Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Определение методом призмы

Определение С методом призмы.  [c.192]

ОПРЕДЕЛЕНИЕ С МЕТОДОМ ПРИЗМЫ 193  [c.193]

Мах чрезвычайно остроумно применил метод призмы для определения как абсолютного, так и относительного оптического коэффициента напряжения приведем его описание.  [c.197]

Метод призм позволяет измерять все главные показатели преломления и их дисперсию с точностью до 0,001. Для этого обычно нужны две призмы, вырезанные определенным образом с большой точностью.  [c.81]

Развертка призмы. Так как гранями призмы являются параллелограммы, то предварительно решим задачу определения истинной величины этой фигуры. Методами начертательной геометрии проекции любого параллелограмма могут быть преобразованы к виду, покачанному на черт. 299, когда две противоположные стороны его АВ и D параллельны П,, а две другие, AD и ВС, параллельны Flj.  [c.136]


Майкельсон применил интерферометрическое наблюдение для оценки малых угловых расстояний между двойными звездами, а также для оценки углового диаметра звезд. Метод Майкельсона, равно как и применение его к определению размеров субмикроскопических частичек, будет изложен ниже (см. 45). Наконец, понятно, что интерференционные методы, позволяющие с огромной точностью определять длину волны, могут служить для самых тонких спектроскопических исследований (тонкая структура спектральных линий, исследование формы и ширины спектральных линий, ничтожные изменения в строении спектральных линий). Интерференционные спектроскопы, их достоинства и недостатки будут обсуждены вместе с другими спектральными приборами (дифракционная решетка, призма) в 50.  [c.149]

Любой метод, который применяется для определения показателя преломления, — преломление в призмах, полное внутреннее отражение, интерференционные приборы — может служить для обнаружения дисперсии.  [c.540]

Метод Майкельсона (1926). Установка Майкельсона, схема которой приведена на рис. 30.6, была выполнена между двумя горными вершинами, так что расстояние, проходимое лучом от 5 до 8 после отражений от первой грани восьмигранной зеркальной призмы, зеркал М2—М7 и пятой грани, составляло около 35,4 км. Скорость вращения призмы (приблизительно 528 об/с) выбиралась такой, чтобы за время распространения света от первой грани до пятой призма успевала повернуться на 1/8 оборота. Возможное смещение зайчика при неточно подобранной скорости играло роль поправки. Скорость света, определенная с помощью описанной установки, с = 299 796 4 км/с.  [c.202]

Дефектоскопы на основе геометрического метода целесообразно использовать для обнаружения и локализации дефектов. На рис. 33 показана схема реализации указанного метода с применением согласующих пластин, устраняющих отражения от границ раздела объекта контроля. Сигнал от дефекта будет выделяться в чистом виде, давая наиболее точную информацию о его геометрии, пространственном положении и глубине залегания. Суть метода в том, что если оптические оси передающей и приемной антенн направить под одинаковым углом к поверхности объекта контроля и датчик сканировать по поверхности, то максимум сигнала при наличии дефекта будет при таком положении датчика и антенн, когда их оптические оси (после преломления лучей) сходятся на дефекте. Здесь обнаружение дефекта сочетается с определением глубины его залегания и формы путем сканирования. При использовании в антеннах датчика контактных призм из того же материала, что и объект контроля, отпадает необходимость применения согласующей пластины на передней границе раздела.  [c.235]


Для установления зависимостей, позволяющих определить нормальное и касательное напряжения в произвольной площадке, применяя метод сечений, рассечем элемент наклонной плоскостью (рис. 106, а). На рис. 106,6 отдельно изображена бесконечно малая трехгранная призма, отсеченная от выделенного элемента. На ее наклонной грани возникают напряжения сг и подлежащие определению.  [c.137]

Таким образом, приходим к выводу о том, что для определения напряжений при использовании метода фотоупругости весьма важным является умение экспериментально определить разность фаз 6. Именно для этой цели служит анализатор, представляющий собой вторую поляризационную призму. Как уже отмечалось, происходит интерференция света с разностью фаз 6. Обычно оптические оси поляризатора и анализатора либо скрещены, либо параллельны.  [c.68]

