Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Металлические порошки и их свойства

Металлические порошки и их свойства  [c.781]

Основными показателями свойств металлических порошков, определяющих их пригодность для образования металлокерамики, являются размер зерен, их форма и величина поверхности, текучесть, насыпной вес и прессуемость. Свойства в значительной мере определяются методами изготовления. Эти методы приведены ниже  [c.110]

Металлические порошковые фрикционные материалы более термостойки и жаропрочны, чем асбокаучуковые и пластмассовые, но, как правило, плохо работают при низких температурах, образуя с металлическим контртелом прочные мостики схватывания. При высоких скоростях и температурах коэффициент трения металлических пар резко снижается и поверхности сглаживаются. Попытка придать таким металлическим фрикционным материалам большую универсальность свойств привела к созданию комбинированного металлопластмассового фрикционного материала, обладающего стабильным коэффициентом трения в большом диапазоне температур и скоростей. Изготовление такого материала идентично изготовлению спеченного и сводится к приготовлению шихты из металлических порошков и пластмасс, прессованию заготовок и их термической обработке.  [c.67]


Прессованию подвергают предварительно подготовленные металлические порошки или композиции из металлических порошков и неметаллов. Качество готовых изделий в значительной мере зависит от свойств и подготовки к прессованию порошков, а также от условий его проведения. Ранее рассматривались условия получения порошков, свойства которых должны благоприятствовать производству доброкачественных прессовок это размеры частиц порошка, форма зерен, их насыпной вес, обеспечивающий определенную плотность, пластичность. В процессе прессования к перечисленным факторам прибавляется величина давления, развиваемого прессом.  [c.125]

Металлические порошки характеризуются их химическим составом, физическими и технологическими свойствами. Химический состав порошков определяется содержанием основного металла, примесей или загрязнений и газов. Физические свойства порошков определяются следующими характеристиками формой частиц, размером и распределением их по крупности, удельной поверхностью, пикнометрической плотностью, микротвердостью. Технологические свойства порошков характеризуются насыпной массой, текучестью и прессуемостью.  [c.151]

Плазмохимический способ осаждения порошков условно подразделяют на несколько этапов образование активных частиц, их возможное взаимодействие и выделение конечного продукта. При рабочих температурах, не превышающих 1000 °С (низкотемпературная плазма), исходные продукты находятся в возбужденном состоянии в газовой фазе. Допустимые реакции взаимодействия протекают практически мгновенно (в течение 10" ... 10" с), а быстрое охлаждение газовой смеси приводит к образованию ультрадисперсных металлических порошков с уникальными свойствами. Данный способ применяют в основном для получения порошков тугоплавких металлов с частицами сферической формы.  [c.46]

Некоторые детали машин должны обладать настолько специфическими свойствами, что для их изготовления непригодны монолитные металлы. Например, детали должны быть пористыми или содержать компоненты, не образующие сплавов с железом, медью и т. п. В таком случае детали изготовляют из металлических порошков или их смесей (шихты) с другими компонентами на специальных прессах-автоматах.  [c.63]

СВОЙСТВА МЕТАЛЛИЧЕСКИХ ПОРОШКОВ И МЕТОДЫ ИХ КОНТРОЛЯ  [c.179]

Последовательное наступление научно-технической революции неразрывно связано с непрерывным совершенствованием машиностроения — основы технического перевооружения всех отраслей народного хозяйства. Инженерная техническая деятельность на основе научной мысли расширяет и обновляет номенклатуру конструкционных материалов, внедряет эффективные методы повышения их прочностных свойств. Появляются новые материалы на основе металлических порошков, порошков-сплавов. Порошковая металлургия не только приводит к замене дефицитных черных и цветных металлов более дешевыми материалами, она позволяет получить совершенно новые материалы — материалы века , которые невозможно получить традиционным путем. Кроме того, изготовление изделий из порошков — практически безотходное производство. Другое направление получения дешевых конструкционных материалов состоит в применении пластмасс, новых покрытий и т. п. Тончайшая пленка из порошковых смесей на поверхности детали, образуемая плазменным напылением, повышает надежность сопрягаемых и трущихся друг о друга деталей машин, защищает их от коррозии и существенно увеличивает их износостойкость.  [c.4]


