Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Методы световой микроскопии

Изучение зоны разрушения методом световой микроскопии показало, что большие амплитуды напряжения (режим I) вызывают появление грубого сдвига, т. е. лавинное возникновение сдвиговых перемещений сразу на расстояние, равное нескольким сотням периодов решетки, в то время как малые  [c.203]

Методы световой микроскопии [1, 3—5, 10—13]  [c.22]

Хотя эта методика не учитывает возможную неоднородность деформации внутри зерен, она при достаточной статистике дает реальную оценку средней величины вклада. Следует отметить, что вследствие технической трудности нанесения двух рисок в О дном зерне и повторных измерений предложенная методика дает достоверные результаты только для СП материалов с относительно крупным зерном — примерно 10—15 мкм, когда можно использовать более надежные методы световой микроскопии. Ниже пред-  [c.54]


По мере снижения температуры распада частицы становятся более мелкими, число их увеличивается и могут начать образовываться иные (неравновесные) выделения, особенно если при этом может сохраняться их когерентная связь с матрицей. В случае выделения одной и той же фазы продукты превращения после длительной выдержки при различных температурах отличаются главным образом распределением выделений, количество же атомов, остающихся в растворе, при этом существенно не меняется. Следовательно, путем естественной экстраполяции можно прийти к выводу, что при достижении интервала температур, где отсутствуют видимые выделения, но наблюдаются заметные изменения свойств, процесс выделения также проходит до конца. Выделения в этом случае слишком малы, чтобы они могли быть обнаружены методами световой микроскопии или (из-за размытия дифракционных линий) рентгенографически. Появление мелких выделений после длительного старения может быть связано с коалесценцией очень мелких частиц.  [c.300]

Методы световой микроскопии позволяют исследовать особенности структуры твердых тел на границе раздела металл — окружающая среда. Применение световых микроскопов ограничено их относительно невысокой разрешающей способностью, определяемой числовой апертурой А и длиной волны света X = = 0,50 мкм. При этом исследование поверхности с глубоким микрорельефом требует использование объективов с малой апертурой, что еще больше снижает разрешение световых микроскопов ЧА ). Применение ультрафиолетового излучения ( = 0,21 мкм) в 2,5 раза повышает разрешающую способность светового микроскопа, но ряд побочных обстоятельств лимитирует их широкое применение [75].  [c.59]

При большем количестве частиц избыточной фазы они служат барьерами для миграции границ зародышей рекристаллизации и, хотя температура формирования центров рекристаллизации может остаться на прежнем уровне, рост их возможен только при более высоких температурах. Таким образом, в двухфазных сплавах формирование центров рекристаллизации и начало их роста (Могут быть разделены значительным температурным или временным интервалом. Обычные экспериментальные методы (световая микроскопия и рентгеновский анализ) фиксируют центры рекристаллизации после того, как они подросли до значительного размера. Поэтому такими методами обнаруживается повышение / с увеличением количества избыточной фазы, хотя истинная температура появления зародышей рекристаллизации может практически не измениться. Но для практики обычно больший интерес представляет именно температура начала интенсивности роста зародышей рекристаллизации, так как с им связано интенсивное изменение свойств. При содержании избыточной фазы более 6— 10% (объемн.) тормозится не только рост, но и формирование центров рекристаллизации.  [c.64]


Методы световой микроскопии  [c.151]

Двойной микроскоп основан на использовании метода светового сечения с его помощью определяют среднюю высоту микронеровностей в пределах 3—70 мк.  [c.91]

Двухступенчатый метод голографии впервые позволил создать микроскоп, регистрирующий не только амплитуду, но и фазу световой волны, рассеянной объектом. Появление такого микроскопа открыло новые возможности исследования микрообъектов, не достижимые известными методами классической микроскопии.  [c.82]

Оптическая схема микроскопа Лим-ника типа МИС-11 для измерения методом светового сечения показана на рис. 15. Источник с помощью конденсора освещает щель (0,1 х 1 мм). Линзы и микрообъектив проектируют щель на изделие. Изображение щели наблюдается в микроскоп, состоящий  [c.72]

