Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Модуляция усиления

Модуляция усиления, как и модуляция добротности, является методом, позволяющим генерировать лазерные импульсы короткой длительности (обычно от нескольких десятков до нескольких сотен наносекунд) и высокой пиковой мощности. Однако в отличие от модуляции добротности, при которой потери резко переключаются до низкого уровня, при модуляции усиления резко переключается усиление до высокого уровня. Модуляция усиления осуществляется с помощью столь короткого импульса накачки, что инверсия населенностей, а следовательно, и усиление начинают заметно превышать пороговые значения  [c.303]


Наиболее распространенным примером лазера с модуляцией усиления является TEA (лазер с поперечным возбуждением при атмосферном давлении, см. разд. 6.3.11) СОг-лазер, накачиваемый электрическими импульсами. Выбирая обычную длину резонатора L = м, коэффициент пропускания выходного зеркала 20 % и предполагая, что внутренние потери связаны только с пропусканием зеркала, получаем у ж 0,1 и Те = L/ y л 30 нс. Если считать, что время установления ядерной генерации в десять раз больше Тс, то длительность лазерного импульса должна быть порядка 300 не, что соответствует экспериментальным данным. Наконец, заметим, что в принципе любой лазер может работать в режиме модуляции усиления, если импульс накачки достаточно короткий и интенсивный, как, например, при накачке другим лазером. В качестве примеров упомянем лазеры на красителе с накачкой короткими ( 0,5 не) импульсами азотного лазера, работающего при атмосферном давлении, или полупроводниковые диодные лазеры, накачиваемые очень коротким 0,5 не) импульсом тока.  [c.305]

В качестве третьего примера активной синхронизации мод рассмотрим случай, когда модулируется усиление лазера, а не его потери. Если данный лазер накачивается излучением другого лазера, модуляция усиления осуществляется, как правило, если лазер накачки работает в режиме синхронизации мод, причем длина L резонатора накачиваемого лазера регулируется та-  [c.316]

Примером новых возможностей решения задач оптической обработки информа-ции при использовании лазеров на динамических решетках является создание на основе ФРК-лазера порогового детектора распределения яркости в некогерентном изображении путем пространственно-избирательного стирания решетки в генерирующем лазере некогерентным пучком, несущим исследуемое излучение [70]. Детектирование включает в себя (рис. 7.14) впечатывание исходного изображения (транспаранта) в стирающий пучок /ст ( , у), перенесение этого изображения в нелинейный элемент, где возникает вторичное изображение (негативно ) в виде пространственной модуляции усиления Г (д , у) I, и детектирование третичного изображения, тоже негативного, в пучке генерации  [c.242]

Нелинейные диэлектрики позволяют преобразовывать электрические сигналы (модуляция, усиление, преобразование и др.).  [c.185]

В качестве оптических затворов могут применяться различные системы. Очень быстрые затворы с электронным управлением могут быть реализованы, например, с помощью электро-оптических и акустооптических модуляторов, принцип действия которых обсуждается в п. 4.3.1 (более подробно см., например, [4]). Затвор может быть реализован и чисто механическим способом с помощью вращающихся зеркал или призм. В этом случае при обычных длинах резонатора частота вращения должна составлять несколько сотен герц. Наряду с модуляцией добротности с тем же эффектом может быть использована модуляция усиления. Последний способ особенно пригоден для полупроводниковых лазеров. Вследствие модуляции тока инжекции созданное электрическим способом усиление претерпевает при этом быстрые временные изменения (см. разд. 7.4).  [c.90]


Синхронизацию мод можно осуществить не только при помощи периодической модуляции потерь, но также и посредством периодической модуляции усиления. Это достигается путем накачки лазера цугом импульсов другого лазера с активной синхронизацией мод. Преимущество такого метода заключается в том, что он позволяет получать при периодической накачке импульсы, длина которых существенно меньше длины импульсов накачки. В случае лазера на красителе с синхронной накачкой можно, кроме того, в определенных диапазонах непрерывно перестраивать частоту генерируемых описанным способом ультракоротких импульсов.  [c.96]