Материалы, изготовленные из металлических порошков, в большинстве случаев обладают такими хорошими свойствами, что их промышленное развитие представляет большой интерес. Уже первые эксперименты с -чистыми железными порошками привели к созданию магнитных материалов. Материал получают путем электроосаждения железа или кобальта в ртутный катод, ртуть удаляют фильтрацией и магнитной сепарацией. Постоянные магниты нз прессованного железа или кобальта имеют =  [c.232]

К группе изотропных композиционных материалов относят материалы, для армирования которых используют наполнитель в виде рубленых коротких волокон, соизмеримых с диаметром, сплошных и полых сфер и микросфер, порошков и других мелкодисперсных компонентов. В таких материалах армирующий наполнитель хаотически перемешан со связующей матрицей. Напряженно-деформированное состояние такого материала аналогично однородному изотропному материалу. В зависимости от назначения изделия в качестве наполнителя изотропных композиционных материалов используют синтетические, минеральные и металлические компоненты. В качестве связующей матрицы применяют термореактивные полимеры и термопластичные (эпоксидные, полиэфирные, полиамидные, полистирольные, поливинилхлоридные, фенольные и другие смолы и их комбинации), а также металлы, обладающие высокими адгезионными свойствами к наполнителю.  [c.5]

Металлические пигменты. Пигменты этой группы— порошки металлов, из которых наиболее широко применяются алюминиевая пудра и цинковая пыль. Ограниченное применение имеют бронзовые пудры и свинцовый порошок. Металлические пигменты по ряду свойств (электропроводность, теплостойкость, отражательная способность и др.) существенно отличаются от большинства неорганических пигментов, представляющих собой соли или оксиды. Это обусловливает и некоторые специфические области их применения. Так, при достаточном наполнении металлическими пигментами лакокрасочные покрытия приобретают электропроводящие свойства и применяются для защиты электросварных конструкций, в печатных электрических схемах, а при наполнении цинковой пылью — в качестве протекторных грунтовок [21].  [c.66]

Теплопроводность Я, температуропроводность а и теплоемкость металлоплакирующих смазок имеют важное значение как при расчете технологической аппаратуры и процессор их производства, так и при использовании смазок в узлах трения. Согласно теории контактного теплообмена тепловая проводимость фрикционной зоны сопряжения деталей определяется суммой проводимостей межконтактной смазочной среды ас и металлических контактных мостиков а , которые зависят от теплофизических свойств материалов и микрогеометрии поверхностей трения. Введение порошкообразных металлов с хорошей тепловой проводимостью в контактную зону и заполнение ими (а в случае оплавления — жидким металлом) пространства между выступами шероховатостей приведет к увеличению как а , так и Кроме того, повышение температуропроводности увеличивает скорость эвакуации тепла из перегретых зон, возникающих при тяжелых режимах трения. В этом плане целесообразно использовать металлические порошки легкоплавких эвтектических сплавов. Как показали результаты экспериментов, на установке ОТС-3, предназначенной 70  [c.70]

Физико-химические свойства металлических порошков зависят от метода и режима их получения.  [c.256]

Металлические фильтроэлементы изготовляют из спеченных сферических порошков различных металлов и их соединений, обладающих свойствами металла, в частности из бронзы с содержанием олова 8—11%, углеродистой и нержавеющей стали, титана и других металлов. Наиболее широко применяется нержавеющая сталь, фильтры из которой пригодны для работы при температурах 350—400° С. Фильтры из порошков бронз пригодны для работы при температурах до 300° С.  [c.607]

Фрикционные материалы из металлических порошков чаще всего готовят на медной, бронзовой, латунной или железной (с 1950 г.) основе, природа которой определяет их прочностные, износостойкие и теплостойкие свойства. Именно на рабочей поверхности металлической основы происходят деформация и дополнительное разрушение продуктов износа матрица удерживает в себе частицы других компонентов и обеспечивает отвод тепла, выделяющегося на поверхности трения.  [c.58]

