Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Жаростойкость и методы ее повышения

Насыщение алюминием (алитирование) в порошках считается одним из самых надежных и, главное, простых методов повышения жаростойкости стальных деталей.  [c.50]

Одним из наиболее эффективных методов повышения жаростойкости деталей, работающих при высоких температурах (до 1200°) в окислительной среде, является поверхностное насыщение деталей алюминием.  [c.102]

Термодиффузионный метод позволяет получать поверхностный слой сплава в результате диффузии атомов наносимого элемента в основной металл при высоких температурах и тем самым суш,е-ственно понизить расход легирующих элементов при повышении жаростойкости металла.  [c.118]


Для повышения жаростойкости жаропрочных материалов широко применяется алитирование — поверхностное насыщение деталей алюминием. Из многочисленных методов алитирования наиболее распространенным является метод алитирования в порошковых смесях, так как он наиболее удобен в производстве и дает стабильные результаты.  [c.157]

С развитием техники к материалам предъявляют все более возрас- тающие требования в отношении их прочности и жаропрочности, жаростойкости, коррозионной стойкости и других свойств. Удовлетворение этих требований определяет саму возможность создания производственных процессов, аппаратов, машин и устройств с высокими рабочими параметрами и прежде всего температурой. Сохранение требуемых свойств при повышенных температурах, часто вблизи температуры плавления металла-основы, и является характерной отличительной чертой материалов, называемых высокотемпературными. Ракетная техника и космонавтика, ядерная энергетика и химическое машиностроение, авиа- и автомобилестроение, как и десятки других отраслей техники, не могут развиваться на базе только суш ествующих в настоящее время материалов, среди которых первое место пока прочно удерживают металлы и их сплавы. Однако хорошо отработанные приемы получения новых металлических материалов методами классической металлургии уже не приводят к заметным успехам в области разработки высокотемпературных материалов.  [c.150]

Жаростойкость и методы ее повышения  [c.135]

Аустенитные стали имеют низкую теплопроводность и высокий температурный коэффициент линейного расширения, что обусловливает перегрев металла в зоне сварки и возникновение значительных деформаций изделия. Основные трудности сварки рассматриваемых сталей и сплавов обусловлены высокой степенью легирования и разнообразием условий эксплуатации сварных конструкций. Основная особенность сварки таких сталей — склонность к образованию в шве и околошовной зоне горячих трещин в виде как мельчайших микротрещин, так и трещин значительных размеров. Образование горячих трещин связано с формированием при сварке крупнозернистой макроструктуры. Применение методов, способствующих измельчению кристаллов, повышает стойкость шва против образования горячих трещин. Эффективным средством является создание аустенитно-ферритной структуры металла щва. Получение аустенит-но-ферритных швов достигается путем дополнительного легирования металла шва хромом, кремнием, алюминием, молибденом и др. В сварных швах изделий, работающих как коррозионно-стой-кие при температуре до 400 °С, допускается содержание феррита до 25 %. В изделиях из жаропрочных и жаростойких сталей, работающих при более высоких температурах, содержание феррита ограничивают 4—5 %. Значительные скорости охлаждения при сварке и диффузионные процессы, происходящие при повышенных температурах в процессе эксплуатации, приводят к сильному охрупчиванию металла сварных соединений жаропрочных сталей и к потере прочности при высоких темпера-  [c.334]


Борирование. Борирование является одним из наиболее эффективных методов химико-терми-ческой обработки, предназначенной для повышения поверхностной твердости и износостойкости изделий. Сущность борирования состоит в том, что на поверхности порошковых деталей в результате разложения борсодержащих соединений получается элементарный бор, который с атомами металла изделий образует бориды, обладающие высокой твердостью, кислотостойкостью и жаростойкостью. Борирование порошковых деталей может производиться в газообразных, жидких и твердых средах. Простейшее — жидкостное электролизное борирование — производится в расплавленной буре (табл. 9.16, состав 4) в ке-  [c.485]