Для более детального пояснения механизма модуляции усиления обратимся к графикам на рис. 5.1. Пусть лазер на красителе накачивается непрерывной последовательностью импульсов, излучаемых лазером с активной синхронизацией мод. Длительность этих импульсов, например, при использовании аргонового лазера с активной синхронизацией мод составляет от 100 до 200 ПС. Время релаксации электронов с верхнего уровня лазерного перехода Г32, которое для примененного лазера на красителе лежит в наносекундном диапазоне (например, для родамина 6G 7 з2 = 5 не), велико по сравнению с длительностью импульсов накачки и генерируемых импульсов, но меньше времени прохода резонатора o 2L/  [c.151]

Глава 4 называется Интенсивность лазерного излучения, скоростные уравнения . В ней изложена простая фотонная модель одномодового лазера, рассмотрены релаксационные колебания, модуляция добротности, балансные уравнения, описывающие важнейшие процессы в многомодовом лазере. Вторая половина главы в основном посвящена анализу эффекта образования провалов на контуре линии затрагиваются также вопросы конкуренции мод. Говоря о проблеме пространственной модуляции усиления в лазере, которая обусловлена структурой поля в резонаторе, уместно на помнить о работах советских авторов [19, 20], носящих приоритетный характер.  [c.6]

Перечисленные допущения характерны для функционального моделирования, широко используемого для анализа систем автоматического управления. Элементы (звенья) систем при функциональном моделировании делят на три группы 1) линейные безынерционные звенья для отображения таких функций, как повторение, инвертирование, чистое запаздывание, идеальное усиление, суммирование сигналов 2) нелинейные безынерционные звенья для отображения различных нелинейных преобразований сигналов (ограничение, детектирование, модуляция и т. п.) 3) линейные инерционные звенья для выполнения дифференцирования, интегрирования, фильтрации сигналов. Инерционные элементы представлены отношениями преобразованных по Лапласу или Фурье выходных и входных фазовых переменных. При анализе во временной области применяют преобразование Лапласа, модель инерционного элемента с одним входом и одним выходом есть передаточная функция, а при анализе в частотной области — преобразование Фурье, модель элемента есть выражения амплитудно-частотной и частотно-фазовой характеристик. При наличии нескольких входов и выходов ММ элемента представляется матрицей передаточных функций или частотных характеристик.  [c.186]

Теперь мы рассмотрим замечательный и в то же время важный эффект параметрического усиления, или возбуждение субгармоник модуляцией одного из физических параметров осциллятора. Например, в контуре, состоящем из сопротивления R, самоиндукции L и емкости С, физическими параметрами осциллятора являются R, L и С. Мы можем модулировать (изменять) значение одной из этих величин. Предположим, что в контуре, не совершающем вынужденных колебаний, мы изменяем или модулируем емкость, измеряя расстояние между пластинами ).  [c.239]

Все сказанное об усилении рассеянного света относилось к стоксовой компоненте. Антистоксово рассеяние есть процесс, обратный стоксовому, и для него имеет место не усиление, а ослабление интенсивности. Причина появления мощного антистоксова излучения иная, и для ее выяснения целесообразно исходить из классических представлений о природе комбинационного рассеяния, изложенных в 162. Согласно последним комбинационное рассеяние возникает в результате модуляции поляризуемости молекул колебаниями их ядер.. Рассмотрим, ради простоты, случай двухатомной молекулы и обозначим через изменение расстояния между ядрами в сравнении с его равновесным значением. Дипольный момент молекулы, индуцированный полем световой волны, записывается в виде  [c.856]


Из всего многообразия физических свойств важнейшими свойствами, характеризующими вещество как диэлектрик, являются электрические — поляризация, электропроводность, диэлектрические потери и т. д. Многие годы диэлектрики применялись в основном как изоляторы. Поэтому наибольшее значение имели их малые электропроводности и диэлектрические потери, высокая электрическая прочность. В современных условиях диэлектрики используют не только в качестве пассивных элементов различных электрических схем. С их помощью осуществляют преобразование механической и тепловой энергии в электрическую (пьезоэлектрики и пироэлектрики). Ряд диэлектриков находит применение для детектирования, усиления, модуляции электрических и оптических сигналов. При этом важную роль играют такие свойства, как фотоэффект, электрооптические и гальвано-магнитные явления.  [c.271]

