Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

ОСНОВЫ ДИНАМИКИ МЕХАНИЗМОВ И МАШИН

Б. ОСНОВЫ ДИНАМИКИ МЕХАНИЗМОВ И МАШИН  [c.129]

В процессе исторического развития теоретической механики кинематические исследования долгое время (до XIX в.) не отделялись от вопросов динамики. Однако развитие техники машиностроения привело к необходимости выделения кинематики в особый раздел теоретической механики, и при этом кинематика стала теоретической основой теории механизмов и машин.  [c.219]


О. Мор, Л. Бурместер. Крупными достижениями ознаменована деятельность видного немецкого ученого, профессора Ф. Виттенбауэра, создавшего систему графических методов исследования динамики механизмов и машин. Изданная Виттенбауэром Графическая динамика явилась синтетическим трудом, в котором на основе многих обобщений излагались методы кинетостатического и динамического расчета механизмов, ставились некоторые проблемы механики машин.  [c.45]

Предмет Основы технической механики представляет собой комплекс важнейших общетехнических знаний и содержит четыре раздела статика основы сопротивления материалов элементы кинематики и динамики детали механизмов и машин.  [c.3]

За 50 лет своей преподавательской деятельности Иван Иванович подготовил многочисленные кадры инженеров. Он читал лекции по теории механизмов и машин, синтезу механизмов, динамике машин, общей теории колебаний, теории регулирования машин, уравновешиванию авиационных и морских двигателей, теории сельскохозяйственных машин, теории пространственных механизмов, основам теории машин-автоматов, теории и расчету мельничных машин, теории крутильных колебаний валов двигателей и другим дисциплинам. Он первым поставил преподавание общего курса теории механизмов и машин в университете прочитал для студентов механико-математического факультета МГУ ряд спецкурсов. Если учесть, сколько студентов изучает механику машин по учебникам и учебным пособиям И. И. Артоболевского, то окажется, что число его косвенных учеников превысило не одну сотню тысяч. Он был непосредственным руководителем более 100 кандидатских и докторских диссертаций. Среди учеников Артоболевского много ученых из социалистических стран. Едва ли не все ученые, специалисты в области теории механизмов, работающие в союзных республиках,— его ученики. Воспитание национальных кадров — одно из важных направлений его педагогической деятельности. Работу И. И. Артоболевского в Обществе по распространению политических и научных знаний (реорганизованного с 1963 г. во Всесоюзное общество Знание ) можно такл<е считать частью его научной и педагогической деятельности. В 1966 г. он возглавил Правление Всесоюзного общества Знание , которым бессменно руководил до конца жизни.  [c.21]

В разное время Артоболевским были прочитаны курсы теория механизмов и машин, синтез механизмов, динамика машин, общая теория колебаний, теория регулирования машин, уравновешивание авиационных и морских двигателей, теория сельскохозяйственных машин, теория и расчет мельничных машин, теория крутильных колебаний валов двигателей, теория пространственных механизмов, основы теории машин-автоматов. Более десятка курсов — хватило бы не на одного квалифицированного преподавателя А ведь Артоболевский не просто читал готовые курсы. Он их все время совершенствовал, углублял. Постоянно проверял лекционный материал, выясняя те места, которые оказывались трудными для понимания, и находил для них методически более правильные решения. Его лекции, его преподавательская работа были продуктом творческой научной деятельности. Вот почему, преподавая практически всю жизнь, он сумел избежать профессиональной болезни некоторых педагогов — однообразного чтения выверенного, устоявшегося и всеми признанного курса.  [c.67]


Все эти задачи выбора технологических, конструктивных, структурных и эксплуатационных параметров машин-автоматов и автоматических линий не могут быть решены только с точки зрения кинематики, кинетостатики, прочности, динамики и других традиционных критериев теории механизмов и машин. Достигнутые успехи теории производительности как в фундаментальном, так и в прикладном направлении позволяют утверждать, что в настоящее время теория производительности стала основой проектирования машин-автоматов и автоматических линий.  [c.6]

В заключение следует сказать, что анализ периодических виброударных режимов определенного вида не исчерпывает полностью задач, которые могут возникать при исследовании динамики или динамической точности машин, механизмов и систем с упругими связями. Вместе с тем полученные в последних трех главах этой книги качественные выводы и количественные соотношения могут быть положены в основу решения вопросов динамического синтеза, связанных с выбором оптимальных параметров виброударных систем.  [c.365]

Краткий исторический обзор работ по структуре, кинематике и синтезу механизмов. В основу разработки разделов и большинства вопросов Механики машин положены работы отечественных и зарубежных ученых. Приведем краткую справку об этих работах, относящихся к материалу настоящего тома Структура, кинематика и синтез механизмов . Соответствующий материал по динамике и трению в машинах приведен во введении ко второму тому.  [c.6]

Все большую важность приобретает проблема динамики машин, содержащих упругие элементы. Причины этого совершенно очевидны. С одной стороны, крайне важны для практического машиностроения научно обоснованные методы борьбы с вибрациями, возникающими в упругих системах при их динамическом нагружении. С другой стороны, широкое применение в практике получили также машины, для которых вибрационные режимы движения составляют основу выполняемого ими технологического процесса. И в том, и в другом случае решение задач динамики требует сочетания методов теории механизмов и теории колебаний.  [c.8]

