Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Элементы сопротивления материалов

Книга представляет собой объединение элементов сопротивления материалов, теории упругости, теории пластичности, теории ползучести, вязкоупругости и механики разрушения. При изложении материала акцент делается на связь между физическими и механическими теориями.  [c.235]

Книга представляет собой объединение элементов сопротивления материалов, теории упругости, теории пластичности, теории ползучести, вязкоупругости и механики разрушения.  [c.2]


ЭЛЕМЕНТЫ СОПРОТИВЛЕНИЯ МАТЕРИАЛОВ  [c.34]

Элементы сопротивления материалов  [c.920]

Жесткость упругих элементов в зависимости от их конструкции и схемы нагружения определяют методами сопротивления материалов. Подставляя вместо С зависимость для жесткости конкретного упругого элемента, вычисляют его геометрические размеры.  [c.215]

Зуб рассматриваем как консольную балку, для которой справедлива гипотеза плоских сечений или методы сопротивления материалов. Фактически зуб подобен выступу, у которого размеры поперечного сечения соизмеримы с размерами высоты. Точный расчет напряжений в таких элементах выполняют методами теории упругости [351. Результаты точного расчета используют для исправления приближенного расчета путем введения теоретического коэффициента концентрации напряжений (см. ниже). На расчетной схеме (см. рис. 8.19)  [c.119]

Расчет по формулам сопротивления материалов, основанный на гипотезе плоских сечений Бернулли и однородности напряженного состояния по длине детали (принцип Сен-Венана), приложим к деталям большой длины L при относительно малых размерах d поперечного сечения L/d > 5), т. е. к деталям типа балок, стержней н других элементов строительных конструкций.  [c.142]

В процессе эксплуатации машин и механизмов всякий элемент конструкции в результате действия на него внешних сил изменяет в той или иной степени свои первоначальные размеры и форму, т. е. деформируется. Указанные изменения могут привести либо к разрушению элемента, либо к недопустимому искажению его формы и размеров. Чтобы этого не произошло, необходимо правильно выбрать материал и поперечные размеры для каждого элемента конструкции в зависимости от характера действуюш,их сил и условий эксплуатации.Основания для решения поставленной задачи дает наука о сопротивлении материалов, в которой изложены инженерные методы расчета элементов сооружений и машин на прочность, жесткость и устойчивость.  [c.122]

Расчеты на прочность и жесткость являются основными видами расчетов, изучаемых в курсе сопротивления материалов. Однако имеется ряд задач, в которых самое серьезное внимание приходится уделять вопросам устойчивости, под которой понимается способность конструкции и ее элементов сохранять определенную начальную форму равновесия. Расчет на устойчивость должен обеспечить отсутствие качественного изменения характера деформации.  [c.122]

Основной задачей науки о сопротивлении материалов является разработка методов расчета надежных и наиболее экономичных в отношении веса и размеров различных элементов сооружений и машин. Прежде чем перейти к конкретному рассмотрению этих методов расчета, познакомимся с основными понятиями и определениями, с которыми придется встречаться при изучении материала данного раздела,  [c.122]


В сопротивлении материалов активные внешние силы, действующие на рассматриваемое тело (элемент конструкции), часто называют нагрузками.  [c.123]

В учебнике освещены основные вопросы сопротивления материалов, отражающие современный уровень науки и техники. Достаточно подробно изложены общие методы определения перемещении и метод сил, вопросы упругих колебаний, расчеты при действии повтор ю-переменных и ударных нагрузок. Приведены элементы теории тонкостенных оболочек, дано большое количество детально разобранных примеров. Обновлен и дополнен материал по методам расчетов. Дополнены также справочные данные.  [c.2]

Сопротивлением материалов называют науку об инженерных методах расчета на прочность, жесткость и устойчивость элементов машин и сооружений.  [c.5]

Приняв гипотезы о малости деформаций и о линейной зависимости между деформациями и усилиями, можно при решении большинства задач сопротивления материалов применять принцип суперпозиции (принцип независимости и сложения действия сил). Например, усилия в любом элементе конструкции, вызванные различными факторами (несколькими силами, температурными воздействиями), равны сумме усилий, вызванных каждым из этих факторов, и не зависят от порядка их приложения. Это же справедливо и в отношении деформаций.  [c.12]

