Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Испытания при кратковременном нагружении

В отношении результатов рис. 4 имеется ряд сомнений. При испытаниях на растяжение (кратковременное нагружение) почти не оказалось разницы между данными, полученными в воздухе и в аргоне вплоть до 482 °С (табл. 2 работы [14]), в то время как результаты рис. 4, по-видимому, указывают на заметное падение прочности даже при кратковременном нагружении на воздухе. Не хватает также информации об испытаниях на длительную прочность на воздухе при длительности нагружения, большей 20 ч. Графики, приведенные на рис. 4, указывают на то, что прочность при постоянной нагрузке при 482 °С очень резко падает и волокна теряют около 75% от своей первоначальной прочности менее чем за 100 ч в азоте и за 10 ч в воздухе. Не обнаружено результатов по длительной прочности борных волокон при комнатной температуре.  [c.274]


Данные получены при кратковременном нагружении в мокром состоянии для композитов и тканых ровингов. Нагрузка прн испытаниях направлена вдоль основы.  [c.514]

Рассмотрим модели, которые учитывают существенное влияние истории нагружения. В уравнении (3.1) производная d /dt меры повреждений зависит от значения этой меры в рассматриваемый момент времени. Таким образом, уравнение (3.1) не учитывает эффектов последействия и запаздывания при накоплении повреждений, хотя эти эффекты сопровождают деформирование полимеров и ползучесть металлов. Значимость эффектов зависит от соотношения между характерным временем нагружения (например, продолжительностью испытаний) и характерным временем протекания физикомеханических процессов в материале. Например, для полимеров скорости протекания внутренних процессов характеризуют спектром времен релаксации или спектром времен запаздывания. Эти спектры имеют широкий диапазон, поэтому при кратковременных испытаниях или кратковременных нагружениях эффекты последействия и запаздывания проявляют себя в достаточной мере.  [c.90]

Пусть 4 — характерная продолжительность кратковременных испытаний, а г — характерная кратковременная прочность. Связь между мерой г при кратковременном нагружении и номинальным напряжением s имеет вид  [c.135]

Испытание материалов на растяжение при кратковременном нагружении является наиболее распространенным, ибо оно позволяет определить ряд прочностных и пластических характеристик.  [c.48]

Поэтому прочностные свойства в условиях длительного нагружения, т. е. при нагреве в условиях эксплуатации, оказываются ниже получаемых при кратковременном нагружении в обычных испытаниях механических свойств. Снижение свойств тем больше, чем длительнее выдержка и выше температуры испытания. Надо, однако, учитывать, что при очень длительном времени нагружения и очень высоких напряжениях металлы могут медленно деформироваться и при 20° С (так называемая, холодная ползучесть).  [c.163]

Таким образом, последние годы отмечены значительным прогрессом в развитии теории прочности материалов при сложном напряженном состоянии. Критерии (6.8) и (6.10) получили экспериментальную проверку на сильно анизотропных материалах типа стеклопластиков [34, 39, 86, 132, 1561, изотропных жестких полимерах [97, 156]. Критерий (6.14) проверен в опытах на металлах и сплавах, а также на некоторых жестких пенопластах [130, 131, 1341. Наряду с этим имеются работы, посвященные проверке пригодности традиционных критериев прочности к описанию предельных свойств полимеров при кратковременном нагружении. В опытах А. М. Жукова [681 установлено, что в первом квадранте плоскости главных напряжений разрушение оргстекла удовлетворительно описывается теорией наибольших нормальных напряжений. Данные по пределам текучести этого материала, опубликованные в [194, 254), в том же квадранте хорошо согласуются с критерием Мизеса, а при двухосном растяжении—сжатии — с видоизмененным критерием Мизеса, учитывающим различия в сопротивлении оргстекла (ПММА) растяжению и сжатию [1941. В [208, 2091 представлены результаты испытаний образцов из  [c.209]