Очевидно, что при данном методе измерения огранки следует знать число граней п у контролируемой детали. Для этого первоначально в нескольких призмах с различными углами рекомендуется определить количество граней у деталей без определения числовой величины. Затем произвести измерение огранки в призме с соответствующим углом при вершине.  [c.183]

Для определения декремента при втором тоне колебаний образец опирался на призму, находившуюся в месте узла. Аналогично определялся декремент методом 22  [c.22]

Поляризационно-проекционные установки ППУ) выпускаются под марками ППУ-4, ППУ-5, ППУ-6, ППУ-7 [52]. Эти установки имеют три основные части поляризатор, нагрузочное устройство и анализатор и предназначены для определения разности хода методами полос или сопоставления цветов (рис. 22). Поляризатор смонтирован на отдельной оптической скамье и состоит из источника света, теплофильтра, поляризующей призмы или поляроида с откидной пластинкой в четверть волны. Последние размещены во вращающихся оправах с лимбом. Анализатор содержит поляризующую призму или поляроид с пластиной в четверть волны, рабочую линзу, проекционный объектив и фотокамеру. Вместо фотокамеры для зарисовки изоклин и полос иногда используется экран. Увеличение на экране от 1 до 3 крат. Диаметр рабочего поля установки 120 мм. При размерах модели, превышающих рабочее поле, исследование проводится по отдельным участкам, путем перемещения модели вместе с нагрузочным приспособлением на 380 мм по вертикали и 300 мм по горизонтали на специальных подъемных столах.  [c.100]

Данные по методике одновременного определения относительных полей температуры и концентраций интерферометром с двумя длинами волн изложены в [73]. Сущность метода состоит в том, что интерференционная картина в белом свете с помощью расщепляющей призмы раздваивается на два изображения. Эти изображения, проходя через фильтры с различной селективной способностью, регистрируются на пленке или фотопластинке. По предлагаемым в [73] формулам можно определить поле температуры и концентрации. Недо-  [c.276]

Удовлетворительные результаты измерения тех малых поглощений, которые характеризуют графит, могут быть получены в этом методе в том случае, если квадратная призма имеет размеры по высоте 3-4 метра, по ширине — около 1 метра. Чем больше размеры призмы, тем точнее могут быть сделаны определения коэффициента поглощения, так как уход нейтронов из призмы будет играть меньшую роль.  [c.403]

Отражательные призмы развертываются в плоскопараллельную пластинку. Метод развертки состоит в последовательном построении зеркальных изображений призмы и отраженного луча. Каждое последующее изображение строится путем поворачивания предыдущего изображения вокруг проекции на чертеж отражающей грани. На фиг. 133, 134 и 135 даны примеры развертки призм и определения геометрической длины хода осевого луча в призме I.  [c.247]

Нами уже сообщалось [10] о проводимых исследованиях температуры плавления] корунда методом температурных остановок на кривых нагревания и охлаждения. Средняя температура плавления синтетического монокристаллического корунда советского производства, чистотой не менее 99,98% А12О3 в результате 54 определений оказалась равной 2049,7° С + 3,8 град. Суммарная погрешность 11 3,8 град определена квадратичным суммированием погрешностей градуировки оптического пирометра +3,6 град, определения поглощения призмы и окна +1,2 град и погрешности результата определения температуры плавления +0,13 град.  [c.148]


Задача № 142. Для определения момента инерции шатун подвесили на горизонтальную призму (рис. 198) (М. М. Гернет. Новый метод определения моментов инерции. Вестник инж. и техн., 1941, № 3). Через ту же призму перекинули тонкую нить, на одном конце которой висел небольшой грузик, а другой натягивали рукой. Отклонив шатун и грузик из равновесного положения, заставили их  [c.346]

Другой метод исследования проникающей волны был предложен Мандельштамом и Зелени, а также независимо от них Вудом. Схема опыта Мандельштама—Зелени дана на рис. 3.10. Пучок параллельного света направляется сквозь стеклянную призму к границе раздела призма—жидкость под углом, большим предельного угла полного внутреннего отражепня. В жидкости растворено определенное количество флуоресцирующего вещества. Если не имело бы места проникновение световой энергии во вторую среду (в жидкость), то свет распространялся бы после полного внутреннего отражения на грашще раздела стекло—жидкость только по  [c.56]