При проектировании и расчетах на прочность, жесткость и устойчивость элементов механизмов, машин и сооружений необходимо знать свойства материалов. Поэтому материалы испытывают на растяжение, сжатие, сдвиг, кручение, изгиб и твердость. Подробные описания всех видов механических испытаний, а также применяемых при этом машин и приборов приведены в специальных курсах и руководствах к лабораторным работам по сопротивлению материалов  [c.91]

Изложение методов расчета элементов конструкций на прочность и составляет первую задачу курса сопротивления материалов.  [c.4]

Сопротивление материалов — наука о прочности и жесткости элементов инженерных конструкций. Методами сопротивления материалов ведутся практические расчеты и определяются необходимые, как говорят, надежные размеры деталей машин и различных строительных сооружений.  [c.9]

Второй типовой геометрической схемой, применяемой в сопротивлении материалов, является схема оболочки. Под оболочкой понимается тело, одно из измерений которого (толщина) много меньше двух других. К схеме оболочки сводятся такие конструктивные элементы, как стенки баков, купола зданий и др. Более подробно схема оболочки будет рассмотрена в гл. X.  [c.13]

В сопротивлении материалов, как и в теоретической механике, решение задач начинается с выявления существенных факторов и отбрасывания несущественных, которые не влияют заметным образом на работу конструкции в целом. Такого рода упрощения необходимы, поскольку решение задач с полным учетом всех свойств реального объекта невозможно в силу их неисчерпаемости. Реальный объект, освобожденный от несущественных особенностей, носит название расчетной схемы. Выбор расчетной схемы сводится в основном к схематизации геометрии реального объекта, системы сил, приложенных к элементу конструкции, и свойств материала. В сопротивлении материалов все многообразие форм элементов конструкций сведено к трем геометрическим схемам брус, оболочка и массив.  [c.151]

Для того чтобы наука о сопротивлении материалов могла рекомендовать общие теоретические основы расчета элементов конструкций, выполняемых из разнообразных материалов, необходимо исходить из ряда допущений об их свойствах, а также из допущений о характере деформаций.  [c.153]

Учебник отличается оригинальным изложением курса сопротивления материалов, который дополнен элементами теории упругости, пластичности и разрушения. Представлены современные ме-  [c.230]

Изменен и порядок расположения материала. Курс начинается с кинематики, потом следует кинетика общее учение о силе, статика, динамика, элементы аналитической механики. Такое построение курса целесообразно с позиций теории познания и вместе с тем позволяет подготовить студентов к изучению других дисциплин (сопротивление материалов, теория механизмов и машин). Последовательность изложения материала в программах Учебно-методического управления по высшему образованию не является обязательной и кафедрам предоставлено право излагать материал в любом порядке.  [c.3]


Обобщенный Закон Гука для упругих сплошных сред тоже получают как линейную зависимость между тензором напряжений П и тензором деформаций 5, компоненты которого выражаются по формулам (36), только вместо вектора скорости и используется вектор смещения и, характеризующий деформацию сплошной среды. Тензор деформаций и обобщенный закон Гука для упругих сплошных сред подробно рассматриваются в теории упругости и курсах сопротивления материалов с элементами теории упругости. Здесь ограничимся только краткими сведениями, относящимся к обобщенно.му закону Гука.  [c.556]

Под прикладной теорией упругости понимают обычно раздел теории упругости, в котором кроме предположения об идеальной упругости материала вводятся дополнительные упрощающие гипотезы, такие как гипотезы плоских сечений или об отсутствии взаимодействия между продольными волокнами стержня в сопротивлении материалов. Так, например, для пластин и оболочек вводится упрощающая гипотеза о прямолинейном элементе, ортогональном к срединной поверхности как до, так и после деформации и др. В основном в прикладной теории упругости изучаются расчеты на изгиб и устойчивость тонкостенных элементов конструкций тонкостенные стержни, пластины, оболочки.  [c.185]

Рассмотрим балку, подвергающуюся растяжению с чистым изгибом (рис. 12.1, а). Согласно методу сопротивления материалов, бесконечно малый элемент бруса находится в условиях одноосно-  [c.275]

Важнейшие из перечисленных задач, возникающих при проектировании инженерных сооружений и их отдельных элементов,— задачи, связанные с прочностью, жесткостью и устойчивостью, решаются методами сопротивления материалов. Можно сказать, что сопротивление материалов — это наука, в которой изложены основы учения о прочности, жесткости и устойчивости деталей и элементов инженерных сооружений.  [c.201]

