Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Жидкость иммерсионная

Для обеспечения иммерсионного контакта изделие либо целиком погружают в резервуар с жидкостью (иммерсионную ванну), либо создают в месте контроля локальную иммерсионную ванну. Возможна также передача акустических волн через струю жидкости (струйный контакт).  [c.59]

Жидкость иммерсионная 9, 11, 25, 235 Зрачок 7  [c.246]

При ультразвуковой дефектоскопии практически важным является вопрос акустической связи искательной головки с изделием. Поскольку через воздух нельзя передать ультразвуковые колебания от искателя в контролируемое изделие (коэффициент отражения ультразвуковых волн для воздуха равен 99,9%), то промежуток между ними заполняют смачиваемой жидкостью — иммерсионной средой. Лучше всего ультразвук от среды с акустическим сопротивлением гх к среде с акустическим сопротивлением 22 передается через слой жидкости, акустическое сопротивление которой удовлетворяет равенству (или близко к нему)  [c.165]


Для обеспечения иммерсионного варианта акустического контакта ОК целиком погружают в иммерсионную ванну. Иногда в зоне контроля создают локальную иммерсионную ванну либо применяют струйный контакт (через струю жидкости). Иммерсионный способ применяют при контроле объектов с сильно шероховатой поверхностью, но без макронеровностей.  [c.58]

По данным из раздела 3.4 можно теперь рассмотреть случаи, встречающиеся на практике, когда ультразвуковому контролю подвергается пустотелый или оплошный цилиндр либо при непосредственном контакте, когда искатель находится на цилиндре, либо через слой жидкости (иммерсионный вариант).  [c.72]

В другой конструкции голографического зонда (рис. 31, б) предварительно подготовленная небольшая фотопластинка или фотопленка крепится в оправе на световоде. Для уменьшения влияния отражений на границе раздела между подложкой эмульсии и торцом световода находится иммерсионная жидкость. Ввиду меньшей механической стабильности такая конструкция используется при импульсном режиме освещения когерентным источником. При перезарядке фотопластинки(или пленки) устройство может применяться многократно.  [c.81]

При контроле контактным способом в качестве контактных жидкостей выбирают машинные масла различных марок, которые хорошо смачивают поверхность, не стекают с нее. Иногда применяют более дешевые растворы на основе крахмала и целлюлозы. При контроле щелевым и иммерсионным способами применяют воду с добавленными в нее ингибиторами для замедления процессов коррозии.  [c.182]

Для проведения голографической интерферометрии в схему установки вводят устройства воздействия на объект контроля, необходимые для его деформирования. При иммерсионном методе контроля топографии изделий их помещают в кювету с жидкостью, показатель преломления которой меняется между экспозициями голограммы.  [c.55]

При контроле шероховатости крупногабаритных изделий предварительно снимают слепок (реплику) с его поверхности, который затем помещают в кювету с иммерсионной жидкостью, располагаемой в фокальной плоскости микроинтерферометра, и исследуют обычным методом. Этот способ кон-  [c.68]

При иммерсионном методе объект помещают в кювету с жидкостью или газом с показателем преломления /tj и делают первую, экспозицию голограммы. Затем кювету наполняют другим, веществом с показателем преломления Па и второй раз экспонируют голограмму. При восстановлении изображения. поверхность объекта будет покрыта сеткой интерференционных полос расстояние между которыми  [c.79]

Если часть пути УЗК проходят по неконтролируемой зоне, например по призме преобразователя, иммерсионной жидкости, то начало развертки смещается на постоянный интервал времени. В этом случае генератор развертки 10 запускается импульсом от генератора задержки И.  [c.229]