Производство фильтров из металлических порошков представляет собой специфическую область порошковой металлургии как по свойствам изделий , так и по технологии их изготовления, а также по особым требованиям, предъявляемым к исходным порошкам. В СССР такие фильтры начали изготовлять еще в начале 30-х годов. Однако наиболее  [c.67]


Технология фильтров из металлических порошков отличается высокой воспроизводимостью таких свойств, как проницаемость и фильтрующая способность, определяемых размерами пор. Преимущество порошковых фильтров состоит также в простоте их регенерации после загрязнения, простоте и удобстве монтажа. Фильтры изготовляют из порошков преимущественно коррозионностойких материалов, главным образом бронзы (92 % Си, 8 % Sn), нержавеющей стали, никеля, титана, серебра, латуни и др. Требования новых отраслей  [c.68]

Металлические фильтры изготовляют из спеченных сферических порошков различных металлов и их соединений, обладающих свойствами металла, в частности из бронзы с содержанием олова  [c.521]

Для успешного развития работ по созданию новых материалов и изделий методом порошковой металлургии необходимо развитие методов получения порошков чистых металлов, сталей и сплавов, обеспечивающих их ассортимент не только по химическому, но и по гранулометрическому составам, геометрической форме и структуре частиц, что определяет технологические свойства. В свою очередь, исходя из технологических свойств порошков выбирают технологические схемы получения изделий и материалов. Применительно к производству конструкционных изделий наиболее важное значение имеют четыре свойства металлических порошков, причем первые два предопределяют качество конструкционных деталей из порошков, отличных от железных. Несмотря на то обстоятельство, что характеристики и свойства порошков будут подробно рассмотрены далее, эти свойства, тем не менее, упомянуты и здесь, поскольку они определяют пригодность изготовленных определенным способом порошков для производства конструкционных изделий из порошковых материалов. Вышеуказанные свойства определяются следующим образом  [c.5]

С металлическими порошками (например с алюминием), можно повысить стойкость к длительному нагреву при температуре До 650° С [38]. Водоотталкивающие свойства лаков и их химическая стойкость весьма велики. Специфическим свойством силиконов является их способность в известной степени предупреждать оседание пигментов [39].  [c.763]

Изменяя количество и вид газообразователя, размеры зерна порошка стекла и газообразователя, а также температурный режим вспенивания, можно регулировать размеры и структуру пор (открытые или замкнутые поры), а следовательно, менять и изоляционные свойства пеностекла. Приготовленную шихту засыпают в формы из жаропрочного металла. Формы устанавливают на вагонетки или металлические ползуны, которые подают их в печь вспенивания. В печи температура шихты быстро поднимается до 850° С. При этой температуре порошок стекла в поверхностном слое плавится, образуя газонепроницаемую корку. Выделяющиеся из газообразователя газы, не покидая шихты, вспенивают ее. Объем массы значительно увеличивается и она заполняет всю форму. После вспенивания блоки пеностекла отжигают в конвейерной печи.  [c.573]

Порошковая металлургия или металлокерамика включает в себя производство металлических порошков, формование (чаще всего прессование) из этих порошков или любой желательной их смеси заготовок заданной формы (брикетов) и придание этим брикетам требуемой прочности и других свойств путем специальной термической обработки — спекания.  [c.314]

Металлокерамические магниты получают из металлических порошков путем прессования их без связывающего материала и спекания при высокой температуре. По магнитным свойствам они лишь немного уступают литым магнитам, но дороже последних.  [c.322]

Из табл. 1.4 следует, что прочность, жесткость и твердость полиацеталя (группы 14, 15) выше, чем у полиамидов (группа 1), которые в свою оче-)едь выше аналогичных свойств 1ЭВП. Кроме того, предельная температура эксплуатации ПЭВП (группы 20—23) в большинстве случаев недостаточно велика для нормальной работы подшипниковых узлов станков, причем введением наполнителей (металлических порошков и их оксидов, стеклопорошка, жидкого масла) эту температуру существенно повысить не удается.  [c.34]