В элементарном курсе сопротивления материалов рассматривают расчеты лишь тех элементов конструкций, которые имеют формы бруса, т. е. тела, поперечные размеры которого невелики по сравнению с его длиной.  [c.204]

Гуляр А. И. Об одном методе расчета пространственных конструкций на основе обобщения полуаналитического варианта МКЭ для замкнутых некруговых конечных элементов // Сопротивление материалов и теория сооружений.— 1984.— Вып. 44.— С. 44—46.  [c.221]

Электрические печи обогреваются при помоши элементов сопротивления. Материалом для изготовления нагревателей служат жароупорные стали, нихром, силит и т. п. Нагревательные элементы в форме спиралей из ленты или проволоки укладывают на полках, выложенных из шамотного кирпича, на внутренних боковых стенках камеры и в поду. Обычно боковые и нижняя (подовая) секции получают отдельное питание, что облегчает регулирование температуры печи и замену перегоревших нагревателей. Напряжение обычно составляет 220 в. Мощность печи зависит от ее размера. Наиболее распространены печи мощностью 80—200 кет.  [c.245]

В сборнике представлены задачи на все основные разделы курса сопротивления материалов растялсение-сжатие, аюж ное напряженное состояние и теории прочности, сдвиг и смятие, кручение, изгиб, слож ное сопротивление, кривые стержни, устойчивость элементов конструкций, методы расчета по допускаемым нагрузкам и по предельным состояниям, динамическое и длительное действие нагрузок. Общее количество задач около 900. Некоторые задачи снабжены решениями или указаниями.  [c.38]

Сопротивление материалов действию нагрузок, меняющихся во времени по величине и.лн по величине и знаку, существенно отличается от сопротивления действию статической нагрузки. При этом под действием переменных нагрузок элементы конструкций разрушаются при значительно ьгеиьших напряжениях, чем под действием статических нагрузок. Типичным примером детали, испытывающей переменные нагрузки, является шток поршневой машины, знак напряжений в котором меняется в соответствии с изменением направления движения поршня.  [c.588]

Заметим, что классические методы сопротивления материалов без специальных исследований, главным образом экспериментальных, не позволяют учесть влияние многочисленных факторов, сопутствующих реальным условиям эксплуатации, при решении вопросов прочности тех или иных элементов конструкций и прогнозировать их долговечность. В связи с этим можно указать те вопросы и проблемы, стоящие перед прочнистами, решение которых вызывается настоятельными требованиями, запросами современного технического прогресса нашей страны.  [c.662]

Из-за сложности задачи расчета элементов конструкций в сопротивлении материалов принимаются некоторые упрощающие допущения относнте.лыю свойств материала, нагрузок и характера взаимодействия детали и нагрузок.  [c.8]

Сопротивление материалов имеет целью создать практичеоси приемлемые простые приемы расчета типичных, наиболее часто встречающихся элементов конструкций. При этом широко используются различные приближенные методы. Необходимость довести решение каждой практической задачи до некоторого числового результата заставляет в сопротивлении материалов прибегать в ряде случаев к упрощающим гипотезам — предположениям, которые оправдываются в дальнейшем путем сопоставления расчетных данных с экспериментом. При создании приближенных методов расчета в сопротивлении материалов часто используются также результаты точно10 анализа, произведенного методами математической теории упругости.  [c.10]

При схематизации реальных объектов в сопротивлении материалов делаются также упрощения и в системе сил, [филожениых к элементу конструкции, в частности, вводится понятие сосредоточенной силы. Например, при расчете бруса, показанного на рис. 3, а, можно рассматривать груз Р как силу, приложенную в точке (рис. 3, в). Такое упрощение является естественным, поскольку размеры площадки, по которой происходит передача силы на брус (рпс. 3, б), малы по сравнению с общими размерами бруса. Ясно, что в реальных конструкциях передача усилий в точке неосуществима, и сосредоточенная сила представляет собой понятие, свойственное толысо расчетной схеме.  [c.13]


Курс сопротивления материалов не претендует на то, чтобы точно указать, где и когда следует пользоваться тем или иным из упомянутых методов расчета конкретных конструкций. Сопротивление материалов дает в основном только изложение практически приемлемых средств для решения вопросов, связанных с опре,делеиием напряжений, деформаций, перемещений, разрушающих нагрузок и пр. в типичных элементах конструкции. Вопрос о степени надежности коисарукцнн в конкретных условиях изучается в основном в таких курсах, как курс деталей машин, прочности самолета или курс прочности корабля и т. д.  [c.28]