Принцип работы лазера в режиме модуляции добротности состоит в следующем. Допустим, что внутрь оптического резонатора помещен затвор. Если затвор закрыт, то генерация не возникает и, следовательно, инверсия населенности может достигнуть очень высокого значения. При достаточной мощности накачки на метастабиль-ном уровне можно накопить почти все частицы активного вещества. Однако условие генерации выполняться не будет, так как потери резонатора слишком велики. Если быстро открыть затвор, то усиление в лазере будет существенно превышать потери и накопленная энергия выделится в виде короткого интенсивного импульса света. Поскольку в данном случае добротность резонатора изменяется от низких до высоких значений, то такой режим называется режимом модуляции добротности резонатора. При быстром открывании затвора (за время, которое короче времени развития лазерного импульса) выходное излучение состоит из одного гигантского импульса. При медленном же открывании затвора может генерироваться много импульсов.  [c.283]

Быстрое изменение добротности резонатора, или, как говорят, модуляцию добротности, можно осуществить различными методами. Одним из наиболее распространенных и удобных методов является применение насыщающегося фильтра. Насыщающийся фильтр представляет собой кювету с раствором красителя, который способен поглощать излучение лазера. В обычном состоянии фильтр имеет малый коэффициент пропускания - 10—15% и, будучи помещен в резонатор, сильно ухудшает его добротность. Под действием достаточно мощного излучения значительная часть молекул красителя может перейти в возбужденное состояние, вследствие чего коэффициент поглощения красителя уменьшается. Это явление — насыщение поглощения и просветление среды — имеет ту же природу, что и явление насыщения усиления (см. стр. 289).  [c.298]

Для усиления подобных сигналов (видеосигналов) необходимо использовать другую разновидность параметрического усилителя. Принцип действия параметрического усилителя видеосигналов (ПУВ) основан на возможности модуляции с частотой сигнала реактивного параметра колебательного контура, в котором существуют колебания, задаваемые внешним генератором. Рассмотрим работу параметрического усилителя видеосигналов на примере ПУВ с магнитным (ферритовым) сердечником в катушке индуктивности параллельного колебательного контура.  [c.154]

Передача включает задающий сельсин 8, источник переменного тока 9, фазовый индикатор 7, усилитель 6, регулируемый двигатель постоянного тока 4, реечные колеса 2 и 5, сельсин обратной связи 1 и рейку 3 стола станка. Как видно из схемы, ротор сельсина обратной связи получает вращение от рейки стола станка во время его перемещения, которое осуществляется электродвигателем 4. Обмотки статоров обоих сельсинов питаются от одного и того же источника переменного тока частотой 200 Гц. Концы обмоток роторов, в которых индуктируется однофазный переменный ток той же частоты, подключены к фазовому индикатору 7. Он непрерывно сравнивает фазы напряжений обоих сельсинов и вырабатывает управляющий сигнал в виде напряжения, пропорционального разности фаз. Это напряжение после усиления используется для управления скоростью вращения электродвигателя 4. Стол станка будет перемещаться до тех пор, пока имеется несовпадение угловых положений роторов. Такой способ управления работой станка носит название способа фазовой модуляции.  [c.208]

Описана конструкция разработанного и внедренного авторами линейно-кругового интерполятора, состоящего из двуплечего рычага, двух фотодатчиков, перемещающихся по плечам рычага с помощью привода, штриховой линейки, модулирующей световой поток при движении датчиков, и схем формирования, усиления и записи сигналов датчиков. Приведены данные по модернизации пульта ПРС-3-61, позволяющей осуществлять запись сигналов с амплитудной модуляцией, а также сравнительные данные по трудоемкости программирования с помощью ныне используемых методов и разработанного интерполятора.  [c.440]