Этот метод быстро внедряется в световую микроскопию (46—59]. Следует коротко сказать о принципе действия и указать на преимущества его применения для металлографических исследований. При методе фазового контраста (МФК), открытого Цернике [60] для просвечивающей микроскопии, необходимо создать разницу хода в /4 длины световой волны, т. е. разницу фаз в 90° преломленного луча по отношению к непреломленному. Это оказалось возможным благодаря применению стеклянной пластины, на которую наносят тонкий, сдвигающий фазу на 90° слой относительно прозрачного вещества. Фазовая пластинка влияет на открывание диафрагмы и изменяет картину дифракции так сильно, что в поле зрения вновь передается разница уровней (глубина резкости) при разной яркости освещения.  [c.14]

Световое сечение и двойной микроскоп МИС-11. Метод светового сечения заключается в том, что одним микроскопом (проекционным) на исследуемую поверхность направляется под некоторым углом узкий пучок света, при этом на ней получается граница тени от непрозрачной шторки, введенной в часть светового пучка, падающего на поверхность. Граница света и тени (световое сечение) подобна профилю в сечении поверхности плоскостью, и по ее конфигурации можно судить о расположении, форме и размерах неровностей на испытуемой поверхности.  [c.105]

Считается, что приборы (двойные микроскопы, приборы светового сечения), в которых реализуется метод светового сечения, позволяют измерять неровности поверхности высотой от 0,8 до 63 мм с допустимыми погрешностями показаний по норме порядка 24 и 7,5% соответственно при наличии четырех пар сменных объективов ОС-39, ОС-40, ОС-41 и ОС-42. Следует заметить, что при этом неровности поверхности кромок шторок, прикрывающих диафрагмированную щель (иначе говоря, щелевую диафрагму), должны  [c.106]

При дальнейшем развитии методов и средств высокотемпературной металлографии было показано, что поскольку интегральные свойства реальных поликристаллов определяются свойствами отдельных зерен и их границ, между которыми существуют отклонения, то неравномерность протекания деформационных процессов в различных элементах структуры также приводит к изменению рельефности поверхности образца. Благодаря этому создается контраст изображения в световом микроскопе и появляется источник информации об особенностях поведения поликристаллического агрегата в условиях теплового воздействия и механического нагружения [2].  [c.5]

Следует отметить, что изменения в микроструктуре изучаемых методами световой тепловой микроскопии материалов не всегда могут быть зафиксированы одновременно с макроскопическими эффектами, характеризующими, например, механическое поведение материала. В частности, деформационное старение, в значительной мере определяющее уровень структурно-чувствительных свойств, не сопровождается видимыми в световой микроскоп изме-  [c.6]

Методы тепловой микроскопии основаны на том, что контраст изображения в световом микроскопе, которым оснащена соответствующая установка, обусловлен особенностями геометрического профиля поверхности исследуемого образца, находящегося в той или иной среде. Эти особенности определяются прежде всего спецификой поверхностных явлений в твердых телах.  [c.9]


Однако важнейшим преимуществом традиционных методов световой тепловой микроскопии (низко- и высокотемпературной металлографии) является их доступность они могут быть осуществлены в любой лаборатории, располагающей соответствующими серийными установками, либо реализованы благодаря специально сконструированным несложным приставкам к стандартному испытательному или металлографическому оборудованию.  [c.11]

Ниже рассматриваются способы препарирования образцов для исследования их методами тепловой световой микроскопии.  [c.11]

Наблюдение методами обычной световой микроскопии за процессами, предшествующими деформации, практически неосуществимо, так как накапливание внутренних напряжений, полигонизация и тому подобные явления, приводящие в дальнейшем к проявлению сдвигов и перемещений, сказывающихся на образовании микрорельефа на поверхности образца, не могут быть выявлены оптическими методами. Для исследования этих явлений целесообразно применение рентгеноструктурного анализа, позволяющего осуществлять прецизионное измерение периода решетки, оценку микро-иапряжений, фрагментации и разворота зерен и др.  [c.159]