Для поступательной кинематической пары с контактом звеньев по плоскости (рис. 23.4) определение контактной деформации сводится к расчету деформации изгиба стержня I на упругом основании 2, рассматриваемой в курсе сопротивления материалов. При сплошной массивной конструкции элемента звена 2 распределение нагрузки определяется контактной жесткостью поверхностей и может быть принято равномерным на участке аЬ (рис. 23.4, а). Если конструкция элементов позволяет им деформироваться, то нзгиб-ная деформация элемента 2 приведет к перераспределению нагрузки и смещению равнодействующей (рис. 23.4, б, в).  [c.296]

При работе над учебником принималось во внимание, что студенты изучили курс Сопротивление материалов . Исходная точка зрения автора состояла в том, что сопротивление материалов — это введение в механику деформируемого твердого тела (МДТТ), основными разделами которой является теория упругости и пластичности, или, другими словами, — это первое знакомство с методами расчета на прочность и деформируемость типовых простейших элементов конструкций, встречающихся проектировщику на каждом шагу в его практической работе. Для современной механики твердого тела характерны расширение ее физических основ, более полный учет всех свойств реальных материалов. При расчете современных конструкций представление  [c.3]

Теория устойчивости упругих систем была заложена трудами Л. Эйлера в XVHI в. В течение долгого времени она не находила себе практического применения. Только с широким использованием во второй половине XIX в. в инженерных конструкциях металла вопросы устойчивости гибких стержней и других тонкостенных элементов приобрели практическое значение. Основы устойчивости упругих стержней излагаются в курсе сопротивления материалов. Поэтому в настоящей главе рассматривается только теория устойчивости упругих пластин и оболочек как в линейной, так и нелинейной постановке. Интересующихся более глубоко вопросами устойчивости стержней мы отсылаем к книгам [5, 6, 7]. Критический подход к самому понятию упругой устойчивости в середине XX в. явился наиболее важным моментом в развитии теории устойчивости и позволил к настоящему времени сформировать единую концепцию устойчивости упругопластических систем, описанную в 15.1 настоящей главы.  [c.317]

Курс сопротивления материалов построен на ряде допущений, которые вводят для того, чтобы несколько упростить изучение явлений, происходящих при деформации конструкции, и получить достаточно удобныедля практики приемы и методы расчета элементов конструкций. Конечно, эти допущения таковы, что получаемые на их основе результаты расчетов достаточно хорошо согласуются с результатами экспериментальных исследований.  [c.203]


Смотреть страницы где упоминается термин Элементы сопротивления материалов : [c.151]    [c.5]    [c.39]    [c.209]   
Смотреть главы в:

Справочник конструктора-машиностроителя Том1 изд.8  -> Элементы сопротивления материалов

Справочник конструктора  -> Элементы сопротивления материалов



ПОИСК



Задачи динамики в сопротивлении материалов Расчет элементов конструкций при заданных ускорениях

Материалы для нагревательных элементов электрических печей сопротивления

ОСНОВНЫЕ ПОНЯТИЯ СОПРОТИВЛЕНИЯ МАТЕРИАЛОВ. ВНЕШНИЕ И ВНУТРЕННИЕ УСИЛИЯ В ЭЛЕМЕНТАХ ИНЖЕНЕРНЫХ КОНСТРУКЦИЙ

ОСНОВЫ РАСЧЕТОВ ПРОЧНОСТНОЙ НАДЕЖНОСТИ ЭЛЕМЕНТОВ КОНСТРУКЦИЙ (СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ)

Основные задачи сопротивления материалов. Классификация внешних сил и элементов конструкций

Применение элементов численного анализа в задачах по сопротивлению материалов

РАЗДЕЛ И СОПРОТИВЛЕНИЕ МАТЕРИАЛОВ Задачи сопротивления материаКлассификация элементов конструкции и внешних сил

Сопротивление материало

Сопротивление материалов

Характеристики сопротивления материалов и элементов конструкций однократному разрушению

Экспериментальное определение характеристик сопротивления материалов и элементов конструкций хрупкому разрушению

Элементы Материалы



© 2025 Mash-xxl.info Реклама на сайте