Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Приложение к приближенному решению в общем случае

Приложение к приближенному решению в общем случае. Как  [c.334]

Результаты многочисленных точных и приближенных решений убеждают в том, что фактический способ приложения силы и момента к концу стержня сказывается лишь в непосредственной близости к этому концу. В данном случае это означает, что если нас интересуют прогибы и удлинение балки в целом, нам нет необходимости детально анализировать реальную ситуацию, изображенную на рис. 1.5.3, а, при расчетах достаточно исходить из упрощенной схемы, представленной на рис. 1.5.3, б, которая носит совершенно условный характер, поскольку ни сосредоточенных сил, ни сосредоточенных моментов не существует. Область, в которой сказывается фактический способ приложения нагрузки, заштрихована на рисунке, границы этой области тоже условны вне ее состояния, соответствующие статически эквивалентным нагрузкам, отличаются достаточно мало. Что значат слова достаточно мало , мы пока не уточняем. Высказанное правило носит название принципа Сен-Венана, довольно расплывчатая формулировка связана с тем, что этот принцип не доказывается для общего случая, а иллюстрируется многочисленными примерами.  [c.27]


F. Определение сил, действующих на различные звенья механизма прп его движении, может быть сделано в том случае, если известны законы движения всех звеньев механизма и известны внешние силы, приложенные к механизму. Поэтому общую задачу динамического расчета и проектирования новых механизмов и машин конструктор обычно расчленяет на две части. Сначала он задается приближенным законом движения входного звена механизма и внешними силами, на него действующими, определяет все необходимые расчетные усилия и по ним подбирает необходимые размеры, массы и моменты инерции звеньев. Это — первая часть задачи. После этого конструктор приступает к решению второй части задачи, а именно, к исследованию вопроса об истинном движении спроектированного механизма, к которому приложены различные действующие на него силы. Определив истинный закон движения механизма, конструктор вносит в ранее проведенный расчет все необходимые исправления и добавления.  [c.205]

Введение. Многие задачи о движении жидкостей в пористой среде, имеющие практическое значение, можно с достаточным приближением свести к одному из видов плоского течения, проанализированных в предыдущей главе. Однако остаются иные задачи, имеющие также весьма серьезное значение, которые отличаются вполне определенным пространственным характером. Так, если скважина, вскрывшая продуктивный песчаник, полностью не проходит сквозь него, то течение в той части песчаника, которая не вскрыта забоем скважины, будет иметь компонент скорости, направленный вверх и влекущий жидкость в скважину. В верхней же части пласта песчаника течение будет попрежнему в значительной степени радиальным и будет иметь сравнительно небольшой компонент скорости по вертикали. Поэтому распределение давления в пласте песчаника будет изменяться по вертикальной координате, т. е. задача будет иметь пространственный (трехмерный) характер. По отношению к общим методам решения пространственных задач следует заметить, что все те методы, которые были рассмотрены нами в приложении к плоским системам (глава IV), за исключением только одного из них, имеют свои аналоги в том случае, когда в систему включается третья координата. Только метод сопряженных функций не имеет своего аналога для случая трехмерного уравнения Лапласа. Все же для решения практических задач мы находим, что имеющиеся в нашем распоряжении методы вполне достаточны для получения искомых результатов.  [c.216]


Соотношения (8.6) — (8.9) выведены для трубки тока с конечными сечениями и < 2 в предположении, что на этих сечениях скорость, плотность и давление выравниваются. Если для точных решений соответствующих гидродинамических задач эти предположения выполняются, то равенства (8.6) — (8.9) являются точными. Если в точных решениях или по данным опытов эти предположения выполняются приближенно, то полученные соотношения имеют приближенный характер, однако во многих случаях эти приближения практически вполне удовлетворительны. Вместе с этим нуяшо иметь в виду, что с точки зрения приложений к действительности вообще все теоретические расчеты всегда имеют только приближенный характер. Эти соотношения приложимы к бесконечно тонким трубкам тока без всяких предположений о выравнивании скорости, плотности и давления. В общем случае, когда характеристики движения в сечениях 151 и 8 существенно переменны, можно написать аналогичные формулы, в которых справа необходимо проводить интегрирование — суммирование правых частей (8.6) — (8.9), написанных для бесконечно малых площадок А и А152, по 1 1 и 8 .  [c.66]

