Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Влияние термической обработки, структуры и прочности

Влияние термической обработки титановых сплавов на их усталостную прочность связано с изменением структуры и прочности [ 36] (см. рис. 93). Выбрав оптимальную термическую обработку, можно несколько повысить предел выносливости, Для чистых й псевдо-о-сплавов такой обработкой является наклеп (при температурах ниже рекристаллизации) и отжиг при температурах ниже перехода а + р)- 13 (но, естественно, выше температуры рекристаллизации). Охлаждение после отжига предпочтительнее ускоренное, в воде или на воздухе (при небольших сечениях). Такая обработка способствует образованию мелкозернистой глобулярной структуры, наиболее выгодной для получении высокого предела выносливости о -сплавов.  [c.154]


Как правило, это не зависит от микроструктуры. Однако обработка в р-области, при которой получают игольчатые структуры, например р-5ТА (высокотемпературная обработка на твердый раствор + старение), приводит к увеличению вязкости разрушения. В приведенном на рис. 74 примере увеличение вязкости разрушения составляет 33 МПа-м . При этом следует заметить, что улучшение таких свойств зависит и от состава сплава (см. рис. 73). В менее чувствительных к КР сплавах, например в сплаве — 4А1—ЗМо—IV положительное влияние технологической обработки в р-области более выражено для высоких уровней прочности [41]. В высокочувствительных к КР сплавах, например сплавах на основе Т1 — 8А1 или сплавах с высоким содержанием кислорода, структуры, полученные р-обработкой на твердый раствор с последующим быстрым о.хлаждением, относительно устойчивы к КР. В сплавах с такими структурами после старения нивелируется благоприятное влияние термической обработки в р-области за счет свойственной чувствительности к КР. Эти эффекты более детально описываются в разделе по практическим аспектам коррозионного растрескивания титановых сплавов.  [c.367]

На машинах ЦНИИТМАШа можно определять предел выносливости сварных соединений на крупных гладких и ступенчатых валах диаметром от 150 до 200 мм, а также экспериментально изучать влияние масштабного фактора, концентраторов напряжений, термической обработки, состава и структуры стали и поверхностного упрочнения на предел выносливости крупных валов. Например, с помощью машины У-200 определено влияние размеров (диаметра d образца) на изменение предела выносливости (коэффициента К изменения предела выносливости) в зависимости от однородности металла. Как показано на рис. 70, в неоднородном металле, каким является литая сталь (кривая 2), влияние размеров на усталостную прочность выражается в значительно большей степени, чем в однородных металлах, например прокатанной стали (кривая I).  [c.246]

Суммируя данные о влиянии марки стали (термической обработки, структуры металла) на склонность оборудования к водородной хрупкости, следует рекомендовать при конструировании аппаратуры для работы в условиях возможности наводороживания применять стали невысокой прочности и твердости в состоянии, обеспечивающем максимальную пластичность. Аппаратуру после сварки следует обязательно подвергать термической обработке для снятия внутренних напряжений [93].  [c.38]


Получение неравновесной структуры в результате термической обработки значительно изменяет многие свойства и особенно механические. В лабораторных работах предусмотрено изучение влияния термической обработки на прочность и вязкость, значения которых во многом определяют поведение деталей в эксплуатации.  [c.279]

Увеличение содержания углерода в стали приводит к повышению прочности и понижению пластичности (рис. 148). Приводимые механические свойства относятся к горячекатаным изделиям без термической обработки, т. е. при структуре пер-лит+феррит (или перлит+цементит). Цифры являются средними и могут колебаться в пределах 10% в зависимости от содержания примесей, условий охлаждения после прокатки и т. д.2. Если сталь применяют в виде отливок, то более грубая литая структура обладает худшими свойствами, чем это следует из рис. 148 (понижаются главным образом показатели пластичности). Существенно влияние углерода на вязкие свойства. Как видно из рис. 149, увеличение содержания угле-  [c.181]

В результате термической обработки детали машин должны получить повышенную прочность по всему сечению (твёрдость 250...280 НВ ). Для изготовления их выбрана сталь ЗОХГС. Укажите состав и определите группу стали по назначению. Назначьте режим термической обработки, приведите его обоснование, объяснив влияние легирования на превращения, происходящие при термической обработке. Опишите структуру и свойства стали после термической обработки.  [c.148]