Соотношение (8.53) позволяет определить постоянную Планка из измерения наклона прямых, выражающих зависимость потенциала задержки от час готы падающего на фотокатод излучения. Весьма точное определение h таким методом было выполнено П. И. Лукирским и С. С. Прилежаевым в 1930 г. Для измерений использовали сферический конденсатор, внутренний шарик которого был изготовлен из никеля и освещгится светом ртутной лампы. Спектральные линии ртути, возбуждавшие фотоэффект, выделялись монохроматором с кварцевой призмой. В этих опытах наблюдался относительно крутой спад кривых, характеризующих зависимость силы фототока от приложенного  [c.434]

В 10—30-х годах текущего столетия были опробованы методы микроскопического анализа изучение под микроскопом поперечного шлифа электролитически покрытой поверхности, измерение под микроскопом неровностей поверхности по репликам из желатина и т. д. Предпринимали попытки косвенной оценки неровностей поверхности по потерям энергии маятника при торможении его неровностями поверхности во время качания, по разности размеров деталей до и после доводки, по предельному углу регулярного отражения света, по теневой картине поверхности на экране с увеличенными изображениями поверхностных дефектов, по расходу воздуха через участок контакта сопла с испытуемой поверхностью, по четкости изображения растра на испытуемой поверхности или на экране после отражения от нее светового пучка, по электрической емкости контактирующей пары испытуемая поверхность — диэлектрик с нанесенным слоем серебра , по нагрузке на индентер при определенном его сближении с испытуемой поверхностью, по изображению мест плотного соприкосновения призмы с неровностями поверхности и т. д. Были опробованы методы исследования рельефа поверхности с помощью стереофотограмм и стереокомпаратора. На производстве в этот период доминировали органолептические методы контроля визуальное сравнение с образцом, сравнение с помощью луп, сравнение на ощупь ногтем, краем монеты и т. п. В 30-х годах был предложен и реализован в двойном микроскопе метод светового сечения (Линник, Шмальц), а также метод микроинтерференции и основанные на нем микроинтерферометры, сочетающие схемы микроскопа и интерферометра Майкельсона. В этот же период  [c.58]

В технике применяются методы определения твердости, основанные на измерении размеров лунок, получаемых при вдавливании в поверхность испытуемого материала стальных шариков, алмазных конусов или призм (твердость по Бринеллю, по Роквеллу, по Виккерсу).  [c.171]

Для более точного определения объёмного веса применяется метод погружения в ртуть образца в форме призмы размерами 2 х 2 х X 3 сщ на особом приборе — волгоменометре.  [c.279]

В этом эксперименте кольцевая изгибная жесткость определялась динамическим методом, суть которого состоит в определении собственной частоты колебаний исследуемой системы и пересчете найденной частоты в жесткость. Оболочка устанавливалась в горизонтальном положении на столе электродинамического вибратора ВЭДС-400, оболочка закреплялась между двумя призмами (рис. 2). Собственная частота колебаний такой системы определялась как частота резонанса, соответствующего эллиптической деформации поперечного сечения оболочки. Расчет низших собственных частот производился по формуле  [c.215]

В отличие от селективного отражения металлов, к-рое может быть весьма высоким (но всегда коаф. отражения R < 1), при П. в. о. для прозрачных сред Д = 1 для всех Я и не зависит практически от числа отражений. Следует, однако, отметить, что отражение от механически полированной поверхности из-за рассеяния в поверхностном слое чуть меньше единицы на величину 2-10-. Потери на рассеяние при П. в. о. от более совершенных границ раздела, наир, в волоконных световодах, ещё на неск. порядков меньше. Высокая отражат. способность границы в условиях П. в. о. широко используется в интегральной оптике, оптич. линиях связи, световодах и оптич, призмах. Высокая крутязна коэф. отражения вблизи ф р лежит в основе измерит, устройств, предназначенных для определенна показателя преломления (см. Рефрактометр). Особенности конфигурации эл.-магн. поля в условиях П. в. о., а также свойства латеральной волны используются в физике твёрдого тела для исследования поверхностных возбуждённых колебаний (плазмонов, поляритовов), находят широкое применение в спектроскопич. методах контроля поверхности на основе нарушенного П. в. о., комбинационного рассеяния света, люминесценции и для обнаружения весьма низких значений концентраций молекул и величин поглощения, вплоть до значений безразмерного показателя поглощения к 10".  [c.27]


