Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Энергия деформации и упругий потенциал

Энергия деформации и упругий потенциал. ...........41  [c.3]

Энергия деформации и упругий потенциал 41  [c.41]

Полная потенциальная энергия упругой системы (с точностью до постоянного слагаемого, которое опускаем) складывается из внутренней энергии деформации и потенциала внешних сил П  [c.12]

Аналогично можно интерпретировать и исследование устойчивости нагруженного упругого тела, только в этом случае полная потенциальная энергия складывается из энергии деформации и потенциала внешних сил [см. формулу (1.55)1. В дальнейшем для определенности будем считать, что закрепление тела исключает его переме-  [c.28]


Согласно условию существования упругого потенциала (или энергии деформации), материал. является консервативным, и выполняются следующие условия симметрии [98]  [c.160]

Плотность накопленной энергии W для упругого материала является функцией градиента деформаций х,-, а- Используя зависимость между совершенной работой и накопленной энергией, можно показать, что дополнительное напряжение S в материале можно выразить через производные от потенциала W  [c.347]

Выше было показано, что как при адиабатическом, так и при изотермическом процессах деформирования представляет собой полный дифференциал oW = o os, при этом упругий потенциал ), или иначе удельная потенциальная энергия упругой деформации, с точностью до произвольной постоянной выражается так  [c.474]

Согласно классической теории фазовое превращение начинается с образования зародышей критического размера. При определении размеров такого зародыша исходят из равенства химических потенциалов атомов в зародыше jn и исходной фазе )Лц. Вследствие энергетических затрат на образование межфазной поверхности и упругую энергию, вызванную изменением формы и объема испытавшей превращение области, химический потенциал компонентов в зародыше повышен. Анализируя кристаллизацию, упругой деформацией можно пренебречь и при определении величины зародыша -критических размеров учесть только затраты на образование межфазной поверхности.  [c.37]

Упругий потенциал W и дополнительная энергия деформации IV не являются независимыми они связаны зависимостью  [c.36]

Упругий потенциал и тензор упругости. Закон Гука, или закон линейной упругости (2.5), можно рассматривать как следствие предположения о существовании упругого потенциала и (потенциальной энергии упругой деформации, отнесенной к единице объема). Величину упругого потенциала и можно представить в виде квадратичной функции компонент напряжений  [c.33]

Функция W(E) называется потенциальной энергией деформаций. Механический смысл функции W(E) следует из ее определения эта функция представляет потенциальную энергию деформаций единицы массы тела. Введем удельную потенциальную энергию деформаций (упругий потенциал) И (Е) [67] (потенциальная энергия деформаций единицы объема тела в отсчетной конфигурации)  [c.71]


Нетрудно проверить, что предложенные упрощенные выражения не изменяют величин главных инвариантов (11.10), а значит, и определяемой последними энергии деформации (упругого потенциала).  [c.156]

Функция накопленной энергии (упругий потенциал) не может быть произвольной функцией градиента деформации или в случае изотропии инвариантов / , 1 , /3. При ее изучении необходимо учитывать широко понимаемые экспериментальные значения. Например, одноосное растяжение должно сопровождаться положительным напряжением и сужением поперечного сечения, срез должен сопровождаться положительным срезывающим напряжением. Более того, скорости распространения акустической волны должны быть действительными и однородная деформация малого параллелепипеда устойчивой. Такие требования налагают определенные ограничения на функцию накопленной энергии, В линейной теории упругости эти ограничения приводятся к условиям л > О, Я, >0, где Я и М — постоянные Ляме.  [c.41]

На наличие потенциальной энергии деформации указывал еще Я. Риккати 1750). Фактически упругий потенциал мы находим уже в мемуаре Навье 1821 г. при выводе им уравнений теории упругости с помощью виртуальных перемещений. Существование упругого потенциала было постулировано Грином в 1837 г. и доказано, на основе принципов термодинамики, В. Томсоном .  [c.61]

В формулах (1.4.1)-(1.4.4) функция х в обш,ем случае анизотропной среды представляется в виде скалярной функции, зависящей от компонент одного из тензоров деформации, меры деформации или градиента места. В случае изотропной среды упругий потенциал представляется как функция инвариантов соответствующих тензоров. В зависимости от того, какие инварианты и каких тензоров используются в представлении потенциальной энергии, имеют место различные формы закона состояния гиперупругой среды.  [c.21]

В дальнейшем при исследовании движения упругих тел выгодно будет отделять внешние приложенные к системе силы от внутренних сил упругости. Эти последние имеют потенциал, и если через V обозначить потенциальную энергию деформации, то работа внутренних сил упругости на перемещениях, соответствующих приращению бф координаты ф, будет-- бф, и уравнение (Ь)  [c.319]