Микроструктурные особенности деформационного старения образцов при различных временах изотермической выдержки в полуциклах растяжения и сжатия исследовали методами световой, электронной и интерференционной микроскопии, а также измерением микротвердости. При каждом режиме испытания образцы подвергали 1 3 5 7 и 10 циклам нагружения (продолжительность каждого цикла составляла 7 мин).  [c.216]

Легкодоступным в лабораторных условиях для непосредственного определения размеров и формы частиц является микроскопический метод для частиц диаметром 0,5 мкм и более — световая микроскопия, для частиц меньших размеров — электронная и отчасти световая микроскопия с применением иммерсионных жидкостей. Микроскопическим наблюдением при статистической обработке можно получить интегральную и дифференциальную кривые распределения частиц, подобные изображенным на рис. 5 для порошка железа. Микроскопические данные позволяют вычислить и видимую поверхность частиц различных размеров.  [c.25]

Принципиальная схема метода светового сечения для измерения прозрачных покрытий представлена на рис. 83. Освещенная узкая щель проектируется микроскопом по оси / на поверхность детали с прозрачным покрытием. Направления падения света и отражения от поверхностей детали и покрытия показаны стрелками.  [c.91]

Двойной микроскоп (фиг. 94) модель МИС-11 основан на методе светового сечения . Свет через узкую щель падает на поверхностные неровности (щель располагается перпендикулярно направлению гребешков) под углом 45° (или 60°) и тем самым очерчивает контуры неровностей (с некоторым искажением за счет угла наклона, под которым падает свет на испытываемую поверхность). Картина светового сечения рассматривается и измеряется с другой стороны при помощи микроскопа.  [c.292]

В отличие от метода светового сечения данный метод назван методом теневого сечения. Причем соотношение между измеряемыми величинами и высотой неровностей для обоих методов одинакова, т. е. определяются углом падения лучей и увеличением наблюдательной системы микроскопа.  [c.121]

В исследовании были использован методы световой и электронной микроскопии, метод прецизионного взвешивания, испытания на растяжение с разрывом плоских образцов, сериальные испытания на ударный изгиб, методы количественной электронной металлографии. Для получения сравнительных данных о стабильности этих десяти вариантов изучали результаты термической обработки, эквивалентной старению нормализованной стали при 350 °С в течение 10 ч. Для старения по зависимости Ларсена — Миллера были выбраны три параллельных режима.  [c.97]

Хотя световая микроскопия — одни из самых испытанных методов металловедения, порой в этой области приходится действовать на ощупь. Иногда даже говорят, что изготовление хорошего шлифа скорее искусство, чем наука. А для того чтобы подобрать удачный травитель, выявляющий фазовое строение, часто приходится пользоваться утомительным методом проб и ошибок.  [c.54]

Методом РЭМ можно исследовать морфологию зерен, их размеры и внутреннее строение, выявлять формы вхождения элементов в состав материалов, их кристаллохимические и термодинамические характеристики. Разрешающая способность РЭМ равна 20—3 нм, что более чем на порядок лучше световых микроскопов, глубина резкости изображения — от 0,5 до 0,8 нм.  [c.69]

Рис. 4.12. Принципиальная схема метода светового сечения для измерения толщины непрозрачного покрытия а —смещение щели в поле зрения микроскопа б— ступенчатое изображение щели Рис. 4.12. <a href="/info/4763">Принципиальная схема</a> <a href="/info/126595">метода светового сечения</a> для измерения <a href="/info/126729">толщины непрозрачного покрытия</a> а —смещение щели в <a href="/info/237798">поле зрения микроскопа</a> б— ступенчатое изображение щели
Измерение микротвердости [11, /2]. Дополнительные данные о природе и свойствах различных структурных составляющих сталей и сплавов по.лучают путем измерения микротвердости. Для этой цели используют специальные приборы (обычно ПМТ-3 и ПМТ-5) или приспособления к световым микроскопам. Наиболее распространенный метод измерения микротвердости основан на измерении линейной величины диагонали отпечатка д от вдавливания алмазной пирамиды с углом между гранями 136 под нагрузкой от 0,02—2Н. В зависимости от твердости исследуемой фазы и величины нагрузки диагональ отпечатка может изменяться от нескольких до нескольких сот микрометров, что позволяет изучать структурные составляющие размером до 10 мкм.  [c.30]


