнения пограничного слоя

Дифференциальные уравнения сжимаемого ламинарного пограничного слоя

Ламинарное те—иве

Ламинарные пограничные слои

Некоторые результаты решения дифференциальных уравнений сжимаемого ламинарного пограничного слоя

Пограничный слой ламинарный

Слой ламинарный

Уравнение пограничного слоя ламинарного

Уравнения пограничного сло

Уравнения пограничного слоя



© 2025 Mash-xxl.info Реклама на сайте