В настоящее время для определения размеров капель, взвешенных в паровом потоке, применяется метод, предложенный К- С. Шифриным и В. И. Голиковым [Л. 177, 178], основанный на измерении индикатриссы рассеяиия света под малыми углами. Такой прибор, предложенный ЦКТИ для изучения структуры жидкой фазы, показан на рис. 14-15. Свет от источника / проходит через отверстие Ди монохроматор ЗС и систему линз Li и /-2 с диафрагмой Дг, формирующих узкий параллельный пучок света. Призмы полного внутреннего отражения и / 2 разворачивают пучок света на 180°. Пройдя калибрующую диафрагму Дз диаметром 1,5 мм, узкий параллельный монохроматический пучок света прони-  [c.402]

Учитывая затруднения в аналитическом выражении процесса диффузии для решения настоящей задачи, был выбран экспериментальный метод исследования. Для определения оптимальных условий работы камер патрубков необходимо знать значения не только средних, но и местных коэффициентов массообмена при различных условиях, как например скорость течения, удаление патрубка от материала и т. д. Учитывая характер импактной сушки, при которой под патрубком достигаются весьма незначительные интенсивности испарения, в нашем экспериментальном исследовании испарение жидкости было заменено, согласно законам подобия механики, сублимацией нафталина. Подобные приемы в экспериментальном исследовании применялись другими авторами для иных целей, причем возможность применения данного метода для намеченной цели была неоднократно проверена. В результате использования составной пластины из нафталина, состоящей из узких призм, стало возможным определять местные значения коэффициента массообмена.  [c.163]

Актуальность темы диссертационной работы обусловлена следующими основными причинами 1) в больших городах наблюдается дефицит территорий и необходимо осваивать неудобные с неблагоприятными инженерногеологическими условиями - заовраженные и подрабатываемые территории, что требует повышения точности расчетов и возможности учета как можно большего числа факторов, влияюптих на устойчивость откосов и склонов 2) задача обеспечения устойчивости естественных склонов тесно связана с проектированием противооползневых удерживающих конструкций, поэтому (как отмечено в монографии Л.К. Гинзбурга Противооползневые удерживающие конструкции ) важное практическое значение имеет возможность определения напряженно-деформированного состояния грунта (НДС) и призмы обрушения массива в момент перехода склона в предельное (критическое) состояние, что позволяет вычислить величину оползневого давления, наиболее соответствующего действительному, но в настоящее время это сопряжено с рядом трудностей, так как существующие теоретические методы не предназначены для решения данной проблемы.  [c.3]

Разработана методика определения момента потери устойчивости откоса при помош,и теории графов, что в численных методах используется впервые кроме того, это позволяет определить НДС откоса в момент исчерпания несущей способности и выявить призму обрушения грунта , что имеет практическое значение при проектировании удерживаюш,их конструкций.  [c.24]

Альтернативой СПУ-модели является модель определенной локальной координации атомов (ОЛК-модель), которая находит свое экспериментальное основание в результатах, полученных методами высокого разрешения. Здесь локальное упорядочение имеет не геометрическую, а химическую причину, поскольку оно является отражением характера сил взаимодействия между атомами разного сорта. В качестве локальных структурных элементов, случайной упаковкой которых строится структура, в ОЛК-моделях выступают тригональные призмы (Гэскалл), искаженные тетраэдры, икосаэдры и др. Следует отметить, что после проведения релаксационной процедуры исходные определенные локальные координации атомов значительно искажаются, так что конечная структура мало зависит от типа выбранной в качестве базовой структурной единицы, а также от вида используемого парного потенциала. Все это уменьшает преимущества и предпочтительность ОЛК-моделей по отношению к СПУ-моделям. Кроме того, некоторые исходные предпосылки, заложенные в эту модель (постоянство отношения атомных радиусов металла и металлоида в пределах сплава данной системы), противоречат эксперименту.  [c.15]