Камера используется при испытаниях на ползучесть и кратковременную прочность, а также при циклическом нагружении. Применение однотипных камер одновременно в трех секциях позволяет существенно повысить производительность установки при проведении испытаний.  [c.94]

Однако при проведении усталостных испытаний и в тканных, и в матовых композитах наблюдалось как расслаивание, так и растрескивание смолы независимо от количества добавленного пластификатора. Хотя при кратковременном испытании на растяжение растрескивание смолы не возникает, при циклическом нагружении оно просто задерживается не более чем на несколько сотен циклов. В композитах с матами из рубленой пряжи и более податливыми матрицами первое проявление поврежденности состояло в расслаивании у концов прядей, параллельных направлению нагружения, но сразу вслед за этим происходило расслаивание около поперечных волокон.  [c.348]

Испытания труб после горячей и холодной правки показали, что разрушение сопровождалось пластическими деформациями и происходило на уровне напряжений, близких к временному сопротивлению материалов этих труб (0,86—1,04 Он). Статическое испытание труб диаметром 720 мм (6 = 8 мм) при наличии выдержки под давлением (от 70 до 100 кгс/см ) длительностью свыше 100 ч не показало снижения уровня разрушающих напряжений по сравнению с однократным кратковременным нагружением до разрушения.  [c.145]

Длительное (12—18 часов) пребывание напряженных образцов без циклического деформирования в агрессивной среде (т. е. при кратковременной приостановке коррозионно-усталостных испытаний) приводит к существенному уменьшению времени до разрушения при последующем усталостном нагружении, что свидетельствует о разрушающем воздействии среды на металл  [c.51]

Необходимыми для рассмотренного выше расчетного определения долговечности элементов конструкций на стадии образования л развития трещин являются испытания гладких стандартных образцов при кратковременном и длительном статическом нагружении (с оценкой характеристик прочности и пластичности), а также образцов с начальными трещинами при малоцикловом нагружении при соответствующей температуре и времени выдержки (с измерением скорости развития трещин). Приведенные выше уравнения позволяют осуществлять пересчет получаемых из экспериментов данных на другие числа циклов и времена нагружения. Воспроизведение в опытах эксплуатационных режимов нагружения, уровней номинальной и местной напряженности, исходной дефективности с учетом кинетики изменения статических и циклических свойств представляется пока трудноосуществимым. В связи с этим разработка способов приближенной оценки несущей способности элементов конструкций, работающих при высоких температурах (когда имеет место активное взаимодействие длительных статических и циклических повреждений), приобретает существенное значение.  [c.120]

Емкость—стакан 2 плотно закреплен на пассивном захвате 1 образца 3. Жидкость из емкости 6 благодаря разности установленных уровней поступает в стакан 2, откуда через патрубок 4 попадает в резервуар 7. Скорость потока регулируется краном 5. Такая конструкция приспособления с некоторыми особенностями, зависящими в большинстве случаев от вида нагружения, может быть использована при кратковременных и длительных статических испытаниях и при испытаниях на усталость в условиях воздействия активных жидких сред.  [c.159]

Статические испытания в зависимости от цели могут проводиться как при кратковременном, так и при длительном статическом нагружении.  [c.164]

Применительно к атомным энергетическим установкам по мере накопления данных о средних и минимальных характеристиках механических свойств, повыщения требований к уровню технологических процессов на всех стадиях получения металла и готовых изделий, развития методов и средств дефектоскопического контроля и контроля механических свойств по отдельным плавкам и листам было принято [5] использовать при расчетах не величины [о ], а коэффициенты запаса прочности и гарантированные характеристики механических свойств для сталей, сплавов, рекомендованных к применению в ВВЭР (см. гл. 1, 2). Для новых металлов, разрабатываемых применительно к атомным энергетическим реакторам, был разработан состав и объем аттестационных испытаний, проводимых в соответствии с действующими стандартами и методическими указаниями. Методы определения механических свойств конструкционных материалов при кратковременном статическом (для определения величин Ов и 00,2) и длительном статическом (для определения величин и o f) нагружениях получили отражение в нормах расчета на прочность атомных реакторов [5].  [c.29]