Заманчивой альтернативой традиционным межсоединениям являются оптоэлектронные системы, обеспечивающие возможность генерации, модуляции, усиления, передачи, а также детектирования световых сигналов. Потенциальные возможности таких систем трудно переоценить. Элементарная ячейка монолитного оптоэлектронного устройства представляет собой результат интегрирования, в пределах одной пластины источника излучения, волновода и фотоприемника. Необходимым условием успешного использования оптоэлектронных устройств является их хорощее геометрическое и функциональное совмещение с элементами УСБИС. При этом технология их изготовления должна хорошо совмещаться с технологией изготовления самой интегральной схемы и необходимо максимально использовать хорошо отработанные процессы и оборудование кремниевых приборных производств [29].  [c.96]

Происходящие при этом физические явления можно относительно просто описать, обращаясь к случаю пичковой генерации, представленной на рис. 5.24. Если предположить, что скорость накачки Wp = Wp t) имеет форму прямоугольного импульса, начинающегося при / = 0 и заканчивающегося при / = = 5 МКС, то излучение будет состоять лишь из первого пичка в изображенной на рисунке зависимости q(t), который возникает в момент времени около t = 5 мкс. Действительно, после генерации этого пичка инверсия будет уменьшена световым импульсом до уровня, который существенно ниже порогового и который не будет затем возрастать, поскольку накачка уже отсутствует. Таким образом, мы видим, что модуляция усиления по своему характеру аналогична пичковой генерации в лазере, рассмотренной в разд. 5.4.1. Заметим, что на практике временная зависимость накачки имеет вид колоколообразного импульса, а непрямоугольного. В этом случае мы будем считать, что максимум светового пичка соответствует спаду импульса накачки. Действительно, если бы максимум совпадал, например, с максимумом импульса накачки, то после генерации пичка оставалось бы достаточно энергии накачки, чтобы инверсия могла снова вырасти до значения выше порогового и, таким образом, в лазерной генерации появился бы второй пичок, хотя и меньшей интенсивности. Напротив, если бы число фотонов достигало максимума значительно позже на хвосте импульса накачки, то это означало бы, что накачка не была достаточно продолжительной, чтобы инверсия населенностей выросла до приемлемо высокого уровня. Из вышесказанного можно заключить, что для данного значения максимальной скорости накачки существует некоторая оптимальная длительность импульса. Если это максимальное значение увеличивается, то число фотонов нарастает быстрее и тогда необходимо уменьшить длительность импульса накачки. Можно также показать, что при увеличении максимальной скорости накачки возрастает максимальная инверсия и генерируется более короткий и интенсивный импульс. Для четырехуровневых лазеров типичные значения времени нарастания интенсивности лазерного излучения до своего пикового значения в зависимости от максимального значения скорости накачки могут составлять 5 Тс —20 Тс, где Тс время жизни фотона в резонаторе  [c.304]


В этом эксперименте стробирующие импульсы накачки были довольно длинными (примерно 300 пс). В другом эксперименте [17] 30-пикосекундные сигнальные импульсы с частотой следования 1,97 ГГЦ (полученные при использовании полупроводникового лазера с распределенной обратной связью и модуляцией усиления, работающего в области 1,3 мкм) демультиплексировались при использовании 85-пикосекундных импульсов накачки от Nd YAG-лазера с синхронизацией мод.  [c.183]

Лазеры на красителях с синхронной накачкой. Сущность метода синхронной накачки заключается в модуляции коэффициента усиления активной среды с помощью оптической накачки импульсами, частота следования которых равна или кратна частоте обхода резонатора генерируемым импульсом. Выходное излучение синхронно-накачивае-мого лазера представляет собой непрерывный или ограниченный цуг импульсов, следующих синхронно с импульсами накачки. Для осуществления нестационарной модуляции усиления в активной среде импульсы накачки должны иметь длительность t , существенно меньшую, чем время жизни населенности рабочего уровня Ti, и энергию, превышающую пороговую для самовозбуждения лазера. Режим синхронной накачки эффективен в тех случаях, когда период следования импульсов накачки Ти превышает время жизни рабочего уровня, T Ti. В этой ситуации происходит быстрое формирование импульсов генерации из шумовых затравок спонтанной люминесценции.  [c.248]