Принципиально возможны два способа сте-реоЛогической реконструкции — непосредственная и статистическая. Непосредственная реконструкция методом последовательных сечений — построение пространственной. модели структуры на основании изображений ее на последовательных по глубине сечениях — шлифах в металлографическом световом микроскопе (СМ), эмиссионном (ЭМ) или растровом (РЭМ) электронном микроскопе или на репликах в просвечивающем электронном микроскопе (ПЭМ). Последовательные сечения с минимальным шагом получают строго параллельным последовательным механическим или электролитическим полированием образца. Некоторые характеристики пространственной структуры определяют непосредственно на модели, другие — на представляющем ее графе. Непосредственную реконструкцию. методом стереопар проводят в основном для поверхностей разрушения в РЭМ или ПЭМ и частиц, порошковой пробы в РЭМ, На изображениях одного и того же участка структуры, полученных с одинаковым увеличением при двух, различных углах наклона объекта относительно пучка электронов, измеряют горизонтальный параллакс (разность координат идентичных точек на двух изображениях) и на его-основе рассчитывают соответствующие высоты.  [c.73]

В выявлении особенностей неоднородного распределения элементов наряду с традиционными методами световой микроскопии большую роль играет локальный рентгеноспектральный анализ. Результаты электронного зондирования фаз и структурных составляющих используют не только для изучения структурообразования чугуна, но и для уточнения условий фазовых равновесий в сложнолегированных чугунах.  [c.18]

Изучение структурных изменений в процессе ВТМО обкаткой роликами проводили на сталях 60С2А. 45, 40Х. Методом световой микроскопии исследованы изменения мартенситной структуры, зерен аустенита, а рентгеноструктурным анализом — закономерности изменения физического уширения линий  [c.45]

Р13Л0МЫ изучают на макро- и микроуровне (при увеличениях до 50 тыс. крат и вьине). Метод визуального изучения изломов, а также с помон[ью светового микроскопа при нeбoльнJИX увелич >-ниях называется фрактографией. Исследование особенностей тонкой структуры изломов под электронным микроскопом носит название микрофрактографии (рис. 3, г).  [c.13]

НАБЛЮДЕНИЕ ЛИНИИ ДЕКОРИРОВАННЫХ ДИСЛОКАЦИИ В СВЕТОВОМ МИКРОСКОПЕ. Метод декорирования дислокаций в прозрачных кристаллах заключается в том, что в кристалл при его выращивании или диффузионным путем вводят примесь, атомы которой притягиваются к дислокациям. При соответствующей термической обработке область вокруг линии дислокации оказывается пересыщенной примесью, которая выделяется в виде мельчайших частиц вдоль линии дислокации. Эти непрозрачные частицы, рассеивающие свет, делают видимой линию дислокации, хотя диаметр ее ядра находится за пределами разрещающей способности обычного микроскопа. Таким способом наблюдали дислокации в хлористом натрии, хлористом калии, галоидных соедине-  [c.100]

Использование когерентного излучения позволило создать принципиально новый метод проекционной микроскопии, основанный на применении квантовых усилителей света. Объект с помощью объектива освещается монохроматическим светом от лазера на парах меди. Отраженный от объекта свет проходит активную среду, усилн-вается и проектируется на экран. Когерентные микроскопы обеспечивают высокое пространственное разрешение (1 мкм при увеличении порядка 1000— 1500 при яркости изображения, недоступного обычным световым микроскопам). Особенностью микроскопа являются возможность фокусировки мощного лазерного излучения на любом элементе объекта и возможность осуществлять его коррекцию (напрн-  [c.96]