Во втором случае экспериментальные исследования сосредоточены на получении исходных характеристик материалов по сопротивлению деформированию и разрушению. Эти характеристики определяются при испытаниях лабораторных образцов. Критерии повреждения устанавливаются на базе исследований основных механических закономерностей поведения материалов при кратковременном и длительном нагружении (ползучесть, длительная прочность и пластичность), при малоцикловом нагружении с выдержками и без выдержек. Указанные исследования позволяют сформулировать критерии образования и развития разрушения и уравнения состояния.  [c.9]

Новой (или отремонтированной) машине при кратковременных испытаниях свойственны высокие характеристики сопротивляемости деформации, являющиеся своего рода пределом упругости этих тел. При длительном (по времени) нагружении новые и отремонтированные машины ведут себя по-разному вследствие различной скорости и различного соотношения приобретаемых при этом нагружении упругих и остаточных деформаций новые машины больше изменяют свои характеристики в пределах упругих деформаций, а многие старые изношенные машины даже и при выполнении технического обслуживания и ремонта вместе со сменой недолговечных элементов характеризуются большей скоростью нарастания пластических деформаций, в то время как доля их упругих деформаций падает.  [c.236]

Несоответствие механических свойств при кратковременных и длительных нагружениях наблюдается часто. Вместе с тем особо хрупкое состояние тела зерна, проявляющееся при кратковременном нагружении, может привести к преждевременному разрушению при длительном нагружении. Это наблюдалось, например, в высоколегированном никелевом сплаве ЖС6У в состоянии непосредственно после закалки при нагружении при температуре 800°С. При этой температуре в сплаве после закалки происходит интенсивный распад твердого раствора, большое количество частиц основной упрочняющей -фазы является препятствием для движения дислокаций, кроме того, на границах и в теле зерен имеются выделения игольчатой формы [68]. В не-термообработанном сплаве при этой же температуре испытания интенсивного распада не наблюдается. В Условиях нагружения (7=0,55 ГH/м , t=800° время жизни образцов с трещиной в термообработанных образцах составляло 20—30% общей долговечности, в литых 55—60%, при этом полная долговечность увеличивалась примерно в 10 раз. Фрактографическое исследование показало, что разрушение литых образцов от разрушения термообработанных образцов отличается в основном степенью пластичности процессов деформирования и разрушения в теле зерна, что выявилось при исследовании изломов в зоне долома и при однократном нагружении (рис. 61).  [c.89]

За кпитерий допускаемой деформации паропроводных труб из какой-либо стали можно принимать величину длительной пластичности образцов, испытываемых на длительную прочность при растяжении. Обычно при сроках испытания более 10—15 тыс. ч длительная пластичность изменяется незначительно, сначала несколько снижаясь, а затем наблюдается некоторое ее повышение. Необходимо, однако, иметь в виду, что при сложнонапряженном состоянии металла, характерном для труб при нагружении их внутренним давлением, усилиями от самокомпенсации и внешними нагрузками, остаточная деформация при разрушении получается меньше, чем при испытании образцов из той же стали в условиях одноосного растяжения. Это относится к разрушению как при кратковременном нагружении, так и вследствии исчерпания длительной прочности. Поэтому при определении допускаемой деформации для условий эксплуатации длительную пластичность образцов, испытанных в лабораторных условиях при одноосном растяжении, следует разделить на коэффициент запаса порядка 3,5—4. Для установления допускаемой в эксплуатации деформации необходимо испытывать металл нескольких плавок одной и той же стали и ориентироваться на плавки с наименьшей длительной пластичностью.  [c.252]