При последующих проходах наблюдается быстрое уменьшение длительности и значительный рост интенсивности генерируемого импульса, что связано с временной модуляцией усиления. Задержка относительно импульса накачки при этом практически не меняется. Затем, по мере насыщения усиления, вершина импульса генерации смещается ближе к импульсу накачки и рассогласовывается с максимумом усиления. Этот процесс приводит к стационарному режиму, когда рост коэффициента усиления за счет накачки компенсируется его убылью за счет импульса генерации. Такое изменение во времени коэффициента усиления активной среды и задержки подробно исследовалось  [c.256]

Генерация ультракоротких световых импульсов полупроводниковыми лазерами может быть достигнута многими методами. Важнейшим является метод активной модуляции усиления ин-жекционного лазера, поскольку токи можно очень проста модулировать с высокой частотой (см. гл. 4). Кроме того, применяется метод синхронной накачки полупроводникового лазера по аналогии с лазером на красителе с синхронизацией мод (см. гл. 5). Самые короткие импульсы (в субпикосекундном диапазоне) удается получить, как и в случаях лазера на красителе и твердотельного лазера на Nd, при помощи пассивной синхронизации мод (см. гл. 6 и 7, особенно разд. 7.4).  [c.88]

Вместо рассмотренной в предыдущем разделе синхронизации мод при модуляции внутренних потерь или оптической длины резонатора синхронизация мод может осуществляться путем модуляции усиления. Для этого в резонатор лазера вводится накачка в виде непрерывной последовательности импульсов, генерируемых другим лазером с синхронизацией мод (см. рис. 5.8). Если длина резонатора лазера достаточно близка к длине резонатора лазера накачки или кратна ей, то при определенных условиях усиление оказывается модулированным с периодом, равным времени полного прохода резонатора. Как и при модуляции потерь, короткий импульс в этом случае формируется за промежуток времени, соответствующий максимальному усилению. Длительность этого импульса при оптимальных условиях может быть на два-три порядка короче длительности импульса накачки. Наибольший практический интерес представляет применение метода синхронной накачки в лазерах на красителях, так как в лазерах этого типа используется преимущественно оптическая накачка, а их линии усиления весьма широки (величина А(0з2/2л лежит в пределах от 10 до 10 Гц). Лазеры на красителях допускают в определенном диапазоне плавную перестройку частоты в области максимума спектра излучения. Это достигается введением в резонатор частотно-селек-тивного оптического фильтра, в качестве которого могут быть использованы, например, эталон Фабри—Перо, фильтр Лио или призма. Ширина спектра пропускания этих фильтров, однако, не должна быть слишком мала, так как ее сужение может вызвать существенное увеличение длительности импульсов. По указанным причинам значение лазеров на красителях с синхронной накачкой в технике генерации пикосекундных и субпи-косекундных импульсов в последние годы все больше возрастает. По сравнению с лазерами на красителях с пассивной синхронизацией мод, которым посвящена следующая глава, синхронно накачиваемые лазеры имеют следующее преимущество для перестройки частоты их излучения может быть использована полная спектральная ширина лазерного перехода, тогда как при пассивной синхронизации полоса перестройки дополнительно ограничивается спектром линии поглощения насыщающегося поглотителя.  [c.150]

ТМожно описать единым образом три случая, а именно внешнюю модуляцию потерь, насыщающийся поглотитель и модуляцию усиления, возникающую из-за нелинейной поляризации. Чтобы сделать это, рассмотрим две моды с амплитудами бо и Ь , причем мода  [c.176]

До сих пор анализировалась ситуация, связанная с активной модуля-цией потерь в лазере для получения режима генерации с синхронизованными модами. Синхронизацию мод можно получить также и с модуляцией усиления и фазы световой волны с помошью электрооптического модулятора. Для фазового модулятора (ФМ) вместо (1.4.4) можно записать  [c.47]

Подход, основанный на аналогии с френелевским отражением, поучителен вот в каком отношении. Напомним, что отражение от границы раздела двух сред возникает вследствие различия как показателей преломления, так и коэффициентов поглощения (усиления). В частности, отражение от металлов объясняется, главным образом, второй причиной. Из сказанного легко сделать вывод, что самоотражение в активное среде лазера может обусловливаться модуляцией и показателя преломления, и коэффициента усиления. Как показывают более детальные исследования вопроса, самоотражение играет существенную роль в оптических квантовых генераторах.  [c.828]