У металлов модуль Юнга практически не зависит от структуры и термической обработки и определяется только прочностью межатомных. связей. Легирование и пластическая деформация также не оказывают заметного влияния на модуль упругости. При нагреве материалов отмечается падение величины Е, причем между температурным коэффициентом модуля Юнга и термическим коэффициентом линейного расширения наблюдается прямая зависимость. Это связано с увеличением расстояния между атомами в кристаллической решетке из-за роста температуры, а следовательно, и уменьшением сил межатомного взаимодействия.  [c.52]

Влияние материала катода и его структуры на прочность сцепления изучалось с применением образцов, изготовленных из различных материалов и подвергнутых различным видам термической обработки (табл. 10).  [c.107]

Структура и термическая обработка сплавов. Поскольку циклическая прочность увеличивается менее интенсивно, чем предел прочности, и с ростом предела прочности более существенно проявляется влияние концентрации напряжений, коррозионных сред, состояния поверхности и др., необходимо тщательно относиться к устранению и нейтрализации действия различных факторов, которые могут привести к снижению сопротивления материала элемента конструкции.  [c.293]

Более сложную структуру имеют сплавы, которые содержат а- н Р-стабилизаторы или сплавы, у которых концентрация Р-стабилизирующих элементов недостаточна для того, чтобы снизить температуру превращения до комнатной. Эти так называемые а/Р-сплавы чувствительны к тепловому воздействию и изменяют свои свойства при термической обработке. Их применяют в качестве конструкционных материалов, в то время как технически чистый титан и а-сплавы — главным образом для узлов, от которых требуется высокая коррозионная стойкость. Однофазные а-сплавы могут также содержать а- и р-стабилизаторы. В этом случае влияние а-стабилизирующих элементов настолько превышает влияние Р-стабилизирующих элементов, что температура превращения сильно повышается и Р-фаза не сохраняет устойчивость при охлаждении до комнатной температуры. Однако существуют Р-сплавы, содержащие а-стабилизаторы. Такой принцип легирования, связанный с противоположным влиянием отдельных элементов па структуру, используют для повышения прочности и коррозионной стойкости.  [c.101]

На свойства металлов большое влияние оказывает их дислокационная структура. Прочность бездислокационных кристаллов (теоретическая прочность) в сотни раз превышает прочность реальных материалов. При плотности дислокаций порядка 10 . .. 10 см , характерной для чистых неупрочненных металлов, сопротивление деформированию наименьшее. При увеличении плотности сверх указанных значений подвижность дислокаций снижается, что воспринимается нами как рост прочности. Эффективными способами повышения плотности дислокаций (и других дефектов) и снижения их подвижности являются легирование, пластическое деформирование (деформационное упрочнение), упрочняющая термическая и химико-термическая обработка.  [c.51]


Структура и термическая обработка. Исходная структура ш термическая обработка сплавов определяют величину их прочности и пластичности и, таким образом, оказывают влияние на величину предела выносливости.  [c.51]

С помощью термообработки можно в широких пределах изменять структурное состояние и механические свойства металлических материалов. При отсутствии четко выраженных аномалий, как правило, термообработка оказывает на усталостную прочность примерно такое же влияние, как на предел прочности и твердость, при этом отношение предела вьшосливости к пределу прочности имеет линейную зависимость и зависит от структуры. Отклонения от этого правила наблюдаются у высокопрочных материалов их можно, вероятно, объяснить влиянием остаточных напряжений, концентраторов напряжений, возникших при обработке поверхности, и неблагоприятными структурными изменениями. У углеродистой стали наиболее высокая усталостная прочность наблюдается у образцов со структурой мартенсита отпуска, а характеристики усталости мартенситной структуры с доэвтектоидным ферритом уступают характеристикам циклической прочности нормализованных образцов. Термическая обработка, изменяя  [c.228]

Предельными напряжениями, при которых такие детали могут надежно работать, являются напряжения, определяемые из условий усталостной прочности материала. Величина этих напряжений зависит не только от материала и его структуры, но и от ряда других факторов, влияние которых учесть расчетом не всегда возможно. К числу этих факторов относятся характер изменения прилагаемой нагрузки, форма и размеры детали, способы механической и термической обработки, состояние поверхности, форма переходов и сопряжений и другие факторы.  [c.51]

В ряде случаев существенное влияние на структуру и свойства оказывает термическая обработка композиционного материала, например в боралюминиевой композиции, при использовании в качестве матрицы алюминиевых сплавов, предел прочности при растяжении в направлении поперек укладки волокон может быть увеличен в 2—3 раза за счет применения термической обработки. Прочность связи между компонентами и сдвиговые характеристики материалов, полученных сваркой взрывом или экструзией, могут быть улучшены в результате правильно выбранного режима отжига. Кроме того, термическая обработка может изменить структуру вследствие образования промежуточных фаз, положительное или отрицательное влияние которых на структуру и свойства следует учитывать.  [c.9]