Для количественной оценки влияния высоковязких вставок, наплавляемых перпендикулярно направлению развития трещины, на долговечность элементов конструкций, содержащих растущие трещины, проведены сравнительные испытания при циклическом нагружении образцов типа ОВРЗ-1 и ОВРТ (см. рис. 5.7). Результаты испытаний иллюстрирует рис. 5.31. Анализ полученных диаграмм показал, что при подходе трещины из основного металла к высоковязкой вставке происходит торможение и кратковременная полная остановка трещины вследствие расслоения на границе сплавления. Однако вклад остановки трещины в общую долговечность, как и в случае задержки трещины плакирующим слоем (см. рис. 5.29), весьма незначителен. При прорастании трещины через поле неоднородных свойств скорость ее снижается почти на 20 % по сравнению с монометаллом.  [c.152]

Если у борных, углеродных и стеклянных волокон практически отсутствует ползучесть и их можно считать упругими, то для органических волокон такая предпосылка может оказаться весьма ошибочной. Так, согласно результатам работы [46], волокна кевлар-49 обладают свойством ползучести (рис. 3.4). Ползучесть свойственна высокопрочным органическим нитям и микропластикам (нить, пропитанная полимерным связующим и прошедшая термообработку), как показано на рис. 3.5 и 3.7. Кривые удельной ползучести (отношение деформации к начальной деформации) являются усредненными и построены по результатам длительных испытаний [47] при напряжениях, составлядащих до 0,6 от разрушающих при кратковременном нагружении. Согласно этим результатам, г пределах исследованных напряжений зависимость между напряжением и деформацией в любой момент времени нагружения линейна. Таким образом, ползучесть как органических нитей, так и мик-ропластиков подчиняется линейной теории вязкоупругости, и кривые ползучести могут быть описаны зависимостью (3.2).  [c.90]


На фиг. 39 показано изменение предела прочности важнейших алюминиевых сплавов ьри повышенных температурах. Кратковременным испытаниям предшествовал нагрев в течение 1 часа. Этими данными можно пользоваться только тогда, когда отливаемое из соответствующего сплава изделие ис> пытывает кратковременное нагружение, продолжительность которого исчисляется минутами, а предварительный нагрев при рабочей температуре не превышает 1 часа.  [c.67]

Предельные условия работы. Значения предельных нагрузок и скоростей зависят в значительной степени от условий смазки. При работе без дополнительной смазки, на капиллярной смазке, имеющейся в порах подшипника на железной основе, можно практически допускать нагрузки до значений pv = 10 кГн/см сек при большой длительности общего срока работы подшипников и до pv = 15Н-20 кГм/см сек при небольшой длительности. Следует отметить, что при кратковременной работе без дополнительной смазки в отдельных опытах наблюдались очень большие значения pv до 400 кГ1смЧек (фиг. 15, кривая 4, р 135 кПсм при V 3,1 м1сек). Данные по испытаниям пористых материалов без дополнительной смазки сведены в табл. 9. В условиях работы без дополнительной смазки следует применять подшипники с пористостью 25—35%. При дополнительной смазке можно практически довести значения для подшипников на железной осгюве до 70—100 кГм/см сек. В табл. 10 приведены сравнительные результаты испытаний (ЦНИИТМАШ) различных пористых материалов, литой бронзы и баббита при скорости 2,2 м/сек, с капельной смазкой маслом машинным 2. Нагружение подшипника производилось ступенями через 3 кГ см  [c.581]