Уравнения (3.1) и (3.2) показывают, что в каждом теле число упругих п стоянных равно 36. На самом деле это не так даже в самом общем случае, если существует упругий потенциал (что мы всегда и будем предполагать), равный потенциальной энергии деформации, отнесенной к единице объема. Это имеет место, когда изменения тела при деформировании происходят изотермически или адиабатически. Рассматривая только вопросы равновесия, мы будем полагать, что изменения при деформации происходят изотермически, т. е. температура каждого элемента остается постоянной. В уравнениях (3.1) и (3.2) под и будем подразумевать изотермические упругие постоянные, которые вообще отличаются от адиабатических (см. [17], стр. 66—67, или [24], стр. 106 см. также [20], гл. 1, 2).  [c.25]

Равенство (5.5) представляет собой теорему Клапейрона для любого упругого тела. Здесь W — упругий потенциал, который при изотермическом деформировании определяется свободной энергией F = и — ToS и представляет собой удельную работу деформации.  [c.89]

Здесь Л1у — единичная нормаль к контуру 2, а/у - напряжения, щ - перемещения, и — упругий потенциал единицы объема. Уравнение (6.14) справедливо также для любых неупругих тел (упруго-пластических, вязкоупругих и др.) при квазистационарном движении точки О вдоль оси п со скоростью, значительно меньшей скорости звука в полосе при этом под Uпонимается удельная энергия деформаций.  [c.269]

Однако величина энергии макроскопической упругой деформации в изотермических условиях равна изменению свободной энергии тела (изохорно-изотермического потенциала), т. е. не может характеризовать изменение химического потенциала (частцой производной термодинамического потенциала по числу молей) и, следовательно, величину деформационного сдвига равновесного потенциала.  [c.26]

Здесь и — потенциальная энергия деформации всего тела, а 6(2 — механический эквивалент тепловой энергии, подведенной ко всему телу. Как это станет ясно из нижеизложенного, существует при определенных условиях так называемый упругий потенциал, характеризующий деформированное состояние тела, численно равный работе напряжений, приходящейся на единицу объе.ма (удельная потенциальная энергия упругих деформаций).  [c.461]


Для упругой сиатемы, и в частности для пластины, полная энергия П состоит из потенциальной энергии деформации U и потенциала внешних сил V  [c.63]

Техническая теория продольных колебаний стержней. Под стержнем понимают одномерное упругое тело (два размера малы по сравнению с третьим), обладающее конечной жесткостью на растяжение, кручение и изгиб. Пусть стержень, отнесенный к прямоугольной декартовой системе координат Oxyz, совершает продольные колебания. Параметры стержня являются функциями только одной продольной координаты X. По гипотезе плоских сечений любые точки, лежащие в плоскости, перпендикулярной к оси стержня, имеют одинаковые перемещения =-- и (х), 112= Н = 0. Все компоненты тензоров напряжений и деформаций, кроме Оц и считают пренебрежимо малыми. Выражения для потенциальной энергии деформации, кинетической энергии и потенциала внешних сил имеют вид  [c.146]

Плотность лагранжиана, используемого в задачах динамики (линейной или нелинейной) теории упругости, определяется выражением L = W — Т — Р, где W — плотность энергии деформации, Т — плотность кинетической энергии и Р — потенциал внешних сил. при лагранжевом подходе к описанию движения (материальные координаты Х[ являются независимыми переменными) в общем случае можно считать, что L — функция переменных У , / = (5У,/(ЗХ/(или, что эквивалентно, переменных /), Ui, Ui, а также независимых переменных Х, (для неоднородных систем) и t (для неголономных систем). Такнм образом, t  [c.150]

Дополнительное условие существования упругого потенциала (условие упругости среды) позволяет считать энергию деформации функцией конечного состояния, не зависящей от промежуточных состояний системы. Это дает еще одно соотношение ikji = и уменьшает число независимых упругих коэффициентов до 21.  [c.244]

Для уяснения основ теории пластичности, а также при решении практических задач большую роль играют вариационные принципы теории пластичности. С их помощью можно описать напряженное и деформированное состояние тела в форме требования минимума некоторого функционала при некоторых дополнительных условиях. В качестве последних используются не все уравнения и неравенства задачи, а лишь часть их. Напомним, что вариационные принципы для рассеивающих сред, в которых варьируются кинематически допустимые поля деформаций и статически допустимые поля напряжений, выраженные через упругий потенциал и потенциал рассеивания, были введены еш е Г. Гельмгольцем и Ф. Энгессе-ром. Для идеально пластического тела из принципа Гельмгольца следует, 265 что действительное поле напряжений обращает в максимум мощность поверхностных сил Но поскольку, согласно закону сохранения энергии, эта мощность равна мощности внутренних сил и сил инерции, то и эта последняя должна стремиться к максимуму. Обобщение принципов Гельмгольца и Энгессера на вязко-пластическую среду получили А. А. Ильюшин , а позднее Дж. Г. Олдройд и В. Прагер.  [c.265]