Влияние термической обработки титановых сплавов на их усталостную прочность находится в тесной связи с изменением структуры и прочности (см. рис. 64). Тем не менее, выбором оптимальной термической обработки можно несколько повышать предел усталости. Для чистых и бетированных а-сплавов такой оптимальной обработкой является наклеп (при температурах ниже рекристаллизации) и отжиг при температурах ниже точек превращения а + р р или а а + р (но, естественно, выше температуры рекристаллизации). Охлаждение после отжига лучше иметь ускоренное в воде или на воздухе. Такая обработка должна привести к образованию мелкозернистой глобулярной структуры, наиболее выгодной для получения высоких значений предела усталости для а-сплавов титана.  [c.148]

Бронза Бр.АЖМцЮ—3—1,5 отличается высокой прочностью, хорошей коррозионной стойкостью она достаточно антифрикцион-на, хорошо обрабатывается давлением в горячем состоянии. Широко применяется в общем машиностроении и авиамоторостроенич. Выпускается в виде прутков и толстостенных труб для изготовления различного рода ответственных деталей (втулки, шестерни, подшипники). Применяется также для фасонного литья, являясь более качественным сплавом, чем оловянные бронзы. Влияние термической обработки на структуру этой бронзы показана на рис. 249 и 250.  [c.213]

Важным признаком коррозионной усталости является практически полное отсутствие связи между механическими характеристиками при статическом и циклическом нагружениях в воздухе и условным пределам коррозионной усталости. Прямой связи нет и между коррозионной усталостью и коррозноннш стойкостью металлов в ненапряженном состоянии. Легирование сталей хромом, никелем и другими элементами (не переводя их в класс коррозионно-стойких сталей) на несколько порядков повышает их коррозионную стойкость в нейтральных электролитах, но не оказывает существенного влияния на коррозионно-усталостную прочность [481. Обычно более прочные металлы (структуры) в большей степени подвержены коррозионной усталости (см. рис. 27). При коррозионной усталости термическая обработка не дает повышения усталостной прочности.  [c.81]

Для исследования были выбраны литейные сплавы ШСбУ (как наиболее жаропрочный) и ВЖЛ12У (как самый пластичный из литых лопаточных материалов). Образцы были получены по технологии изготовления лопаток и подвергнуты контролю на рентгеновском дефектоскопе. Изучение рельефа деформации образцов и их механических свойств в вакууме проводили на установке ИМАШ-5С-65. Влияние воздушной среды и скоростного воздушного потока на свойства сплавов определяли на экспериментальной аэродинамической установке. Испытания на кратковременную прочность проводили при температуре 1000° С и скорости растяжения 0,15 мм/с, а па термостойкость по режиму нагрев до 1100° С — 20 с, выдержка 10 с, охлаждение до 150° — 30 с. При этом на образец действовала постоянная нагрузка 10 кгс/мм Образцы исследовали в литом состоянии и после термической обработки по режимам, указанным в таблице. Исходная структура сплавов представляет собой твердый раствор с сильно выраженной дендритной ликвацией, в которой видны как крупные первичные выделения, представляюш ие эвтектику упрочняющей  [c.153]


Балтер М. А. Влияние структуры стали на усталостную прочность после поверхностного упрочнения наклепом. — Металловедение и термическая обработка металлов , 1971, № 3, с. 47—50.  [c.232]

В связи с изготовлением биметаллических вкладышей начала успешно применяться новая группа высоколегированных алюминиево-оловянных сплавов. Особенностью этих сплавов (99,5% олова и 0,5% алюминия) является наличие в их структуре большого количества мягкой, легкоплавкой эвтектики, механические и физические свойства которой весьма близки к чистому олову. Антифрикционные свойства высокооловянистых алюминиевых сплавов близки к свойствам баббитов. Конструкционная прочность подшипника из такого сплава обеспечивается стальной основой, а усталостная прочность в большой мере — состоянием алюминиевого сплава с оловом. Рядом исследований показано, что от размера, количества и характера распределения оловянистой составляющей двойных и более легированных сплавов в значительной мере зависят их антифрикционные и механические свойства, особенно усталостная прочность. С увеличением содержания олова в сплавах наблюдается тенденция к образованию междендритной и межэеренной непрерывной сетки олова. Эту тенденцию в некоторой области концентрации можно устранить применением повышенной скорости кристаллизации, а также путем добавок никеля и меди. При содержании олова около 20% и более оловянистая эвтектика образует непрерывную сетку при всех условиях охлаждения и легирования. Большое влияние на структуру сплава оказывает режим термической обработки. В случае применения отжига выше температуры рекристаллизации сплава (350° С) оловянистая эвтектика в сплавах, содержащих даже менее 20% олова, распределяется в форме непрерывной сетки. Как показали исследования, применением холодной деформации с последующей рекристаллизацией можно добиться дискретного распределения оловянистой эвтектики в сплавах, содержащих до 30% олова. При этом характер и величина включений оловянистой фазы зависят от степени холодной деформации и температуры отжига. Чем выше первая и ниже вторая, тем более дискретна структура сплава. В случае дискретной формы оловянистой фазы усталостная прочность сплавов значительно возрастет, превышая усталостную прочность свинцовистых бинарных бронз. Антифрикционные свойства сохраняются на высоком уровне и характеризуются низким коэффициентом трения с высокой устойчивостью против заедания.  [c.120]