Несгационарность нагружения. При эксплуатации конструкций отдельные детали часто подвергаются нестационарным циклическим нагрузкам. Фактических данных по влиянию нестационарности циклического нагружения на усталостные свойства титановых сплавов мало. Автор работы [ 166] определял влияние циклических перегрузок на усталостную прочность сплава титана ПТ-ЗВ и стали марок 15 и Ст4. Он пришел к выводу, что у материалов, которые имели близкий предел выносливости, одинаковые кратковременные циклические перегрузки могут приводить и к упрочнению, и к разупрочнению, однако закономерности при этом не установлено. Сплав ПТ-ЗВ показал наименьшую чувствительность к перегрузкам. И.В. Козлов, Н. И. Вассерман и др. [ 167] провели исследования усталостной прочности образцов диаметром 10 мм сплава ВТ6 (Ов = 680 МПа, 5 = 16 %, 0= 49 %) при нестационарном нагружении круговым изгибом. Испытание большого количества образцов каждой партии позволяло с достаточной достоверностью проводить статистический анализ результатов и получать вероятностную картину предела выносливости при заданном числе циклов. Это дало возможность исключить влияние на получаемые усталостные характеристики естественного разброса при испытаниях. Прежде всего было определено действие предварительного нагружения циклическими напряжениями ниже стационарного предела выносливости на вторичный предел выносливости (рис. 108). Из рис. 108 видно, что предварительное нагружение сплава ВТ6 приводит к заметному повышению вторичного предела выносливости, несколько большего в области малой вероятности разрушения.  [c.172]

Фирма MTS (США) выпускает универсальные гидравлические и гидрорезонансные испытательные машины различной мощности — от 0,1 до 5 Мн (от 10 до 500 тс), предназначенные для проведения испытаний на статическое растяжение, сжатие и изгиб, на малоцикловую усталость, кратковременные или длительные испытания на ползучесть, усталостные испытания при постоянной амплитуде с различной формой цикла (синусоидальная, треугольная, трапецевидная и др.), усталостные испытания с программным изменением ам плиту-ды, среднего уровня напряжений и частоты, а также с изменением указанных параметров по случайному закону. Кроме того, машины оборудованы системой обратной связи и могут воспроизводить эксплуатационный цикл нагружения, записанный на магнитофонную ленту или перфоленту. При усталостных испытаниях всех видов осуществляют регистрацию скорости роста трещин, накопления усталостных повреждений и пластических деформаций и оценивают чувствительность металла к концентрации напряжений по динамической петле гистерезиса. Частота циклов может изменяться от 0,0000 1 до 990 Гц. Особенность компоновки машин этой фирмы — разделение на отдельные независимые блоки исполнительного, силозадающего и програм-мно-регистрирующего агрегатов.  [c.206]

Продолжительность испытания на растяжение стекла влияет не только на значения длительной прочности, но также и на значения прочности, полученные при весьма кратковременном нагружении. В работе [3] проведено исследование временной зависимости прочности стеклянных стержней диаметром в 7/32 дюйм. Осуществлены испытания на трехточечный изгиб стержней с пролетом в 5 дюйм для времен продолжительностью от 0,01 с до 24 ч. Высокоскоростная аппаратура, использующая электромагнитное нагружение, была описана в [4]. Найдено, что стекло при временах нагружения в 0,01 с может выдерживать в три раза большее напряжение, чем то, которое приводит к разрушению при нагружении в течение 24 ч (рис. 2). Абсолютные значения прочности для стеклянных стержней, как и ожидалось, гораадо ниже, чем для волокон, однако само изменение прочности за указанный интервал времени сопоставимо с изменением прочности, наблюдаемым в армированных стеклом композитах.  [c.271]

В работе [16] исследована длительная прочность двух материалов с никелевыми матрицами, армированных вольфрамовой проволокой, содержаш,ей менее 0,01 % включений (в основном, двуокиси кремния) и занимающей примерно 40% объема. Материалы матрицы — Нимокаст 258 и ЕРВ 16. В работе обнаружено, что добавка тонкой вольфрамовой прово.чоки (0,01 дюйм диаметром) оказывает малое или вообще не оказывает усиливающего действия на матрицу, исключение представляет случай, когда температура превьппала 900 °С. Интересно отметить, что модули Юнга волокна и матрицы при комнатной температуре в этом случае очень близки (55-10 фунт/дюйм для волокна и 30 X X 10 фунт/дюйм для матрицы). При высоких температурах испытания 1000 и 1100 С прочностные свойства вольфрамовой проволоки улучшаются, в особенности прочность при разрушении. На рис. 23 представлена зависимость 100-часовой прочности от температуры. В этой же работе [16] приведены и другие испытания, предпринятые для того, чтобы выяснить, как влияет степень армирования на длительную прочность, но полученные результаты, вероятно, недостаточны для каких-либо выводов. Другая часть работы [16] состоит в исследовании влияния диаметра волокна на прочность композитов. Здесь, кажется, существует противоречие между свойствами при кратковременном растяжении и длительных нагружениях при высоких температурах. Для кратковременного нагружения чем тоньше проволока, тем она прочнее, а при продолжительном нагружении и повышенных температурах тонкие вольфрамовые проволоки теряют свои качества быстрее, чем толстые, вероятно, из-за рекристаллизации в поверхностных слоях и реакции между волокном и матрицей.  [c.301]