Отражение света, происходящее из-за нелинейности среды и пространственного периодического изменения амплитуды поля, позволяет расширить наши представления о воз1 южных способах реализации положительной обратной связи в квантовых генераторах. До сих пор мы полагали, что положительная обратная связь между полем излучения и активной средой, необходимая для превращения усиливающей системы в автоколебательную (см. 225), осуществляется с помощью зеркал, отражающих волны обратно в резонатор. Рассмотренное выше нелинейное отражение света служит физической основой для иного способа реализации положительной обратной связи, применяющегося в некоторых лазерах. Пусть кювета К представляет собой активную среду (см. рис. 41.3). В направлении оси л имеет место периодическая неоднородность среды за счет нелинейных эффектов. Интерферирующими пучками / и //, создающими оптическуро неоднородность, могут быть пучки возбуждающего излучения. Следовательно, в данном случае отражение будет происходить в результате модуляции коэффициента усиления активной среды. Спонтанное излучение среды, испущенное в направлении оси х, будет отражаться от неоднородности и возвращаться в активную среду, что и соответствует обратной связи. Для некоторых частот обратная связь будет положительной, и при выполнении пороговых условий возбудится генерация излучения в направлении оси х.  [c.828]


Из этого выражения следует, что амплитуда колебаний Но пропорциональна AAs, т. е. поля возбуждающего излучения и сток-сового рассеяния приводят к резонансной раскачке ядер молекулы. Индуцированные колебания ядер, в свою очередь, приводят к еще больщей модуляции поляризуемости молекулы, к усилению стоксова излучения и возникновению у дипольного момента новых спектральных компонент. В самом деле, подставляя из (239.6) в выражение (239.3), находим  [c.857]

Если магнитное поле создается током, протекающим через обмотку, размещенную на ферромагнитном сердечнике, то его магнитная проницаемость является функцией этого тока. Тогда дифференциальная магнитная проницаемость Рд = дВ/дИ сердечника при действии на него дополнительного магнитного поля Н (подмагничивание) имеет вид, иоказаннный на рис. 4.14. Как мы видим, от величины тока (дополнительного магнитного поля) зависит индуктивность обмотки Т, что приводит к перестройке колебательного контура по частоте. Такая перестройка контура, в котором поддерживаются вынужденные колебания высокой частоты, приводит к модуляции сигналом амплитуды этих вынужденных колебаний (рис. 4.15) и после их демодуляции позволяет получить усиленный сигнал.  [c.154]

В качестве генераторов сверх-высокрчастотных колебаний могут быть использованы маломощные клистроны, выпускаемые. промышленностью со стандартными блоками питания и модуляции. Благодаря наличию одного канала можно использовать всевозможные системы усиления, преобразования и индикации, дающие возможность решать ряд сложных задач интроскопии.  [c.240]

Экспериментальная проверка рассмотренной выше методики была осуществлена как для случая модуляции потоков гамма-излучения, так и для случая модуляции световых потоков. В обеих случаях было подтверждено осиоиное предположение об уменьшении ошибок, вносимых в результаты измерения нестабильностью коэффициента усиления фото-  [c.132]

Установка имеет следующие технические характеристики. Энергия одномодового излучения в режиме модуляции добротности 0,5 Дж, а длительность импульса 4-10" с. Коэффициент усиления двухкаскадного усилителя 20, размер голографируемой сцены 200x200x1000 мм, пределы измерения разности оптической длины пути от 1 до 60 мкм. Пределы геометрических размеров объекта от 20 до 2-10 мкм. Погрешность результата измерения  [c.311]

Преобразователь частоты (ПЧ) (смеситель) преобразует модулированное ко-лебание в колебания промежуточной частоты без изменения характера модуляции. Таким путем сигналы с различными частотами приводятся к сигналам с фиксированной частотой. После ПЧ резонансное усиление выполняется усилителем промежуточной частоты с фикси- Юванной частотой.  [c.587]