При контроле контактным методом поверхность изделия покрывают вязкой, хорошо смачивающей жидкостью (машинным или трансформаторным маслом, глицерином, клейстером). В случае контроля иммерсионным и щелевыми способами используют воду, освобожденную от пузырьков воздуха путем отстоя. Иногда в воду добавляют вещества (например, спирт) для улучшения смачиваемости поверхности изделия и ингибиторы (например, азотнокислый натрий), предохраняющие от коррозии. Для того чтобы сигналы многократных отражений импульса в иммерсионной жидкости не попадали в зону, в которой могут появиться сигналы от дефекта, толщина слоя жидкости должна. быть больше где Ь — толщина  [c.255]

Вдоль границы распространяется также другая волна со скоростью, меньшей с . В твердом теле она локализована в тонком слое толщиной 0,51нслое толщиной, значительно большей Волну используют для контроля поверхности твердых материалов иммерсионным способом. Подобно релеевской волне, она очень медленно затухает с увеличением расстояния вдоль границы.  [c.14]

Слои, соизмеримые по толщине с длиной волны, будем называть тонкими, а удовлетворяющие условию (1.57) — толстыми слоями, или протяженными средами. Если протяженная среда расположена между преобразователем и изделием (иммерсионная жидкость, твердый материал), будем называть ее акустической задержкой.  [c.59]

Трудность обеспечения стабильного контакта через жидкую среду при применении контактных преобразователей существенно ограничивает использование акустических методов. При ручном контроле, когда обычно применяют контактный способ, для обеспечения стабильного контакта шероховатость поверхности не должна превышать = 20. .. 40 мкм, а это нередко требует обработки поверхности специально под ультразвуковой контроль, что связано с нежелательными трудозатратами. При автоматическом контроле, когда преобразователь движется относительно поверхности изделия с большой скоростью, применяют щелевой или иммерсионный способ. В первом случае требуется довольно высокое качество поверхности (Ra 40 мкм) во втором — эти требования снижаются, амплитуда эхо-сигнала уменьшается приблизительно в 10 раз за счет двукратного прохождения волн через границу жидкость — изделие. Кроме того, возникают конструкционные трудности при поддержании заданной ориентировки преобразователя относительно поверхности изделия.  [c.60]

Изложенный анализ акустического тракта проведен для среды с однородными акустическими свойствами. Между тем теневой метод применяют чаще всего в иммерсионном варианте, когда между преобразователями и объектом контроля помещают слои жидкости толщиной х а и л л- В этом случае, как показано в под-разд. 1.3, с достаточной для практики точностью следует пользоваться приведенными выше формулами, если подставить в них вместо X величину Хв + с а х а + х а)1св, где Хв — толщина изделия j3 и Са —скорости звука в изделии и иммерсионной жидкости.  [c.116]

На рис. 2.11, а, б показано влияние непараллельности поверхностей и поворота изделия на отклонение лучей. Поверхность на локальном участке расположена неперпендикулярно к оси ранее отъюстированных преобразователей, хотя поверхности изделия параллельны. Контроль выполняют иммерсионным способом. Смещение центрального луча относительно оси приемника вычисляют по формуле т = X (sin Р)Св/са- При толщине изделия 50 мм и отношении скоростей звука в изделии и иммерсионной жидкости Сд/Сд 4 угол р = 2° обусловит смещение т = 7 мм. Это приведет к ослаблению сквозного сигнала на 8. .. 12 дБ. Приблизительно такое же ослабление вызовет непараллельность поверхностей (рис. 2.11, б) при р = 3°. Для уменьшения ослабления сигнала по этим причинам следует использовать преобразователи с широкой диаграммой направленности при этом, однако, исключается возможность применения теневого метода для контроля изделий сложной формы.  [c.117]

Формулы (2.24) и (2.25) отражают основные закономерности эхо-сквозного метода. На практике этот метод применяют в иммерсионном варианте. Для него формулы получают, вводя мнимые излучатели-приемники (как для теневого метода), учитывая коэффициенты прозрачности и отражения на границе иммерсионная жидкость — изделие.  [c.124]