Еще одним из наиболее перспективных методов создания искусственных источников света с суженными спектральными линиями является применение интерференционного монохроматора. Если призма разлагает белый свет, а затем щель монохроматора выделяет определенную спектральную линию, то эталон Фабри и Перо разлагает излучение в пределах ширины линии, а установленная в плоскости объектива, проектирующего систему интерференционных колец, диафрагма выделяет центральный максимум, отвечающий суженному излучению. Во ВНИИМ с помощью rrzu-ческого сужения линий d и Hg была получена интерференция при разности хода, несколько превышаЮ Щей 2 м.  [c.71]

При а =120° величина Aft = = 0,288Ad. Диаметры отпечатков измеряют, как и в случае определения твердости по Бринеллю, с помощью микроскопа МПБ-2. Следует отметить, что на результат измерения размеров отпечатков влияет вспучивание металла по краям отпечатка. Поэтому перед измерением вспучивание удаляют шлифовкой или проводят первое измерение после приработки деталей. Применение метода отпечатков затруднено, когда износ сопровождается пластической деформацией поверхностного слоя, приводящей к искажению формы и заплыванию отпечатков. При использовании метода микротвердости отпечатки после испытания деталей трудно обнаружить. Форма отпечатков после снятия нагрузки на индентор заметно изменяется, особенно у материалов с высоким пределом текучести, в результате упругого восстановления материала. М. М. Хрущов и Е. С. Беркович разработали способ нанесения углублений — метод вырезных лунок. На поверхности детали вырезают с помощью вращающегося алмазного резца (в виде трехгранной призмы) углубление в форме остроугольной лунки (рис. 20.36). Глубину лунки определяют по формуле h = 0,125/7 , где I — длина лунки г — радиус вращения резца. Линейный износ для плоской поверхности определяют по уменьшению глубины лунки А/г = 0,125 1 — / ) Преимущества метода 1зырезных лунок перед методом отпечатков — отсутствие выдавливания металла по краям лунки, изме-  [c.408]

При использовании иммерсионного метода стараются подобрать жидкость, показатель преломления которой равен одному из показателей преломления кристалла. Для этого зерна кристалла иммерсируют в различных жидкостях, наблюдая их границы в поляризационный микроскоп. При совпадении показателя преломления кристалла и жидкости граница кристалла исчезает. Если показатель преломления жидкости известен, то тем самым определен и показатель преломления кристалла. Точность измерений зависит от возможности подбора иммерсионной жидкости. Дополнительную трудность создает необходимость определения главных из измеряемых показателей, для чего необходимо просматривать много кристаллических зерен, подбирая для каждого иммерсионную жидкость. Последняя трудность частично устраняется, если пользоваться зернами с известной ориентацией, например пластинами, сколотыми по плоскости спайности. Точность иммерсионного метода никогда не превосходит 0,01. Такая точность недостаточна, например, для определения направления синхронизма в кристаллах. Поэтому иммерсионный метод применяется для оценок показателей преломления в тех случаях, когда не удается получить монокристаллы достаточно хорошего качества и (или) вырезать из них хорошие призмы.  [c.82]


Постоянное стремление Нейманна к согласованию теории с опытом скоро, однако, побудило его отвергнуть гипотезы Навье и Пуассона. Он установил окончательно необходимое число упругих постоянных для различных типов кристаллов, не обращаясь к молекулярной теории. Он предложил несколько различных методов испытания вырезанных из кристаллов призм, на основании которых необходимые упругие постоянные представлялось возможным вычислять непосредственно из измерений. Соответствующие опыты были проделаны учениками Нейманна. В этом отношении работа Фойхта ) представляется особенно важной, поскольку она окончательно устанавливает, что снижение числа упругих постоянных, требуемое гипотезой центральных упругих сил, действующих между молекулами, несовместимо с результатами испытаний и что в самом общем случае требуется 21 упругая постоянная, а не 15, как это указывалось теорией Пуассона. Для изотропных тел число необходимых постоянных равно 2, а не 1, как это полагали Навье, Пуассон и Сен-Венан. Пока приверженцы мультиконстантной теории приводили такие примеры, как пробка, каучук, желатин, определенно свидетельствующие о том, что коэффициент Пуассона отличается от всегда сохранялась возможность парировать их доводы ссылкой на то, что эти материалы не были изотропными. Но эксперименты Фойхта оконча-  [c.300]