Здесь мы рассмотрим два типа граничных задач. Цервый из них касается коэффициентов отражения некоторых нормаль- ных волн в пластинке или цилиндре от свободной поверхности, перпендикулярной оси z. Второй тпи задач относится к механизму потока упругой энергии в цилиндре от поверхности, перпендикулярной оси Z, иа которой приложен кратковременный импульс сжатия. Что касается первой задачи, то Земанек [34] нашел приближенное решение для механизма отражения на свободном конце цилиндра упругого сигнала, распространяющегося в виде наинизшей нормальной волны L (О, 1). Простой расчет показывает, что в общем случае комбинация из падающей и отраженной волн L (О, 1) не удовлетворяет условию отсутствия напря-  [c.178]

К звеньям подобного рода относятся кронштейны, стойки механизмов, болтовые соединения деталей из различных материалов (дерево, железо), фланцевые соединения на упругих прокладках и т. п. Очень часто указанные звенья имеют переменную жесткость. В этих случаях аналитический расчет приводит к довольно сложным формулам. Что касается приближенных решений Л. Франциуса и других авторов, то точность их весьма невелика. О графических методах расчета балок в технической литературе говорится только в общих чертах. Здесь мы приводим один из примеров приложения метода весовой линии к расчету указанных балок. Возьмем-общий случай, когда сила Р , действующая на балку переменной жесткости А В, расположена на расстоянии с от края А (фиг. 60). При данном расположении силы Pq края стойки Л и Б опустятся на глубину в упругое основание на разные величины Уа а Уь когда EJ = О, то опускание произойдет по трапеции F =  [c.107]

Первое систематическое рассмотрение устойчивости равновесия упругих тел принадлежит Дж. Брайану Он выяснил пределы применимости теоремы Кирхгофа и показал, что при условии малых деформаций она отпадает, если только один или два размера тела можно считать малыми. При этом явление неустойчивости может иметь место в пределах упругости, если произведение модуля упругости Е на квадрат отношения малого размера к конечному будет того же порядка, что и предел упругости материала. Дальнейшая разработка общей теории устойчивости равновесия упругих тел принадлежит Р. Саусвеллу Он устраняет ограничение относительно малости деформаций и оперирует с идеальным телом бесконечно большой прочности. При этих условиях и тела, у которых все размеры одного порядка, могут оказаться в состоянии неустойчивого равновесия. Исходя из однородного напряженного состояния тела, Р. Саусвелл дает точкам тела весьма малые перемещения и, v, w ) и для этой отклоненной формы пишет дифференциальные уравнения нейтрального равновесия, причем считает начальные деформации конечными. То соотношение между внешними силами и размерами тела, при котором полученные уравнения дают для и, у и w решения, удовлетворяющие условиям на поверхности, определяет критическое значение нагрузки в рассматриваемом случае. Применяя свой общий метод к тонким стержням и пластинкам, Р. Саусвелл нашел, что имеющееся решения задач устойчивости являются лишь первыми приближениями, хотя и вполне достаточными для практических приложений. Мы в дальнейшем ограничимся этими приближенными решениями, отсылая интересующихся теорией вопроса к работе Р. Саусвелла.  [c.258]


Спецкурс по теории устойчивости движения состоит из двух частей. В первой части Основы теории устойчивости движения излагаются общие методы решения задач устойчивости и их приложения к анализу динамических систем с сосредоточенными параметрами. Даются основные определения, подробно излагается второй метод Ляпунова, включая метод вектор-функций Ляпунова. Приводится обзор построения функций Ляпунова для некоторых классов нелшейных систем. Излагается теория устойчивости по первому приближению. Дается анализ критических случаев. Во второй части Специальные главы геории устойчивости движения рассматриваются новые подходы к решению задач устойчивости (в частности, принцип сравнения с вектор-функцией Ляпунова) и вопросы абсолютной устойчивости нелинейных регулируемых систем (включая подробное изложение результатов В.М. Попова,  [c.12]