Использование ИПХТ-М наиболее целесообразно для следующих процессов выплавки сложнолегированных сплавов с большим содержанием компонентов, сильно различающихся физическими свойствами рафинировочной плавки химически активных и тугоплавких металлов получения высококачественных фасонных отливок металлотермического восстановления металлов из их соединений (оксидов, фторидов, хлоридов и Т.П.) переработки отходов химически активных металлов и их сплавов направленной кристаллизации металла при непрерывном получении слитка получение металлических порошков и др.  [c.55]

Попытки получить методами цементации металлические порошки с необходимыми физико-химическими свойствами предпринимали неоднократно. Наибольшее число работ посвящено получению медных порошков. Так, была изучена [ 112] зависимость состава и физических свойств медных порошков, получаемых цементацией железом, от состава раствора, температуры и способа цементации. Наилучшие результаты бьши получены в растворах, кг/м 4 - 7 Си < 12Fe <7Н 2SO4 при непрерывном осаждении меди в барабанном цементаторе чистым железом. Очистку порошка от железа проводили доработкой его в растворах с содержанием меди 20 кг/м при pH = 1,8 2,5 и г = 50°С. Наиболее чистый порошок имел содержание меди 99,8 %. Получению медных порошков цементацией железом посвящены также работы [ 40, с. 34 60, с. 4, 113 - 115]. Было установлено, что дисперсность получаемых порошков тем выше, чем отрицательнее значение стандартного потенциала металла-цвментатора, чем ниже концентрация меди и серной кислоты в растворе и чем выше температура. На дисперсность порошков и их физические свойства существенное влияние оказывают ПАВ. Присутствие иона хио-ра в растворах приводит к образованию губчатых некачественных порошков [ 39]. В работе [ 116] получение медных порошков цементацией проводили в ультразвуковом поле. Получению медных порошков цементацией цинком посвящены работы [ 117 - 119]. В них показана возможность получения кондиционных порошков. Следует отметить, что получение порошков с заданными свойствами способом цементации является задачей весьма сложной. При ее решении исследователь сталкивается зачастую с непреодолимыми препятствиями, легко устранимыми при электролитическом способе получения порошков. По этой причине цементационные способы получения порошков пока не нашли широкого применения в промышленности.  [c.49]


Особый интерес представляют покрытия из никель-алюминие-вых порошков, которые в процессе плазменного напыления образуют алюминиды никеля, отличающиеся высокой твердостью и жаростойкостью. В одних из первых работ [362—364], посвященных этому типу покрытий, рассмотрены некоторые особенности формирования никель-алюминиевых покрытий и их свойства. Напыление проводили порошком алюминия, частицы которого были покрыты слоем никеля. Обычно соотношение между количеством алюминия и никеля нужно выбирать из расчета получения в процессе формирования покрытия фазы NiAl, отличающейся наиболее высокими защитными свойствами среди других алюминидов никеля. Покрытие может быть успешно нанесено на стали различных марок, алюминиевые сплавы, титан, ниобий, тантал, молибден и другие металлические материалы. Покрытие характеризуется высокой сплошностью и прочностью сцепления с основой более 200 кПсм . Твердость покрытия достигает 75 HRB. Защитные свойства покрытий иллюстрируются следующими примерами при толщине до 0,25 мм оно защищает молибден от окисления при 1020° С на воздухе более 200 ч, выдерживает многократный циклический нагрев до 980° С и сохраняет свою структуру и высокую жаростойкость вплоть до 1500—1600° С. Среди особо ценных свойств покрытия следует отметить хорошее сопротивление расплавам жидких стекол различных марок. В связи с этим оно нашло применение для защиты стеклоформующих инструментов и оснастки [364].  [c.333]

Описаны методы получения металлических порошков и определения их свойств. Рассмотрены специфические для получения пористых материалов способы подготовки порошков (сфероидизация, откатка, гранулирование, покрытие частиц связующим), методы формирования с приложением давления и без него. Изложены общие закономерности управления свойствами пористых тел на стадии формования и спекания. Представлены новые оригин ные методы определения свойств пористых материалов, основанных на пластическом деформировании, катодном осаждении и осаждении мелкодисперсных частиц в спеченные заготовки, введении лиофильных добавок на стадии формирования, спекания в окислителыю-восстановительной среде и импульсом электрического тока. Изложено практическое применение пористых порошковых материалов.  [c.2]