Разумеется, проведение исчерпывающих исследований усталостных свойств требует гораздо больше времени, чем исследования свойств при кратковременных испытаниях. Однако в настоящее время получен уже значительный объем информации. Большинство опубликованных данных относятся к композитам на основе волокон типа I и получены в исследованиях Ноттингемского университета (Англия) [8—И] и Суссекского университета (Англия) [2]. Детальное изучение экспериментальных работ проведено в [1, 6]. Дополнительные данные по усталости даны в работах [14, 15, 12]. Оуэн и Моррис сосредоточились в основном на усталости при осевом нагружении и в меньшей степени на изгиб-ных и межслойных сдвиговых свойствах. В работе [2] основное внимание уделялось влиянию окружающей среды, и после предварительных испытаний в условиях осевого и изгибающего нагружения проводились главным образом испытания на усталость при кручении. Результаты Снелла [14] относятся к усталости при изгибе, а в работе [15] приведены данные по усталости при межслойном сдвиге. Симон и Барнет [12] опубликовали некоторые результаты по усталости при кручении вместе со многими другими свойствами.  [c.367]


Применительно к рассматриваемой задаче оценки прочности в условиях сочетания малоциклового и многоцикловОго, в том числе и случайного по характеру нагружения с наложенными кратковременными перегрузками, справедливость деформационнокинетического критерия разрушения не очевидна. С целью обоснования справедливости критерия (1.1.12) для указанных случаев проводились испытания при мягком и жестком типах нагружения, а также программном нагружении как с регулярным, так и нерегулярным изменением напряжений или деформаций в процессе испытания. Во всех случаях форма цикла регулярного нагружения была симметричной синусоидальной, и общая долговечность всех испытанных образцов не превосходила 5 10 циклов. Частота испытаний выбиралась из условий соблюдения требований ГОСТ 2860—65 Металлы. Методы испытаний на усталость об исключении саморазогрева образца до температуры более 50° С в процессе повторных нагружений при нормальной температуре. В зависимости от уровня напряжений (деформаций) частота составляла 0,5—50 Гц.  [c.58]

На установке можно проводить испытания на кратковременную прочность, если сиповозбудитель выполнен в виде электромеханического привода. Плавное регулирование оборотов электродвигателя привода позволяет проводить испытания образцов с различными скоростями нагружения. При проведении испытаний на длительную прочность и ползучесть на нагружающую тягу воздействуют подвеской сменных грузов.  [c.30]

При решении первой задачи исследуют влияние температуры, скорости деформирования и жесткости нагружающих систем при кратковременном и длительном статическом нагружениях гладких лабораторных образцов, уточняют характеристики сопротивления разрушению при ударном нагружении лабораторных образцов типа Шарпи и Менаже, регламентируют основные метрологические параметры усталостных испытаний (мало- и многоцикловую усталость). При этом больяюе внимание уделяют двум стадиям разрушения — образованию макротрещин и окончательного излома, а также статистической природе характеристик механических свойств. Выполняемые исследования и методические разработки являются основанием для усовершенствования действующих и разработки новых государственных стандартов на механические испытания.  [c.18]