Сплавы 36Н и 32НКД имеют однофазную структуру -твердого раствора и не упрочняются под воздействием термической обработки. Только под влиянием холодной пластической деформации можно повысить их прочность. Данные о свойствах проволоки из сплава 36Н в зависимости от наклепа указаны в табл. 4.  [c.298]

Исследование влияния условий термической обработки на время до разрушения образцов опытной стали при различных Температурах и напряжениях показало (рис. 74), что температура закалки 1150° С соответствует максимальной жаропрочкости стали. Время выдержки при температуре закалки было принято 8—10 ч, время старения — 12 ч. Отмечено более длительное время до разрушения у образцов, состаренных при 700° С. Изменение времени выдержки с 10 ч до 1 ч перед закалкой при температуре 1150° С незначительно влияет на жаропрочность. Повышение температуры старения до 800 С приводит к снижению длительной прочности вследствие коагуляции и образованию крупных частиц упрочняющих фаз. Еще более значительные изменения в структуре стали, связаннее с распадом аустенитного твердого раствора  [c.173]

Кроме приводимых в технических справочниках обычных характеристик материалов, необходимых конструкторам при их выборе, а также технологам-машино-строителям при проектировании технологических процессов (химический состав и основные значения механических и физико-химических свойств), в настоящем томе приведены также сведения об основных особенностях, определяющих поведение металлов при пластической деформации и термической обработке, об изменении структуры под влиянием различных факторов, о влиянии легирующих элементов и условий зксплоатации на прочность и т. п. Следует указать, что все эти данные приобретают особое значение на фоне современного развития машиностроения и повышенных требований, предъявляемых в настоящее время к производственному и особенно к энергетическому оборудованию.  [c.448]

Полиакрильное волокно имеет фибрильную структуру, т. е. состоит из переплетенных между собой нитевидных фибрилл и небольшого количества аморфного наполнителя. На первом этапе преимущественно разрушается менее прочный наполнитель, и поэтому те фибриллы, или их группировки-микрокристаллы, которые менее прочно связаны со своими соседями, отрываются в первую очередь. В результате выделяется наиболее прочная скелетная основа ПАН-волокна. Продолжительность рассмотренного второго этапа составляет для ПАН-волокон от нескольких минут до единиц часов. На скорость протекания процессов разрушения поверхности главное влияние оказывает механическая прочность волокон как на макро-, так и на микроуровне. В частности, существенна роль предварительной термической обработки материала [167].  [c.144]

На свойства никелевых сплавов карбиды Mjj e оказывают существенное влияние. Их расположение на границах зерен имеет критическое значение в том смысле, что обеспечивает подавление зернограничного проскальзывания и, по-видимому, таким образом благоприятно влияет на длительную прочность сплава. В конечном счете, однако, разрушение может произойти либо путем разрушения этих самых зернограничных частиц Mjj g, либо путем декогезии по поверхности их раздела с соседними фазами. Некоторые сплавы подвержены формированию ячеистых структур выделений Mjj g (см. рис. 4.2), однако их можно избежать с помощью термической обработки и управления химическим составом. Показано, что ячеистые выделения ответственны за преждевременные отказы из-за пониженной длительной прочности.  [c.150]

В книге рассмотрены строение и кристаллизация металлов и их сплавов, современные методы исследования структуры и свойств металлов, влияние технологических процессов и условий эксплуатации на структуру и свойства металлов и сплавов, основы термической обработки, специальные стали и цветные металлы и сплавы. Большое внимание уделено вопросам длительной прочности и эксплуатационной надежности материалов энергетическопо оборудования и сварным соединениям.  [c.2]