Основными технологическими параметрами процесса спекания являются температурный режим, продолжительность, атмосфера спекания, параметры предварительной обработки порошка давлением и др. Свойства металлических порошков предопределяют их поведе-  [c.104]

Таким образом, добавляя мелкодисперсные металлические порошки антифрикционных металлов и сплавов в пластичные смазки, можно целенаправленно изменять их реологические, теплофизи-ческие, антифрикционные и протнвозадирные свойства с учетом разнообразных условий работы МПС в реальных узлах трения.  [c.71]

Подготовка порошков для напыления. Улучшение физикомеханических и защитных свойств покрытий достигается как правильностью ведения технологического процесса нанесения, так и соответствующей подготовкой порошковых полимерных материалов перед их нанесением на защищаемую поверхность. Известно, что при высоких температурах у полимеров наблюдается термоокислительная деструкция, которая неизбежна в процессе нанесения покрытия. Введение в порошки полимеров специальных стабилизаторов предотвращает термоокислительную деструкцию в процессе нанесения полимера на металлическую поверхность, а одновременное введение наполнителей способствует увеличению адгезии покрытия к металлу и снил ению внутренних напряжений в его пленке. Источником возникновения напрял ений считают уменьшение объема формируемой пленки вследствие испарения растворителей и химических реакпий термическое сжатие при высокой температуре пленкообразова-152  [c.152]

Эластичные [<леиты С 9/34 резервуары D 88/(16-24) сосуды, наполнение В 3/00) В 65 материалы для изготовления гибких печатных форм В 41 D 7/00-7/04 подшипники F 16 С 21 j (00-08) свойства, измерение G 01 (М 5/00, N 3/00)] Элеваторы в устройствах для загрузки транспортных средств мусором В 65 F 3/18 Электрическая [дуга, использование <(для нагрева материалов при их распылении 1122 в устройствах для распыления материалов 7/22 в электростатических распылителях 5/06) В 05 В для переплавки металлов С 22 В 9/20) обработка жидкого металла в литейных формах В 22 D 27/02 энергия <использование (для получения механических колебаний В 06 В 1/02-1/08 в химических или физических процессах В 01 J 1/08) осветительные устройства со встроенным источником электроэнергии F 21 S 9/00-9/04)] Электрические [F 02 генераторы (использование в системах зажигания двигателей Р 1/02-1/06 привод с использованием ДВС В 63/(00-04)) цепи, использование для запуска двигателей N 11/08) ж.-д. В 60 (L, М) заряды (использование для изготовления металлических порошков В 22 F 9/14 средства для снятия с шин транспортных средств В 60 С 19/08) изоляторы в линиях энергоснабжения В 60 М 1/16-1/18 конвейеры В 65 G 54/02 контактные сети для электрического транспорта В 60 М опоры F 16 С 32/04 отопительные системы для жилых и других зданий F 24 D 13/(00-04) предельные вьпслючатели и цепи в подъемных кранах В 66 С 13/50 разряды, использование (для зарядки или ионизации частиц В 03 С 3/38 для нагрева печей F 27 D 11/(08-10)) ракеты В 64 G, F 02 К 11/00, В 64 С 39/00 сервоусилители (в  [c.218]

Особенности производства керамических материалов сильнее отражаются на окончательных свойствах продукции, чем особенности процессов производства металлических материалов. Массивные керамические конструкции в классическом варианте изготавливают из порошков. Можно проследить связь свойств со многими факторами размерами, формой, чистотой и плотностью порошков, присутствием вторых фаз и их распределением, размерами зерен и состоянием их границ, стабильностью микроструктуры, природой и критическими размерами трещин. Как один из примеров объемная плотность представляет собой основной фактор из числа факторов, определяющих прочность соединения SijN4 сопротивление изгибу возрастает линейно с увеличением плотности [39].  [c.314]