До открытия общих уравнений существовала теория кручения и изгиба балок, ведущая свое начало от исследований Галилея и соображений Кулона. Проблемы, являющиеся предметом этих теорий, принадлежат к числу наиболее важных по своему практическому значению, так как многие проблемы, с которыми приходится иметь дело инженерам, в грубом приближении сводятся к вопросам сопротивления балок. Коши был первым исследователем, который пытался применить общие уравнения к проблемам этого рода и, хотя его исследование о кручении прямоугольной призмы 85] оказалось ошибочным, оно все же имело большое сторическое значение, так как он установил, что поперечные сечения не остаются Плоскими, Значение его исследований для практических приложений было невелико. Практические руководства первой половины прошлого столетня содержат теорию кручения, которая приводит к выводам, принадлежащим, как мы уже указывали. Кулону этот вывод состоял в том, что сопротивление кручению равно произведению упругой постоянной на величину угла закручивания, отнесенного к единице длины (степень кручения), и на момент инерции поперечного сечеиия. В отношении изгиба практические руководства этого времени следовали теории Бернулли-Эйлера (в действительности принадлежащей Кулону), согласно которой сопротивление изгибу связано только с растяжением и сжатием продольных волокон. Сен-Венану принадлежит заслуга приведения проблемы кручения и изгиба балок в связь с общей теорией. Он учитывал трудность нахождения общих решений и настоятельную необходимость получения в практических целях какой-либо теории, которая могла бы служить для определения деформаций в сооружениях ему было вполне ясно также, что только в очень редких случаях можно знать точное распределение нагрузки, приложенной к части какой-либо конструкции это привело его к размышлениям о методах, применявшихся к решению частных задач до того, как были получены общие уравнения. Таким образом о пришел к изобретению полу-обратного метода, который носит его имя. Многие из обычных допущений и выводов, оказываются верными, по крайней мере, в большинстве случаев следовательно, сохраняя некоторые из этих допущений и выюдов, можно упростить уравнения и получить их решения правда, пользуясь этими решениями, мы не можем удовлетворить любым наперед заданным граничным условиям однако же граничные условия практически наиболее важного типа могут быть удовлетворены.  [c.32]

ШИ относительных перемещений точек при деформации можно пренебречь. Остальные гипотезы, к-рыми пользуется С. м., здесь устранены первоначально в развитии теории упругости они или подтверждаются вполне, или частью, с известным приближением, или отвергаются в связи с анализом отдельных деформаций. Элементарные теории растяжения, кручения круглых брусков, чистого изгиба вполне согласуются с теорией упругости. Изгиб в присутствии срезывающих сил, как оказывается, подчиняется закону прямой линии гипотеза Навье), но не закону плоскости (гипотеза Бернулли). Касательные напряжения при изгибе распределяются по закону параболы, но только в тех сечениях, которые имеют незначительную толщину при большой высоте (узкие прямоугольники). В других сечениях закон распределения касательных напряжений совершенно иной. Для балок переменного сечения, к к-рым в элементарной теории прилагают закон прямой линии и параболы, теория -упругости дает другие решения в этих решениях значения напряжений и деформаций гораздо выше, чем по элементарной теории следует. Общепринятый способ расчета пластин по Баху как обыкновенных балок не оправдывается теорией упругости. Ф-лы С. м. для кручения некруглых стержней не соответствуют таковым в теории упругости. Теория изгиба кривых стержней решительно не совпадает с элементарной теорией Баха-Баумана, но результаты расчета по строгой теории и на основании гипотезы плоских сечений достаточно близки. Поставлена и разрешена для ряда случаев задача о распределении местных напряжений (в местах приложения нагрузки или изменения сечения), к-рая совершенно недоступна теории С. м. Вопрос об устойчивости деформированного состояния, элементарную форму которого представляет в С.м. продольный изгиб, получил в теории упругости общее решение Бриана (Bryan), Тимошенко и Динника. Помимо многочисленных форм устойчивости стержня, сжатого сосредоточенной силой, изучены также явления устойчивости стержней переменного сечения под действием равномерно распределенных сил и другие явления устойчивости балок при изгибе, равномерно сжатой трубы, кольца, оболочек, длинного стержня при скручивании и пр. Теория упругого удара— долевого, поперечного—занимает большое место в теории упругости и включает все большее и большее чис-чо технически важных случаев. Теория колебаний получила настолько прочное положение в теории упругости и в практи-тсе, что методы расчета на ко.чебания проникают область С. м., конечно в элементарном виде. Изучены распространение волны в неограниченной упругой среде (решение Пуассона и Кирхгофа), движение волны по поверхности изотропной среды (решение Релея), волны в всесторонне ограниченных упругих системах с одной, конечно многими и бесконечно многими степенями свободы. В связи с этим находятся решения, относящиеся к колебаниям струн, мембран и оболочек, различной формы стержней, пружин и пластин.  [c.208]