Далее будем рассматривать среды, ршеющие упругий потенциал, — скалярную функцию градиента места частицы в деформированном состоянии, тензора деформации или одной из мер деформации, описывающую потенциальную энергию, накапливаемую телом в процессе нагружения. Существование множества различных форм уравнений состояния определяется как возможностью представления потенциальной энергии в виде скалярной функции одной из мер деформации или одного из тензоров деформации, так и множественностью определения напряженного состояния одним из тензоров напряжений.  [c.20]

При этом aijEi = U ei ) и в качестве упругого потенциала вводится накопленная в теле полная энергия обратимой деформации  [c.91]

Теорема о минимуме энергии. С теоремой об однозначности решения связана теорема о минимуме потенциальной энергии. Рассмотрим случай когда отсутствуют массовые силы и на граничной поверхности заданы сме- едия Потенциальная энергия деформации тела равна объемному интегралу от упругого потенциала, распространенному по пространству, которое занимает тело. Мы можем выразить теорему следующим образом смещения, удовлетворяющие диференциальным уравнениям равновесия и условиям на граничной поверхности, сообщают потенциальной энергии деформации наименьшее значение по сравнению со значением, которое ей сообщает всякие другие смещения, удовлетворяющие лишь тем же условиям на граничной поверхности.  [c.182]

Материал, свойства которого одинаковы для образцов, вырезанных в любом направлении, называется изотропным. Более точно, это определение изотропии относится к весьма малым образцам, вырезанным в окрестности одной и Toii же точки. Изотропный материал может быть неоднородным, т. е. упругие свойства его могут меняться от точки к точке. Очевидно, что потенциал напряжений или упругая энергия изотропного тела не должен меняться при измененпи осей координат, поэтому он должен выражаться через инварианты тензора деформаций. Единственная однородная квадратичная форма, составленная из этих инвариантов, зависит от двух констант и выражается следующим образом  [c.239]

Производная dF" jdQ) t представляет собой энергию поверхностного слоя, отнесенную к единице площади поверхности, и играет роль потенциала для поверхностных явлений, в качестве которого принимается коэффициент поверхностного натяжения ст. Таким образом, ст представляет собой удельную поверхностную энергию в изохорно-изотермических условиях, так как только в этих условиях свободная энергия приобретает свойства характеристической функции. Это означает, что а имеет единицу Дж/м , между тем как в большинстве справочников единица ст дается в виде Н/м. Следовательно, в последнем случае коэффициент поверхностного натяжения трактуется как сила, отнесенная к единице длины. С математической точки зрения, замена понятия энергии единицы поверхности понятием силы, отнесенной к единице длины, допустима, так как Дж/м = = Н-м/м =Н/м. Следует, однако, помнить, что, по существу, а нельзя рассматривать как некоторую отнесенную к единице длины упругую силу, действующую по касательной к поверхности пузыря и стремящуюся уменьшить его поверхность. Подтверждением этому служат опытные данные, говорящие о том, что ст зависит от температуры и не зависит от поверхности, в то время как любая упругая сила зависит от деформации. В действительности поверхностный слой находится в поле нормальных сил, равнодействующая которых всегда направлена по нормали к поверхности. Именно действием этих нормальных сил определяются все свойства поверхностного слоя (способность к уменьшению своей поверхности, его энергия).  [c.168]


В широко распространенном способе [12, 13 и др.] оценки сдвига равновесного потенциала в области макроскопически упругой деформации (т. е. ниже предела текучести) в выражении Дф = —UlzF вместо U использовали не изменение термодинамического потенциала, а энергию упругой деформации, например для простого растяжения стержня [12]  [c.26]

Накопленная в результате пластической деформации кристалла энергия упругих искажений решетки превращается в тепло при нагреве выше температуры рекристаллизации и оценивается калориметрическим методом [14]. Количество отведенной теплоты равно изменению энтальпии, так как процесс протекает в изобарных условиях. Поскольку химические реакции обычно идут также в изобарных условиях, термодинамической функцией (мерой максимальной полезной работы химической реакции) здесь является свободная энтальпия — изобарно-изотермический потенциал (термодинамический потенциал). Так как энтропийный член в данном случае пренебрежимо малТ дёфбрмационный" сдвиг  [c.26]


Смотреть страницы где упоминается термин Энергия деформации и упругий потенциал : [c.139]    [c.62]    [c.67]    [c.278]    [c.5]    [c.514]    [c.77]    [c.109]    [c.226]    [c.28]    [c.182]    [c.777]    [c.257]   
Смотреть главы в:

Теория упругости Основы линейной теории и ее применения  -> Энергия деформации и упругий потенциал



ПОИСК



Деформация упругая

Потенциал деформаций

Потенциал деформаций (упругий)

Потенциал упругий

Упругая энергия

Упругая энергия и упругие потенциалы

Энергия деформации

Энергия деформации упругих деформаций

Энергия упругой деформации

Энергия упругости



© 2025 Mash-xxl.info Реклама на сайте