Испытания при 600°С показали, что сплав ЭИ437Б при этой температуре не обнаруживает заметной ползучести за 5—7 минут вплоть до значений напряжений, близких к пределу прочности кратковременных испытаний. Так, образец, быстро нагруженный при 600°С до напряжения 0=98,5 кг/мм , простоял при постоянной нагрузке около 7 мин., показав деформацию ползучести всего 0,2%. В процессе догружения образец еще продеформнровался на 5% и при напряжении в 100 кг/мм мгновенно разрушился. Следовательно, с точностью, лежащей в пределах возможных разбросов, пределом длительной прочности за 5—7 мин. для сплава ЭИ437Б при температуре 600°С можно считать предел прочности, полученный из обычных кратковременных испытаний.  [c.254]

С учетом бесчисленного множества возможных комбинаций параметров а, к, т, г экспериментальное обоснование функциональных зависи.мостей (1.3) и (1.4) оказывается связанным со значительными принципиальными и методическими трудностями. В соответствии с этим возникает задача о выборе основных характеристик механического поведения материалов при циклическом нагружении в неупругой области и базовых экспериментов с учетом отсутствия (нормальные или повышенные температуры) и на.личия (высокие температуры) температурно-временных эффектов (рис. 1.2). Исходными для выбора параметров уравнений состояния являются результаты кратковременных и длительных статических испытаний. Данные этих испытаний позволяют установить пределы текучести От, характеристики упрочнения (показатель упрочнения при степенной и модуль упрочнения Gт при линейной аппроксимации / (а, е)) и пластичность (относительное сужение ф - или логарифмическая деформация е/,-). По данным д.лительных статических испытаний определяется скорость ползучести <1е1с1х, длительная прочность Сты и пластичность д.ля данной температуры Ь и времени т. Параметры уравнений состояния при малоцикловом деформировании наиболее целесообразно определять при нагружении с заданными амплитудами напряжений — мягкое нагружение. В качестве основных характеристик сопротивления деформированию в заданном А-полуцикле при этом используются ширина петли и односторонне накопленная пластическая деформация е р При этом ширина петли определяется как произведение ширины петли в первом полуцикле к = 1) на безразмерную функцию чисел циклов Р к)  [c.10]

Рассмотрим более подробно карбидную фазу. Электронномикроскопическое исследование показало, что выделившиеся на границах зерен крупные (около микрона) частицы карбида MeasQ располагаются хаотично при изотермическом старении (рис. 51, а), приемуш,ественно в местах стыка трех зерен — при ползучести и в комбинированных режимах (рис. 51, б и б) в и виде окантовки по границам зерен — при кратковременном и длительном термо-циклировании (рис. 51, г—е). Количество этих выделений при кратковременной термоусталости непрерывно возрастает, а в режимах комбинированного нагружения и при длительной термоусталости на конечной стадии испытания уменьшается (вероятно, вследствие вторичного растворения карбида).  [c.109]

Второй режим, как показала серия экспериментальных программ при достаточно широком варьировании независимых переменных параметров нагружения, отличаясь простотой проведения опытов, позволяет легко получить поверхности предельных разрушающих состояний при комбинированном нагружении. В результате комбинированных испытаний при чередовании кратковременной термоусталости и ползучести при сг = onst четко выявляются области минимальной суммарной относительной долговечности при параметрах, соответствующих нагруженности элементов теплоэнергетического оборудования в опасных зонах.  [c.171]


Смотреть страницы где упоминается термин Испытания при кратковременном нагружении : [c.212]    [c.139]    [c.56]    [c.31]    [c.11]    [c.473]    [c.351]    [c.327]    [c.54]    [c.212]    [c.103]    [c.17]    [c.485]   
Смотреть главы в:

Испытательная техника Справочник Книга 1  -> Испытания при кратковременном нагружении


Испытательная техника Справочник Книга 1 (1982) -- [ c.19 , c.20 ]



ПОИСК





© 2025 Mash-xxl.info Реклама на сайте