Многие из указанных материалов и методов обработки применяются при изготовлении деталей, подвергающихся при эксплуатации периодическим нагревам. Чаще качество этих деталей оценивают по прочности связи слоев, отличающихся друг от друга составом, и по способности сопротивляться образованию трещин термической усталости. Однако с гетерогенизацией структуры и свойств в пределах поперечного сечения детали появляются условия для необратимого формоизменения. Ниже рассмотрены некоторые вопросы влияния химической макронеоднородности на размерную стабильность стали. Роль микроскопической неравномерности распределения компонентов сплава, обусловленной гетерофазной микроструктурой материала, дендритной ликвацией и др. обсуждалась ранее.  [c.167]


Долан и Иен [1083] показали, что при испытаниях в условиях изгиба термическая обработка сталц оказывает незначительное влияние на усталостный коэффициент. Предел выносливо сти был выше на 5ч-9%, когда данная сталь имела мартенситную структуру (полученную быстрой закалкой с критической температурой и последующим отпуском), по сравнению со-сталями, имеющими перлитно-ферритную структуры (полученные медленной закалкой и отжигом), при одном и том же пределе прочности в обоих случаях.  [c.36]

В небольших количествах (10—20 %) аустенит может содержаться В конструкционных сталях после закалки. При этом его влияние на стойкость стали к СР отрицательно [2.14] и связано с его распадом и превращением в мартенсит или бейнит. Для конструкционных сталей, имеющих в основном решетку сс-же-леза, стойкость к сероводородному растрескиванию зависит от типа структуры, получаемой после термической обработки. Наибольшей стойкостью Б сероводородной среде обладают стали со структурой отпущенного мартенсита (сорбит). Для закаленной и отпущенной на сорбит стали с 0,35 % С и стали, нормализованной и отпущенной (продукты отпуска бейнита), с 0,13 % С, имеющих одинаковую прочность (Ств = 1050 МПа), пороговое напряжение закаленной и отпущенной стали выше, чем нормализованной и отпущенной (345 и 275 МПа соответственно) [2.12]. Для стали типа 40ХМ после закалки в масле, кипящей воде, воздушной струе и последующего отпуска при различных температурах пороговое напряжение СР выше, если в результате закалки получена мартенситная структура (рис. 2.10). Феррито-перлитные стали обладают меньшей стойкостью к СР по сравнению с улучшаемыми сталями при одинаковом пределе текучести [2.12, 2.16].  [c.149]

Выбор материала и конструкции разрядного канала. Керамика из AI2O3 широко применяется в вакуумной технике, в том числе и при высоких температурах [177]. И тем не менее даже в настоящее время трудно иметь полное представление о ее поведении в процессе длительного срока службы при воздействии различных факторов (температуры, среды, нагрузок и т.д.). В работе [178] показано, что наиболее сильное влияние на свойства керамики оказывает высокая температура при длительном нагреве изменяется ее микроструктура — происходит так называемое термическое старение. Этот процесс связан с рекристаллизацией (ростом кристаллов) керамики, сопровождающейся уменьшением ее кажущейся плотности, прочности, термостойкости, теплопроводности, ползучести и испарения. Керамика из окиси алюминия подвергается существенному старению даже при относительно невысоких температурах, если время нагрева составляет тысячи часов. Термическая обработка (выдержка) корундовой керамики при 1300 °С в течение 500, 1000 и даже 2000 ч практически не приводит к заметному изменению ее структуры. Нагрев до 1700°С вызывает резкие изменения уже в первые часы работы. Установлено [178], что прочность спеченной керамики после нагрева в вакууме при 1900 °С в течение 10 ч снижается примерно в четыре раза, при этом размер кристаллов увеличивается в шесть раз. Поэтому керамика А-995, работающая в АЭ на парах меди при температурах 1500-1600 °С, с целью сохранения ее свойств предварительно подвергается обжигу при более высоких температурах. В нашем случае температура обжига составляет (1700 20) °С.  [c.37]


Смотреть страницы где упоминается термин Влияние термической обработки, структуры и прочности : [c.156]    [c.169]    [c.18]    [c.137]    [c.96]    [c.8]    [c.121]    [c.307]    [c.185]    [c.44]    [c.244]    [c.172]    [c.117]   
Смотреть главы в:

Обратимая отпускная хрупкость стали и сплавов железа  -> Влияние термической обработки, структуры и прочности



ПОИСК



Влияние обработки

Влияние термической обработки и структуры на прочность, надежность и долговечность

см Термическая обработка — Влияние



© 2025 Mash-xxl.info Реклама на сайте