В МГТУ ИМ. Н.Э. Баумана была изобретена установка для получения покрытий из газовых сред циркуляционным методом с использованием тлеющего разряда (рис. 7.13). Экспериментальные исследования показали, что сочетание циркуляционного метода химико-термической обработки с нагревом деталей в тлеющем разряде приводит к более совершенной технологии и повышению качества жаростойких покрытий, например силицидов на молибдене.  [c.217]

Большая часть деталей, изготовленных из чугунов, работает при повышенных температурах. Например, широкое распространение в качестве конструкционного материала теплонапряженных деталей двигателей приобретают чугуны с шаровидной и пластинчатой формой графита. Опыт применения поршней из высокопрочного чугуна ведущих зарубежных фирм убедительно показал преимущества чугунных поршней перед алюминиевыми и составными поршнями в отношении теплоустойчивости, жаростойкости, КПД сгорания, дымления, расхода масла. В связи с высокими теплофизическими характеристиками и прочностными свойствами большой интерес вызывают также ковкие чугуны, основные свойства которых можно изменять методами ТО.  [c.135]

Горячее алитирование производят погружением деталей в ванну с флюсами, а затем в расплавленный алюминий при 770—800° С. Излишек алюминия сдувают сжатым воздухом. Этот метод используется за рубежом для повышения жаростойкости впускных и выпускных клапанов автомобильных двигателей.  [c.582]

Для повышения жаростойкости, твердости и стойкости против эрозионного воздействия рабочую поверхность пробок из углеродистой стали предварительно металлизируют, а затем подвергают алитированию. После пескоструйной обработки на поверхность пробок наносят алюминиевое покрытие толщиной 0,3 мм методом металлизации распылением. Металлизированные пробки отжигают при 1100° С2>ч,в результате чего на поверхности образуется твердый раствор сплава железо-алюминий, обладающий высокой жаропрочностью, химической стойкостью и твердостью HV 1050.  [c.197]

Остановимся на основных методах получения силицидных покрытий и описании их некоторых свойств, причем рассмотрим только силицидные покрытия на тугоплавких металлах и сплавах, хотя насыщение кремнием сталей и чугунов также достаточно эффективное средство повышения их жаростойкости и коррозионной стойкости [7, 85].  [c.215]

Некоторые из указанных соединений уже нашли широкое применение, в частности карбиды и нитриды титана. Применение других соединений ограничено из-за крайней дефицитности ряда тугоплавких металлов и сложной технологии получения их соединений существующими методами. Однако уникальность их свойств, особенно таких, как высокая твердость, которая сохраняется при повышенных температурах, химическая инертность по отношению к конструкционным сталям, жаростойкость, коррозионная стойкость и т. д., позволяет предполагать, что часть из них найдет широкое применение в качестве покрытий. Особенно это относится к нитридам, карбонитридам, боридам, окислам и их смесям тугоплавких металлов.  [c.35]

Керамический флюс и разработанный метод автоматической сварки позволяют получать механические свойства сварных соединений сплавов типа бронз повышенной жаростойкости такие же, а при дополнительном легировании выше, чем у основного металла.  [c.567]


Сплавы для нагревателей составляют обособленную группу в семействе жаростойких сплавов. Эта обособленность определилась, когда был разработан специальный метод ускоренного испытания проволочных образцов с нагревом их электрическим током. Такой способ испытания в большей степени учитывал условия эксплуатации электронагревателей (нагрев электрическим током, неоднородность электрического сопротивления по длине проводника, провисание нагревателей), чем ранее применявшиеся методы оценки жаростойкости. Метод позволял быстро изучать влияние легирования сплавов на стойкость образцов и поэтому получил широкое распространение. В результате применения этого метода обнаружено чрезвычайно эффективное влияние микродобавок редкоземельных и щелочноземельных элементов на термостойкость окалины (данные Хессенбруха). Использование специальных микродобавок привело к резкому повышению уровня эксплуатационных свойств промышленных сплавов.  [c.4]