Еслп усиление превосходит затухание упругих волн в кристалле, наступает самовозбуждение системы, сопровождающееся генерацией когерентных фононов. Увеличение мощности распространяющихся через образец акустич. импульсов в условиях АИР позволило обнаружить ряд новых явлений, имеющих место в когерентной оптике, — ультразвуковые спиновое ахо и самоиндуцироваиную прозрачность. Значительно большее время прохождения акустич. импульса через среду но сравнению с онтич. импульсом даёт возможность получить в этих случаях более точную информацию о механизмах взаимодействия волн ра-зл. природы со средой, При исследовании АПР в кристаллах с нараэлектрич. центрами обнаружено взаимодействие гиперзвука с нараэлектрич, центрами — модуляция диполь-дипольных связей.  [c.44]

Акустоалектронные устройства позволяют производить раал, операции над сигналами преобразования во времени (задержку сигналов, изменение их длительности), частотные и фазовые (сдвиг фаз, преобразование частоты и спектра), изменение амплитуды усиление, модуляция), а также более сложные функциональные преобразования (интегрирование, кодирование и декодирование, получение функции свёртки, корреляции сигналов и т. д.). Выполнение таких операций часто необходимо в радиолокации, технике дальней связи, системах автоматич. управления, вычислительных и др. радиоэлектронных устройствах.  [c.52]

Коэф. усиления К. равен отногпению мощности, отводимой в нагрузку, к мощности сигнала, поступающего во входной резонатор. Он достигает 60 дБ (10 раз). Это обусловлено почти полным отсутствием во входном резонаторе затрат мощности сигнала на модуляцию электронов но скорости однородно заряженный пучок половину периода потребляет мощность, а половину периода отдаёт её полю. Поэтому достаточно высокий уровень напряжения па зазоре, требуемый для эфф. модуляции, может быть получен и при малой мощности входного сигнала за счёт высокой добротности резонатора, настройки в резонанс и подбора уровня связи с входным фидером, обеспечивающим отсутствие отражения мощности.  [c.383]

Электронные волны в ЛБВ типа О. Модуляция электронного потока эл.-магн. волной и, в свою очередь, возбуждение этой волны электронами приводит к образованию электронно-эл.-магн. волн, наз. иногда также электронными волнами. Их комплексные волновые числа k—k - -ik" определяются в ли-нейно11 теории ЛБВ, справедливой при достаточно малой мощности усиливаемого сигнала, когда возмущения плотности и скорости электронов пучка малы по сравнению с их постоянными составляющими. Совместное решение ур-пий Максвелла и линеаризованных ур-ний движения электронов приводит к кубич. ур нию для к, три корня к-рого соответствуют трём электронным волнам. При синхронизме электронного пучка и замедленной волны амплитуда одной из этик волн нарастает вдоль ламны её постоянная нарастания к" определяет усиление сигнала на ед. длины в ЛБВ G=8,69A " (в дБ), а постоянная распространения к — фазовую скорость (/ фэ=о)//с. Усиление существует в яек-рой области относит. изменения скоростей Vg а — в т. и. зоне усиления (рис. 3).  [c.569]

Нелинейные явления в ЛБВ типа О. Увеличение амплитуды усиливаемой волны при её распространении вдоль замедляющей системы приводит к значит, возмущениям в движении электронов, сильной модулжщи электронного пучка, в результате чего возникает ряд нелинейных явлений у.меньшение ср. скорости электронов обгон одних электронов другими, деформация сгустков и движение относительно поля синхронной волны появление высших гармоник конвекционного тока и поля пространственного заряда на частотах 2 м, 3(0,. . возбуждение поля замедленной эл.-магн. волны на этих гармониках расслоение электронного пучка в результате неравномерной модуляции пучка по сечению, вызванной неравномерным распределением напряжённости ноля замедленной волны и поля пространственного заряда по сечению остановка и поворот электронов поперечные движения электронов под действием СВЧ-нолей замедляющей системы и поля пространственного заряда. Наиб, важны первые три явления, принципиально связанные с механизмом группировки и существенные уже при умеренных мощностях и небольших кпд. При усилении на нач. участке ламны электроны сгущаются в тормозящей фазе поля (рис. 2). Дальнейшая эволюция пучка определяется отставанием сгустка от волны и нелинейностью модуляции, приводящей к распаду сгустка. Если различие нач. скорости электронов Vf и фазовой скорости волны Уф невелико и соответствует центру зоны усиления (рис. 3), то образуется сгусток из электронов с примерно одныако-  [c.569]