Вместо рассмотренной в предыдущем разделе синхронизации мод при модуляции внутренних потерь или оптической длины резонатора синхронизация мод может осуществляться путем модуляции усиления. Для этого в резонатор лазера вводится накачка в виде непрерывной последовательности импульсов, генерируемых другим лазером с синхронизацией мод (см. рис. 5.8). Если длина резонатора лазера достаточно близка к длине резонатора лазера накачки или кратна ей, то при определенных условиях усиление оказывается модулированным с периодом, равным времени полного прохода резонатора. Как и при модуляции потерь, короткий импульс в этом случае формируется за промежуток времени, соответствующий максимальному усилению. Длительность этого импульса при оптимальных условиях может быть на два-три порядка короче длительности импульса накачки. Наибольший практический интерес представляет применение метода синхронной накачки в лазерах на красителях, так как в лазерах этого типа используется преимущественно оптическая накачка, а их линии усиления весьма широки (величина А(0з2/2л лежит в пределах от 10 до 10 Гц). Лазеры на красителях допускают в определенном диапазоне плавную перестройку частоты в области максимума спектра излучения. Это достигается введением в резонатор частотно-селек-тивного оптического фильтра, в качестве которого могут быть использованы, например, эталон Фабри—Перо, фильтр Лио или призма. Ширина спектра пропускания этих фильтров, однако, не должна быть слишком мала, так как ее сужение может вызвать существенное увеличение длительности импульсов. По указанным причинам значение лазеров на красителях с синхронной накачкой в технике генерации пикосекундных и субпи-косекундных импульсов в последние годы все больше возрастает. По сравнению с лазерами на красителях с пассивной синхронизацией мод, которым посвящена следующая глава, синхронно накачиваемые лазеры имеют следующее преимущество для перестройки частоты их излучения может быть использована полная спектральная ширина лазерного перехода, тогда как при пассивной синхронизации полоса перестройки дополнительно ограничивается спектром линии поглощения насыщающегося поглотителя.  [c.150]

Значительные успехи достигнуты в развитии и применении двух спектроскопических методов эмиссионного спектрального анализа и атомной абсорбционной спектрофотометрии [60 ]. В установках для эмиссионного спектрального анализа требуемая энергия возникает в процессе электрического возбуждения атомов, обычно проводимого с помощью дуги или искры. В результате таких разрядов анализируемый материал испаряется, происходит возбуждение атомов и генерируется светойое излучение, характеризующее эти атомы. Излучение затем разлагается призмой или дифракционной решеткой на отдельные спектральные линии, располагающиеся на приемной фотопластинке (фотопленке) в порядке следования длин волн в приборах с непосредственным отсчетом линии проектируются на фотокатоды установленных соответствующим образом фотоумножителей. Поскольку соотношение между концентрацией элемента в исследуемом материале и интенсивностью спектра его излучения неизвестно, это соотношение находят эмпирически сопоставлением с калибровочной кривой, получаемой аналогичным возбуждением стандартных образцов (эталонов) с известным химическим составом. Точность спектрального анализа всецело определяется исследуемым образцом, поэтому к нему предъявляют. определенные требования [75].  [c.86]

В технике применяются методы определения твердости, основанные на измерении размеров лудок, получаемых при вдавливании в поверхность испытуемого материала стальных шариков, алмазных конусов или призм (твердость по Бринеллю, по Роквеллу, по Виккерсу). Соответственно для иллюстрации приведем метод определения твердости по Бринеллю, в котором  [c.138]


Смотреть страницы где упоминается термин Определение методом призмы : [c.239]    [c.119]    [c.111]    [c.120]    [c.131]    [c.14]    [c.195]    [c.624]    [c.264]    [c.477]    [c.377]   
Смотреть главы в:

Оптический метод исследования напряжений  -> Определение методом призмы



ПОИСК



Призма



© 2025 Mash-xxl.info Реклама на сайте