Основные методы защиты от газовой коррозии в окислительных средах применение сталей и сплавов с высокой стойкостью при заданных параметрах эксплуатации защитные покрытия, наносимые термодиффузионным путем (алитирование, хромирование, силицирова-ние, комплексное насыщение жаростойкими элементами), плаз.менным напылением, электронно-лучевым методом и др. введение в рабочую среду ингибиторов, затрудняющих процессы газовой коррозии конструктивные методы (снижение рабочей температуры поверхности детали, уменьшение скорости движения среды и др.) технологические методы (повышение чистоты поверхности деталей, применение термической обработки для создания тонких пленок, препятствующих коррозионному процессу, и др.).  [c.251]

В работе изложены результаты исследования методом локального спектрального анализа перераспределения компонентов стали ЭИ696М, подвергнутой вакуумному алитированию с целью повышения длительной жаростойкости. В основе примененной нами методики определения взаимодиффузии компонентов стали лежит метод локального спектрального анализа с помощью линейного источника света, предложенный И. Г. Исаевым [11 и использованный для исследования диффузии в работах [2—5 ].  [c.187]

Снижение температуры нанесения алюминиевого покрытия приводит к повышению жаростойкости, по-видимому, за счет образования более богатых по алюминию фаз в покрытии. В настоящей работе проведено исследование жаростойкости сплавов ЭИ867, ЭП109 после низкотемпературного алюминирования, в интервале температур 570—630° С, методом погружения в расплавленные соли с порошком ферроалюминия [11.  [c.79]

Важной технической проблемой является увеличение срока службы технологической оснастки стеклоформирующих машин. В частности, к матрицам и пуансонам пресс-форм предъявляются повышенные требования по коррозионной стойкости, жаростойкости, а также по сопротивлению износу и механической прочности. Поскольку разрушение в подавляющем большинстве случаев начинается с поверхности, то для практического решения вопроса достаточно защитить лишь ее. Это можно осуществить с помощью силицидных покрытий. Однако известные методы их получения обладают рядом технологических недостатков, таких как большая трудоемкость и продолжительность процесса. При этом диффузионные слои пористы, хрупки, недостаточно тверды.  [c.194]

Повышение жаростойкости и сопротивляемости электрохимической коррозии стальных лопаток объясняется строением диффузионного алюминидного подслоя, получаемого низкотемпературным алитированием порошков и покрытого стеклокерамической пленкой, создаваемой методом растворной керавшки из водных силикатных и фосфатных растворов.  [c.243]

Твердорастворное упрочнение, один из наиболее известных И широко используемых методов, вероятно, сейчас уже исчерпало свои возможности. Действительно, преодолеть противоречие между прочностью и пластичностью путем упругих искажений матрицы невозможно. Не забывая о преимуществах легирования при созданий высококонцентрированных растворов для специальных целей (жаростойкость, антикоррозийность высокоомность и т. п.), следует считать, что перспективность создания концентрированных растворов для повышения конструктивной прочности сплавов сомнительна И может рассматриваться только на уровне микролегирования. При нанесении покрытий положительная роль твердорастворного упрочнения резко возрастает, так как любые покрытия конструируются на базе концентрированных твердых растворов, или химических соединений.  [c.9]

К химическому методу относится также контактное осажденрге металлов из раствора. Для листовых полуфабрикатов применяется горячий способ нанесения покрытий из расплавов цинка, олова, алюминия. Металлические покрытия должны обладать хорошей пластичностью. Пластичность покрытия определяется промежуточным слоем интерметаллидов, образующихся в результате реактивной диффузии. Для регулирования пластичности в расплавы вводятся добавки других металлов. В промышлен-иости применяется также термодиффузионное поверхностное легирование сталей хромом, алюминием, кремнием и другими элементами G целью повышения их жаростойкости и коррозионной стойкости в агрессивных средах. Процесс проводится при высоких температурах из измельченной твердой или газовой фазы хлоридов или других соединений соответствующих металлов.  [c.49]