Другой локальный способ свободных колебаний, называемый импульсно-резонансным, основан на излучении в иммерсионную жидкость ультразвукового импульса колебаний с модулированной частотой. Для него характерно резкое снижение амплитуды импульса, отраженного от стенки контролируемого объекта на частотах, при которых в стенке изделия возникают свободные колебания.  [c.127]

Таким образом, минимумы на определенных частотах в отраженном импульсе соответствуют свободным колебаниям стенки изделия на основной частоте (п = 1) и гармониках. Частотно-модулированный импульс становится амплитудно-модулирован-ным. После усиления отраженные импульсы проходят через фильтр, который выделяет минимумы амплитуды. По их частоте определяют толщину изделия. Чтобы выполнялись условия свободных колебаний и не возникали резонансы колебаний столба жидкости, длительность импульса должна быть меньше времени его распространения в иммерсионной жидкости.  [c.127]

Несмотря на то, что изделие отделено от преобразователя довольно толстым слоем жидкости, сохраняется постоянная связь изделий с системой возбуждения колебаний, т. е. с пьезопреобразователем. Развитая выше теория для контактного резонансного метода справедлива и для иммерсионного метода следовательно, сохраняется влияние системы возбуждения на сдвиг резонансных частот, хотя и более слабое, чем при контактном методе.  [c.130]

Как следует из анализа кривых, потери чувствительности, связанные с контактированием поверхности металла с жидкостью и зависящие от способа ввода колебаний (контактный или иммерсионный), возрастают с увеличением числа отражений, достигая 50. .. 80 %.  [c.229]

Помехи от многократных отражений. При контроле эхо- или зеркально-теневым методами в иммерсионном варианте возникают ложные сигналы в результате многократных отражений УЗ-импульса в иммерсионной жидкости между поверхностями изделия и преобразователя. При малой толщине слоя иммерсионной жидкости эти сигналы приходят раньше, чем сигнал, отраженный от донной поверхности изделия.  [c.284]

В результате при контроле контактным преобразователем электрический сигнал от структурных помех не. меняется в зависимости от условий акустического контакта при постоянной толщине слоя контактной жидкости, а полезный сигнал меняется. Это подтверждено экспериментальной проверкой. При иммерсионном или бесконтактном способах контроля этот эффект не наблюдается ввиду отсутствия слоя контактной жидкости.  [c.291]

Во всех установках ИЭС им. Е. О. Патона акустический контакт осуществляется через щелевой зазор, создаваемый локальной иммерсионной ванной под каждым ПЭП. Уплотняющий элемент преобразователя независимо от кривизны и состояния поверхности изделий надежно удерживает контактную жидкость в локальной ванне.  [c.383]

Поскольку расстояние от преобразователя до экрана точно известно, интервал времени между зондирующим импульсом I и эхо-сигналом от экрана II служит для корректировки скорости звука в иммерсионной жидкости, которая может изменяться под влиянием температуры.  [c.409]

Реплика помеш,ается в камеру с иммерсионной жидкостью, т. е. жидкостью с большим показателем преломления (применяемой для усиления разрешающей способности микроскопа), которая должна находиться между рассматриваемой репликой и объективом. Камеру с репликой ставят под объектив микроскопа и наблюдают в монохроматическом зеленом свете интерференционную картину. Цена интерференционной полосы зависит от показателей преломления пленки и жидкости, которые, естественно, должны быть заранее известны. Цену полосы можно изменять в достаточно широких пределах, меняя жидкость, как это следует из формулы (94), которая в данном случае приобретает вид  [c.96]

Жамена интерферометр, 110 жгут световодный, 306 жидкость иммерсионная, 146  [c.324]