Исследование деформации упругих систем, как известно, заключается в составлении дифе-ренциального уравнения, характеризующего рассматриваемую деформацию, и затем в разыскании решения этого уравнения, удовлетворяющего известным граничным условиям рассматриваемой задачи. В то время как составление диференциальных ур-ий производится без особых затруднений помощью приложения к частным случаям общих выводов теории упругости, решение этих уравнений часто оказывается сопряженным с затруднениями чисто математич. характера, к-рые или не могут быть разрешены или приводят к результатам, мало пригодным для практич. использования вследствие слон -ности или отсутствия необходимой наглядности. Решение таким путем новых задач, могущих встретиться в инженерной практике, далеко выходя из рамок обычных расчетов и принимая характер научно-исследовательской работы, оказывается обычно невыполнимым в обстановке практической деятельности инженера. Применение метода потенциальной энергии, как известно, дает возможность более просто получить приближенное решение задачи, избегнув необходимости интегрирования соответствующего ей диференциального уравнения. Однако те же результаты, но гораздо проще, можно получить, и не прибегая к методу потенциальной энергии, а применив метод непосредственного интегрирования диференциального ур-ия помощью бесконечных рядов. Сущность этого метода заключается в том, что заранее задаемся подходящим видом искомой функции, входящей в диференциальное ур-ие рассматриваемой задачи, после чего, подставляя ее в это ур-ие, определяем входящие в нее неизвестные параметры. Под подходящим видом ф-ии в данном случае разумеется такой вид ее, при к-ром полностью удовлетворяются вытекающие для нее из условий задачи граничные условия и к-рый по возможности точно отвечает действительному виду этой ф-ии чем ближе к действительности окажется выбранный вид подходящей ф-ии, тем ббльшую точность будет иметь полученное решение. Т. к. любая из интересующих нас ф-ий м. б. представлена с любой точностью соответствующим тригонометрич. рядом Фурье, то, задаваясь подходящей ф-ией в виде такого ряда, будем получать в таком же общем виде и искомые решения задачи, к-рые затем м. б. вычислены с любой степенью точности. Получающееся таким путем общее решение очевидно представляет собой выраженную в виде ряда Фурье ф-ию, отве-  [c.97]

В случае подвижно опертых краев мы можем, как было показано, получить достаточно точное для практических приложений решение путем последовательных приближений. Для пол5 ения решения при других способах закрепления края оболочки нужно обратиться к общим уравнениям (280). Мы можем несколько упростить эту систему, если воспользуемся интегралом первых двух ее уравнений  [c.492]


Смотреть страницы где упоминается термин Приложение к приближенному решению в общем случае : [c.8]    [c.106]    [c.292]    [c.90]    [c.206]   
Смотреть главы в:

Некоторые задачи математической теории упругости Изд5  -> Приложение к приближенному решению в общем случае



ПОИСК



Общий случай

Приближенные решения для случая р01 или

Решение для случая

Решения приближенные

Случая приближенные



© 2025 Mash-xxl.info Реклама на сайте