Во втором издании (первое - в 1986 г.) рассмотрены основные положения теории коррозии металлов и сплавов. Проанализировано влияние условий эксплуатации на коррозию конструкционных сплавов. Изложены принципы создания металлических сплавов повышенной стойкости. Приведены свойства важнейших конструкционых материалов, в том числе данные по жаропрочным и жаростойким конструкционным сплавам. Указаны способы повышения коррозионной стойкости поверхностное легирование, создание металлокерамических сплавов, получение сплавов в аморфном состоянии, современные методы борьбы с газовой коррозией.  [c.160]


Покрытия медь —корунд. Такие покрытия являются классическим примером КЭП с улучшенными механическими свойствами [, с. 87— 95 14 33 34]. Композиции Си—AI2O3, полученные металлургическим методом, имеют повышенную температуру рекристаллизации вплоть до Ю00°С, что лишь на 80 °С ниже температуры плавления меди. Это свойство проявляется тем значительнее, чем больше содержание AI2O3 и меньше размеры частиц. Для сравнения отметим, что композиции Си— MgO и Си—2гОг обладают повышенной жаростойкостью.  [c.155]

Электрпфиатеские и электрохимические методы обработки позволяют изменять в нужном направлении физико-механические и химические свойства поверхностного слоя деталей дли повышения износостойкости, твердости, коррозионной стойкости, жаростойкости и т. д. Эти процессы осуществляются практически без силового воздействия, обеспечивая минимальную шероховатость поверхности с округленными вершинами неровностей, тем самым увеличивается опорная поверхность.  [c.172]

В последние годы развиваются, как было отмечено выше, методы комплексного гпермодиффуаионного насыщения поверхностей деталей одновременно несколькими алементами бороалитирование, боросилицирование, хромоалитирование и др. Последнее, например, повысило надежность и в несколько раз увеличило долговечность деталей турбин реактивных двига)елей за счет повышения жаростойкости н эрозионной стойкости.  [c.184]

Упрочнение методами электроискровой обработки применяют для повышения износостойкости и твердости поверхности деталей машин, работающих в условиях повышенных температур в инертных газах жаростойкости и коррозионной стойкости поверхности долговечности металлорежущего, деревообрабатывающего, слесарного и другого инструмента создания шероховатости под последующее гальваническое покрытие облегчения пайки обычным припоем труднопаяемых материалов (нанесение промежуточного слоя, например меди) увеличения размеров изношенных деталей машин при ремонте изменения свойств поверхностей изделий из цветных металлов и инструментальных сталей.  [c.274]

Формообразующие детали. Эти детали являются наиболее ответственными, так как они соприкасаются с жидким сплавом, в той или иной степени участвуют в оформлении поверхностей отливок и наиболее еильно подвергаются термическому воздействию и механическим нагрузкам. Эти детали изготовляют из жаростойких сталей, обладающих высокими механическими свойствами. Для повышения износостойкости и уменьшения химического взаимодействия с заливаемым сплавом формообразующие детали подвергают термообработке, а их рабочие поверхности — цианированию, азотированию, фосфатированию и другим методам упрочнения. Марка стали и режим термообработки зависят от температуры плавления заливаемого сплава. В целях уменьшения сопротивления выталкиванию отливок из пресс-формы и. првышения качества поверхности отливок рекомендуется обраба-тывать рабочие поверхности формообразующих деталей до ше-( роховатости 0,32 мкм.  [c.125]

Перед проведением работы необходимо бзиакомиться 1) с составом и структурой окисных пленок 2) с механизмом роста окисных пленок 3) с влиянием легирующих добавок на повышение жаростойкости 4) с влиянием температуры на жаростойкость 5) с методами испытания на газовую коррозию.  [c.63]

Предложено методом порошковой металлургии готовить высококарбидные композиции, например, ферро-тита-наты или никель-титанаты, т. е. композиции на основе железа или никеля, содержащие 20—35 % карбида титана (Ti ) и, одновременно, 10—20% Сг, 2—15% Мо, иногда 1—1,5 % А1, 0,5—1 % Си или 10—30 % Со, при содержании в матрице (железе или никеле) порядка 0,2—0,65 % С. Эти материалы характеризуются повышенной прочностью, коррозионной и эрозионной стойкостью и жаростойкостью. По зарубежным данным [249] подобные материалы уже применяют в качестве штампов для коррозионноактивных пластмасс, при переработке керамики в электроиндустрии, для изготовления форм и режущих инструментов, используемых при работе со стеклянными расплавами, а также в качестве износостойких деталей для морской и реакторной техники и т. п.  [c.336]