Исследование методами световой и растровой электронной микроскопии износа пары никель — никелевый сплав при трении без смазки позволило выяснить, что в начальный период износ является абразивным, обусловленным шероховатостью поверхностей. При этом происходит схватывание со сдвиговым разрушением и переносом сплава на поверхность никеля. При дальнейшем испытании непрерывное схваты вание и птпел ние епут к расслоению метал-  [c.17]

В 10—30-х годах текущего столетия были опробованы методы микроскопического анализа изучение под микроскопом поперечного шлифа электролитически покрытой поверхности, измерение под микроскопом неровностей поверхности по репликам из желатина и т. д. Предпринимали попытки косвенной оценки неровностей поверхности по потерям энергии маятника при торможении его неровностями поверхности во время качания, по разности размеров деталей до и после доводки, по предельному углу регулярного отражения света, по теневой картине поверхности на экране с увеличенными изображениями поверхностных дефектов, по расходу воздуха через участок контакта сопла с испытуемой поверхностью, по четкости изображения растра на испытуемой поверхности или на экране после отражения от нее светового пучка, по электрической емкости контактирующей пары испытуемая поверхность — диэлектрик с нанесенным слоем серебра , по нагрузке на индентер при определенном его сближении с испытуемой поверхностью, по изображению мест плотного соприкосновения призмы с неровностями поверхности и т. д. Были опробованы методы исследования рельефа поверхности с помощью стереофотограмм и стереокомпаратора. На производстве в этот период доминировали органолептические методы контроля визуальное сравнение с образцом, сравнение с помощью луп, сравнение на ощупь ногтем, краем монеты и т. п. В 30-х годах был предложен и реализован в двойном микроскопе метод светового сечения (Линник, Шмальц), а также метод микроинтерференции и основанные на нем микроинтерферометры, сочетающие схемы микроскопа и интерферометра Майкельсона. В этот же период  [c.58]

Исследования были проведены на аустенитной нержавеющей стали Х18Н10Т, склонной к интенсивному деформационному старению. Трубчатые образцы диаметром 21 мм и толщиной стенки 1,5 мм испытывали при растяжении-сжатии (частота нагружения приблизительно 1 цикл/мин) на установке типа УМЭ-10 т, снабженной вакуумной системой и средствами исследования микроструктуры на поверхности образца [1]. Указанная установка оборудована также системой управления силовозбудителем для получения двухчастотного режима нагружения (частота около 20 цикл/мин) и автоматическим устройством для программного нагружения с временными выдержками на экстремальных уровнях нагрузки в полуциклах нагружения. Испытания были проведены при моногар-моническом малоцикловом нагружении, при нагружении с выдержкой 5 мин при максимальной (по абсолютной величине) нагрузке в полуциклах, а также с наложением нагрузки второй частоты в процессе выдержки при температурах 450° С и 650° С [2]. При исследованиях структуры использованы методы световой (для определения числа, размера и характера расположения частиц), ионной и просвечивающей электронной микроскопии (для определения характера распределения карбидов и легирующих элементов), электронной микроскопии со снятием реплик с зон изломов, а также методы рентгеноструктурного (для определения степени искаженности кристаллической решетки в зависимости от уровня нагрузки) и рентгеноспектрального анализа. Образцы исследовались в зонах разрушения.  [c.67]


В ряде работ отмечается, что начальные изменения микростроения при старении не могут быть разрешены в световом микроскопе, тогда как именно на этих ранних стадиях наиболее значительно меняется поведение металлов и сплавов при механических испытаниях [106]. Для обнаружения ранних стадий процессов старения наиболее чувствительным является метод измерения электрического сопротивления материала. Как известно, удельное электросопротивление металла или однофазного сплава является функцией общего числа и распределения точечных дефектов, дисклокаций и растворенных атомов. Большие изменения удельного электросопротивления можно однозначно связывать с образованием скоплений растворенных атомов или выделений.  [c.220]