Среди специализиров. МП можно выделить МП для обработки сигналов (сигнальные МП), к-рые по сути дела являются алгоритмич. МП, обрабатывающими информацию, заданную не в цифровом виде. При этом перед началом её цифровой обработки МП преобразует эту информацию в цифровой вид (напр., аналоговый сигнал — с помощью встроенного аналого-цифрового преобразователя). В случае аналоговых входных сигналов обрабатывающий их специализиров. МП наз. аналоговым МП [4]. Они могут выполнять функции любой аналоговой схемы (усиление сигнала, модуляцию, смещение, фильтрацию и др.) в реальном масштабе времени. При этом применение аналогового МП значительно повышает точность обработки сигналов, их воспроизводимость, расширяет функциональные возможности обработки сигналов за счёт цифровых методов.  [c.141]

Появление лазеров вызвало интенсивное развитие методов внутр. М, с., основанных на управлении когерентным излучением за счёт изменения параметров лазера. При этом мы. устройства, применяемые как внеш. модуляторы, номещаются внутри оптического резонатора лазера. Используя разл. способы внутр. модуляции, получают любой вид М. с. амплитудный, частотный, фазовый и поляризационный. Частотой излучения лазера управляют, изменяя добротность оптич. резонатора лазера, напр. менян оптич. длину резонатора. С этой целью одно из зеркал резонатора закрепляют либо на магнитострикционном стержне (см. Магнитострикционный преобразователь), либо на пьезоэлементе и изменяют длину резонатора синхронно с модулирующим напряжением. Тот же эффект достигается путём изменения показателя преломления среды, заполняющей резонатор, для чего используется электрооптич. кристалл. Частотную модуляцию излучения лазера можно получить также при наложении на активную среду магн. или электрич. полей (см. Зеемана эффект, Штарка эффект), под действием К-рых происходит расщепление и смещение рабочих уровней атомов, ответственных за генерацию когерентного излучения. Изменяя величину коэф. усиления, получают амплитудную модуляцию излучения лазера. Для этого воздействуют на разность населённостей активной среды, либо изменяя мощность её возбуждения, либо используя всцомогат. возбуждение, приводящее к-перераспределению населённостей. Амплитудная модуляция излучения может быть получена и при помощи модуляции тока разряда газовых или полупроводниковых лазеров, работающих в непрерывном режиме. Одним из методов управления когерентным излучением является модуляция величины обратной связи лазера, т. е. коэф. отражения зеркал резонатора. С этой целью используют резонатор, одно из зеркал к-рого вращается с большой скоростью, и потому условия генерации выполняются лить в короткие промежутки времени. Вместо зеркал часто используют вращающуюся призму полного внутр. отражения. Изменение величины обратной связи можно получить, заменяя одно из зеркал на систему зеркал, образующих интерферометр Фабри — Перо. Коэф. отражения такого резонатора зависит от расстояния между зеркалами, изменяя к-рое можно модулировать интенсивность излучения и получать т. н. гигантские импульсы, мощность излучения в к-рых существенно превосходит мощность непрерывной генерации. Наконец, излучение лазеров также модулируют, изменяя добротность оптич. резонатора путем введения потерь, величина к-рых управляется внеш. сигналом. Для этого используют модуляторы на основе элек-  [c.184]



Смотреть страницы где упоминается термин Модуляция усиления : [c.280]    [c.303]    [c.99]    [c.193]    [c.44]    [c.46]    [c.243]    [c.303]   
Смотреть главы в:

Принципы лазеров  -> Модуляция усиления


Лазеры сверхкоротких световых импульсов (1986) -- [ c.150 , c.151 ]



ПОИСК



Модуляция

Модуляция добротности усиления

Усиление



© 2025 Mash-xxl.info Реклама на сайте