Для повышения сопротивления термическому воздействию на детали наносят специальные жаростойкие покрытия методами диффузии (алитированием, хромоалитированием и др.), эмалировани- ем и т. д.  [c.135]

Жаростойкие покрытия. Для повышения сопроти1вляемости никелевых сплавов окислению при высоких температурах находят применение различные защитные покрытия на поверхности лопаток. Наиболее распространенным методом является диффузионное насыщение поверхностного слоя детали алюминидами. Насыщение ведется либо в порошках с хлоридами (порошковое алитирование), либо окраской (шликерным методом) с последующим диффузионным отжигом. Кроме того, получают распространение хромоалити-рование в вакууме и нанесение многокомпонентных покрытий. Менее жаропрочные сплавы, работающие при умеренных температурах, покрывают жаростойкой эмалью [52].  [c.142]

Введение хрома в алюминидное покрытие (хромалюми-нидное покрытие) повышает его жаростойкость, а также приводит к торможению реакции (38) примерно на порядок. Кроме того, Сг—Л1 покрытия обладают повышенной стойкостью в серусодержащих и, в меньшей степени, в ванадийсодержащих средах. Покрытия наносят совместным или последовательным диффузионным насыщением хромом и алюминием в порошковых средах или шликер-ным методом 114]. Компоненты насыщающих сред — Сг, А1, Сг-А1 лигатура, NigAl и другие хром- и алюминийсодержащие вещества.  [c.435]

Диффузионная металлизация представляет собой процесс диффузионного насьш ения поверхностных слоев стали различными металлами (алюминием, хромом, цинком, бериллием, молибденом и др.), а также кремнием и бором для защиты изделий от коррозии и повышения их жаростойкости, износостойкости и-твердости. Диффузионная металлизация осуществляется в твердых, жидких и газообразных средах. Из методов диффузионной металлизации наибольшее применение получили алитирование, хромирование, сили-цирование, борирЪвание и др.  [c.186]

В данном пособии мы даем только четыре работы по газовой коррозии. Однако эти задачи подобраны так, что, выполнив их, учащийся сможет достаточно полно ознакомиться с областью и основными приемами исследования газовой коррозии экспериментальным установлением кинетики окисления металлов и определением основных законов окисления (работа № 1), установлением температурной зависимости скорости окисления (работа № 2), наиболее типичным методом нспытания жаростойкости металлов и ее повышения путем легирования (работа № 3), а также методом нанесения жаростойких (диффузионных) покрытий (работа № 4).  [c.38]

На рис. 54 представлены результаты испытания на жаростойкость покрытий А и Б. Испытания, проведенные традиционным весовым методом, показали преимущество покрытия А. В действительности эта характеристика не является объективной, так как после испытания на жаростойкость в покрытии Б концентрация алюминия изменялась от 17 до 4% по массе, а в покрытии А — от 12 до 2% по массе. Кроме того, толщина сохранившегося покрытия А больше, чем Б. На поверхности обоих покрытий обнаружены оксиды АЬ Оз и N1A1204. Повышенный привес образцов с покрытием Б при весовом методе испытания на жаростойкость, по-видимому, можно объяснить дополнительным окислением ниобия.  [c.98]



Смотреть страницы где упоминается термин Жаростойкость и методы ее повышения : [c.262]    [c.298]    [c.294]    [c.177]    [c.128]    [c.169]    [c.171]    [c.75]    [c.385]    [c.649]    [c.399]    [c.109]    [c.221]   
Смотреть главы в:

Материаловедение и технология металлов  -> Жаростойкость и методы ее повышения



ПОИСК



Жаростойкость

Методы повышения к. п. д. ГТУ



© 2025 Mash-xxl.info Реклама на сайте