Объемно-легированные порошки имеют гетерогенную структуру с равномерным по сечению распределением легируюш,их элементов. Диффузионно-легированные самофлюсуюш,иеся порошки являются, по сути, композиционными и состоят из металлического ядра и диффузионного боросилицидного слоя, в котором сконцентрированы флюсующе-раскисляющие элементы (рис. 3.7). Повышенная концентрация флюсую-ще-раскисляющих элементов в поверхностном слое частиц порошка способствует более эффективному раскислению зоны наплавки. Получаемые покрытия имеют гетерогенную структуру (рис. 3.8) и высокие триботехнические свойства.  [c.203]

Эпоксидные смолы обычно получают из бисфенола А и эпи-хлоргидрина. Их молекулы содержат концевые эпоксидные группы, а также гидроксильные группы в центральных звеньях, что обусловливает возможность отверждения эпоксидных смол с помощью аминных, кислотных и других отвердителей. Отвердители могут оказывать каталитический эффект или участвовать в формировании узлов полимерной сетки. При этом можно получать сетчатые полимеры самой различной структуры, которая дополнительно может быть модифицирована введением активных растворителей, пластификаторов и т. п. В общем случае, механические свойства макрокомпозиционных материалов на основе эпоксидных связующих в качестве первичной непрерывной фазы значительно лучше, чем на основе полиэфирных связующих, хотя последние дешевле (см. [2] дополнительного списка литературы). Композиционные материалы на основе эпоксидных связующих обладают более высокой водо- и химической стойкостью, а их объемная усадка не превышает 2%. Наполнители, такие как кварцевый песок, металлические порошки, металлическая вата и асбест, широко используемые в производстве эпоксидных заливочных компаундов и в материалах для оснастки, снижают объемные усадки и значительно изменяют термический коэффициент расширения и теплопроводность эпоксидных связующих. По сравнению с полиэфирными связующими эпоксидные материалы имеют более специальное назначение и широко применяются в различных элементах летательных аппаратов, в электротехнической и электронной промышленностях.  [c.23]


Основным сырьем порошковой металлургии являются порошки чистых металлов и сплавов, а также порошки неметаллических элементов. Под терхмином порошковая металлургия в соответствии с ГОСТ 17359—82 принято понимать область науки и техники, охватывающую область производства металлических порошков, а также изделий из них или их смесей с неметаллическими порошками . Порошковая металлургия — один из наиболее прогрессивных процессов превращения металла в изделие, с помощью которого обеспечиваются свойства изделия, полученного традиционными методами, или свойства, которые не могут быть достигнуты при использовании иных технологических процессов.  [c.779]

С целью формирования фторопластовых покрытий на различных металлических поверхностях с повышенной прочностью сцепления нами были проведены исследования по изучению технологических свойств порошков фторопласта и, полифениленсульфида, тешератур-но-временные режимы получения покрытий на основе этих полимеров, их физико-механические и адгезионные свойства.  [c.126]

Состав на основе порошкообразный металл — мочевина Патент США, № 4123290, 1978 г. Покрытие, содержащее хром в виде металлического порошка, имеет высшие антикоррозионные свойства. Состав для покрытия должен содержать мочевину в качестве восстановителя и комаонент, регулирующий pH, из группы оксидов цинка, основных пероксидов цинка, цинковых солей слабых кислот и их смесей.  [c.213]

Металлические порошки принято характеризовать химическими, физическими и технологическими свойствами. Химический состав порошков оценивают содержанием основного металла, примесей и газов. Физическими свойствами порошков являются форма частиц, размеры и распределение их по крупности, удельная поверхность, пикно-метрическая плотность и микротвердость. Технологические свойства выражают через насыпную плотность, текучесть, плотность утряски, уплотняемость, прессуемость и фор-муемость. Основные характеристики порошков регламентированы ГОСТом или техническими условиями.  [c.28]


Смотреть страницы где упоминается термин Металлические порошки и их свойства : [c.419]    [c.282]    [c.330]    [c.110]    [c.198]    [c.313]    [c.11]   
Смотреть главы в:

Металлы и сплавы Справочник  -> Металлические порошки и их свойства



ПОИСК



19 — Свойства металлические

Металлические порошки аддитивность свойств

Металлические порошки производство материалов свойства и методы испытаний

Порошки

Порошки Свойства

Порошки металлические



© 2025 Mash-xxl.info Реклама на сайте