Вследствие известной ограниченности световой микроскопии (недостаточные глубина резкости и разрешающая способность) при изучении физических основ прочности материалов все чаще применяются методы прямого наблюдения за поведением дислокаций и образованием полос скольжения с помощью высоковольтного и растрового электронных микроскопов в широком диапазоне температур Эти методы тепловой электронной микроскопии, позволяющие осуществлять, например, исследование динамических свойств дислокаций in situ, вносят существенный вклад в изучение субми-кроскопических особенностей деформирования и разрушения материалов в условиях высоких и низких температур.  [c.292]

Двойной микроскоп мод. МИС-П (фиг. 61), конструкция которого разра ботана в 1929 г., выпускается серийно отечественной промышленностью. В ос нову конструкции прибора положен метод светового сечения , предложенный акад. В. П. Линником. Принципиальная схема  [c.154]

С 1960-х гг. начались исследования М. с. с применением сверхвысоковакуумной аппаратуры в условиях вакуумной гигиены, т. е. в хорошо контролируемых и поддерживаемых условиях. Появилась возможность дозированного изменения состава, темп-ры, зарядового состояния и др. параметров М. с. и прецизионного измерения этих величин, выяснена их связь с геом., в частности структурными, характеристиками поверхности. Наиб, удобны для исследования М. с. на чистых поверхностях полупроводников и др. монокристаллов, т, к. в таких М. с. наблюдаются анизотропные явления. Для изучения состава и структуры М. с. применяют зондирование поверхности электронными, нейтронными, ионными, молекулярными, рентг., световыми и позитронными пучками, автоионную, автоэлектронную, полевую и тепловую эмиссию частиц с исследуемых поверхностей, а также метод зондовой микроскопии. Большинство исследований должно проводиться в условиях сверхвысокого вакуума, что ограничивало возможности этих методов. Применение зондов-острий позволило снять эти ограничения.  [c.209]

Метод светового сечення. Направив пучок света под определенным углом тс исследуемой поверхности, можно получить на ней границу тени от непрозрачного экрана, введенного в часть светового пучка, падающего на поверхность. По искажению границы света и тени можно судить о расположении, конфигурации и характере неровностей на поверхности. На этом принципе основаны двойные микроскопы Лннника.  [c.366]

При построении линии растворимости очень удобно пользоваться рентгеновским методом, который легко обнаруживает появление второй фазы со своей кристаллической решеткой. Мерика, однако, применял обычный световой микроскоп, непосредственно наблюдая на шлифе выделения второй фазы.  [c.163]

Состав стали влияет и на критическую (по терминологии [120]) скорость нагрева, при которой восстановление зерна сменяется его измельчением. Это четко было показано еще в работе [ 120]. Авторы этого исследования установили, что с увеличением содержания углерода и уменьщенибм легированности стали нижняя критическая скорость нагрева уменьшается. Так, в стали 08ХГС з но восстанавливается при нагреве со скоростью 8, а в стали 90ХГС — 1 С/мин при скорости 8°С/ /мин зерно измельчается. К аналогичным вьшодам пришли и авторы работы [ 139], изучавшие а - 7-превращение в закаленных железоникелевых сплавах (22 - 32 % Ni) методами световой и трансмиссионной электронной микроскопии. В этих опытах скорость нагрева менялась от 3 до 28000°С/с. Исследования показали, что для малоуглеродистых сплавов (0,004 % С) а 7-превращение при любых скоростях происходит ориентированно. Для сплавов же с содержанием углерода  [c.110]


Смотреть страницы где упоминается термин Методы световой микроскопии : [c.574]    [c.95]    [c.280]   
Смотреть главы в:

Металловедение и термическая обработка стали Т1  -> Методы световой микроскопии

Металловедение и термическая обработка стали Том 1, 2 Издание 2  -> Методы световой микроскопии



ПОИСК



Микроскоп

Микроскопия

Микроскопия микроскопы



© 2025 Mash-xxl.info Реклама на сайте