Увеличение разрешающей силы микроскопа. Из выражения разрешающей силы микроскопа видно, что суш,ествуют два пути ее увеличения а) увеличение числовой апертуры б) уменьшение длины волны света, в котором рассматривается объект. Числовую апертуру можно увеличить как увеличением угла апертуры, так и увеличением показателя преломления окружаюш,ей объект среды. Увеличення п можно добшъся, погружая объект в прозрачную жидкую Среду с возможно большим показателем преломления (со-ответствуюш,ие микроскопы называются иммерсионными). Однако, как известно, для оптически более плотных прозрачных жидкостей /г лг 1, 6, что не приводит к существенному увеличению разрешающей силы. Увеличение разрешающей силы за счет увеличения апертуры также ограничено, так как в предельном случае sin и = = 1. В реальных случаях можно добиться значения sin и = 0,95 при /г = 1. Это означает, что возможно разрешение деталей объекта размером порядка половины длины световой волны.  [c.203]

Акустическое поле преобразователя, в котором пьезопластина отделена от поверхности изделия линией задержки (при иммерсионном контроле — жидкостью, при контроле наклонным преобразователем — призмой), приближенно определяется приведенными выше формулами и графиками при использовании мнимого пьезоэлемента (рис. 33). Геометрические построения при этом определяются следующими формулами. Направление акустической оси  [c.217]

При иммерсионном способе толщина слоя жидкости равна нескольким длинам волн. Дадим более четкое количественное определение этой толщины для импульсного излучения она должна быть больше пространственной длительности ультразвукового импульса СдаТ, чтобы не возникло интерференции излучаемого импульса с импульсом, возвратившимся к преобразователю после отражения от границы иммерсионного слоя с контролируемым изделием. Условие отсутствия интерференции имеет вид  [c.59]

Результаты расчета (кривые 1) по выражению (1.95) и эксперимента (кривые 2), представленные на рис. 1.48 и, как видно, достаточно хорошо совпадающ,ие, имеют большое практическое значение для оценки изменения чувствительности при контроле изделий с различной шероховатостью. При толщине контактного слоя, равной 1,с/4, осцилляции достигают 20 дБ и практически полностью исчезают при толщине контактного слоя 2,5Хс (для жидкости соответствует примерно 1,5 мм). Скорость убывания интерференционных экстремумов тем больше, чем меньше длительность импульса и диаметр пучка. Установлено, что коэффициент прозрачности иммерсионного слоя толщиной ЗХ для системы оргстекло—масло—сталь примерно на 9. .. 10 дБ меньше коэффициента прозрачности идеального контактного слоя.  [c.93]


Изложенное позволяет сделать вывод, что целесообразно в качестве информативного параметра использовать отношение амплитуд эхо-сквозного и сквозного сигналов. Это отношение практически однозначно связано с отражающими свойствами как непрозрачного дефекта небольшого размера, так и протяженного полупрозрачного дефекта. Оно не зависит от коэффициента прохождения через границу иммерсионная жидкость — изделие, который изменяется вследствие неровности поверхности листов, непарал-лельности их поверхностей, изменения угла ввода, связанного с протяжкой листа. Наконец, это отношение не зависит от разброса параметров ультразвуковых преобразователей и электронной аппаратуры, что очень важно при создании многоканальных установок, которые обычно применяют для контроля эхо-сквозным методом.  [c.124]

Этот способ (как и другие иммерсионные способы) имеет определенное преимущество перед контактным резонансным способом при контроле труб малого диаметра. Минимальный диаметр измеряемых этим способом труб равен 3. .. 4мм против 10. .. 12мм. Это объясняется тем, что погружение трубы в жидкость способствует быстрому затуханию обегающих трубу волн Релея и Лэмба.  [c.130]

При контроле изделий сложной конфигурации, с грубообрабо-танной или горячей поверхностью применяют ПЭП с жидкими и твердыми линиями задержки. В первом случае ПЭП называют иммерсионными, в которых в отличие от прямых контактных применяют демпфер с повышенным характеристическим импедансом с целью уменьшения добротности ПЭП. Характеристический импеданс материала пьезопластины в 15. .. 20 раз больше, чем жидкости (воды), поэтому происходит интенсивное отражение ультразвука на границе пьезопластина — жидкость. Для улучшения акустического согласования пьезопластины с жидкостью аналогично контактному ПЭП применяют четвертьволновой согласующий протектор из эпоксидной смолы, обеспечивающий гидроизоляцию пьезопластины. Для проведения иммерсионного контроля изделие обычно погружают в ванну с жидкостью, а ПЭП располагают на сравнительно большом расстоянии от объекта  [c.143]

Наиболее важной является первая задача, так как при ее решении отпадает необходимость компенсации нестабильности акустического контакта. В существующих отечественных и зарубежных установках чаще всего применяют контактный и щелевой способ ввода УЗ-колебанпй в контролируемый материал. В качестве контактирующих жидкостей используют воду, глицерин и различные эмульсии. Для стабилизации толщины контактного зазора и удержания в нем контактной жидкости применяют различные насадки, салазки, резиновые рубашки и т. п. В установках МВТУ им. Н. Э. Баумана для обеспечения контакта применяют магнитную жидкость на основе керосина. Ее надежное удержание на поверхности изделия обеспечивается за счет магнитного поля постоянных магнитов, встроенных в акустические блоки. Стабильность акустического контакта при применении магнитных жидкостей экпивалентна иммерсионному варианту. Прежде всего это объясняется тем, что контроль, как правило, ведут па поперечных волнах, а слежение за качеством акустического контакта — на продольных. В результате условия прохождения УЗ-иучка, прозвучивающего шов, и контрольного УЗ-нучка резко отличаются, что приводит к значительным по-грешностям при оценке размеров дефекта. Этот недостаток присущ как отечественным, так и зарубежным установкам.  [c.374]

Чем меньше размер преобразователя, тем меньше его чувствительность. Для совмещения требований широкой диаграммы направленности и достаточно высокой чувствительности применяют фокусировку ультразвука, располагая фокальное пятно на границе иммерсионной жидкости с поверхностью изделия. В контактном варианте применяют концентратор, т. е. конический волновод, на широком торце которого располагают пьезопластину, при этом размер контактирующего с изделием торца приблизительно равен длине волны.  [c.396]

Радикальным способом устранения этой погрешности является исключение времени пробега в контактной жидкости из измеряемого интервала. Для этого нужно разделить импульсы, отраженные от обеих поверхностей слоя контактной жидкости, и измерить интервал времени между импульсом, соответствующим отражению от контактной поверхности изделия, и донным сигналом. Эту задачу довольно просто реишть для иммерсионного УЗ-тол-щиномера, характеризующегося толстым слоем жидкости и четким отличием сигнала, вводимого в иммерсионную жидкость, от сигнала, отраженного от контактной поверхности изделия. Иммерсионный способ применяют для автоматического контроля толщины, т. е. в приборах группы В.  [c.403]

Пример 10. При измерении иммерсионно-репликовым методом глубины Н канавки по реплике сделаны отсчеты по барабану jtj = 542 и = 662, а при измерении ширины интерференционной полосы — отсчеты = 542 и Жд = 635 (в делениях круговой шкалы барабана MOB). При измерениях применяли кинопленку с показателем преломления Пр = 1,486 и иммерсионную жидкость — масло с показателем преломления = 1,450.  [c.96]


Смотреть страницы где упоминается термин Жидкость иммерсионная : [c.96]    [c.98]    [c.330]    [c.80]    [c.206]    [c.66]    [c.131]    [c.131]    [c.144]    [c.172]    [c.312]    [c.97]   
Микроскопы, принадлежности к ним и лупы (1961) -- [ c.9 , c.11 , c.25 , c.235 ]



ПОИСК



Жамена интерферометр жидкость иммерсионная

Жидкости для определения показателя преломления иммерсионным методом



© 2025 Mash-xxl.info Реклама на сайте