Техническая диагностика определяет рациональную последовательность проверок механизмов и сборочных единиц и на основе изучения динамики изменения показателей технического состояния машин и оборудования решает вопросы прогнозирования (предвидения) ресурса и безотказной работы.  [c.285]

В СССР в годы Великой Отечественной войны и после ее окончания на передний план вышло еще одно направление теории машин — динамика машин и механизмов. Повышение мощности машин и их рабочих скоростей, создание в промышленности все более и более крупных машин и одновременное сокращение сроков их монтажа и ввода в действие, перевод машин на новые режимы работы,— все это стимулировало исследования динамических явлений в машинах. Продолжаются исследования в области колебаний, начатые еще в 30-х годах, в том числе нелинейных колебаний в самые различные области техники проникают вибрационные и виброударные механизмы. Все большее внимание начинают уделять пневматическим и гидравлическим механизмам, механизмам с электрическими связями, без изучения динамики которых невозможно дальнейшее развитие теории машин автоматического действия. Задачи кинематики и динамики механизмов с двумя степенями свободы, связанные в своей основе с вопросами автоматического регулирования, оказались весьма полезными и при изучении иных, более общих случаев механизмов.  [c.216]

Машиноведение объединяет комплекс научных дисциплин, связанных с машиностроением. Это теория машин и механизмов, машиностроительные материалы, сопротивление материалов, динамика и прочность машин, детали машин и основы конструирования, расчет и конструирование различных специальных машин (двигателей, автомобилей, тракторов и т. д.), технология машиностроения, эксплуатация различных машин, триботехника (наука о трении, износе и смазке), надежность машин и др.  [c.3]

Одной из естественных тенденций в развитии машин явилась тенденция к повышению их рабочих скоростей, мощностей и передаваемых сил. До Великой Октябрьской социалистической революции вопросы динамики машин и механизмов были развиты сравнительно мало. В основном изучалась динамика паровых машин, некоторые вопросы динамики поршневых двигателей внутреннего сгорания и теория регулирования неравномерности движения этих машин. Динамика технологических машин начала разрабатываться только после революции. Первые исследования по динамике технологических машин были посвящены сельскохозяйственным машинам. В основу их были положены труды акад. В. П. Горячкина. До 30-х годов нашего столетия работы по динамике машин и механизмов продолжали носить прикладной характер. Рассматривались отдельные задачи динамики применительно к авиадвигателям, сельскохозяйственным, текстильным, пищевым, горным и другим машинам. В основном рассматривались задачи кинетостатики, уравновешивания масс, подбора маховых масс и некоторые вопросы крутильных колебаний валов двигателей внутреннего сгорания. В период с 1930 по 1940 г. на основе развития теории структуры механизмов появляются работы более общего плана, в которых излагаются методы кинетостатического исследования как плоских, так и пространственных механизмов. Начинают развиваться методы динамического исследования зубчатых, кулачковых и других видов механизмов.  [c.29]


Зазоры в кинематических парах. Переходя к рассмотрению виброударных режимов движения механизмов с упругими связями, отметим прежде всего, что для ряда машин и устройств подобные режимы составляют основу их действия. Вместе с тем зачастую виброударные взаимодействия возникают как побочное явление, сопутствующее нормальной работе механизма. Столь существенное различие в причинах возникновения виброударных режимов движения не мешает, однако, единым методом рассмотреть динамику и устойчивость систем, которым эти режимы свойственны.  [c.218]

Книга издается в двух томах, первый том вышел в 1971 г. Во втором томе рассмотрены методы изучения движения машин с учетом действующих сил на основе теорем и принципов динамики системы материальных точек и на основе принципа Даламбера. Приведен силовой расчет механизмов. Рассмотрены вопросы неравномерности хода машин, разновидности трения в машинах и их законы.  [c.2]

К середине XIX в. в России выросла плеяда талантливых ученых, заложивших основы современной теории механизмов и машин. Основателем русской школы этой науки был великий математик акад. П. Л. Чебышев (1821—1894 гг.), которому принадлежит ряд оригинальных исследований, посвяш,енных синтезу механизмов, теории регуляторов и зубчатых зацеплений, структуре плоских механизмов. Он создал схемы свыше 40 различных механизмов и большое количество их модификаций. Акад. И. А. Вышнеградский явился основателем теории автоматического регулирования его работы в этой области нашли достойного продолжателя в лице выдаюш,егося русского ученого проф. Н. Е. Жуковского, а также словацкого инженера А. Сто-долы и английского физика Д. Максвелла. Н. Е. Жуковскому — отцу русской авиации — принадлежит также ряд работ, посвященных решению задачи динамики машин (теорема о жестком рычаге), исследованию распределения давления между витками резьбы винта и гайки, трения смазочного слоя между шипом и подшипником, выполненных им в соавторстве с акад. С. А. Чаплыгиным и др. Глубокие исследования в области теории смазочного слоя, а также по ременным передачам выполнены почетным академиком Н. П. Петровым. В 1886 г. проф. П. К. Худяков заложил научные основы курса деталей машин. Ученик Н. А. Вышнеградского проф. В. Л. Кирпичев известен как автор графических методов исследований статики и кинематики механизмов. Он первым начал читать (в Петербургском технологическом институте) курс деталей машин как самостоятельную дисциплину и издал в 1898 г. первый учебник под тем же названием, В его популярной до сих пор книге Беседы о механике решены задачи равновесия сил, действующих в стержневых механизмах, динамики машин и др. Выдающийся советский ученый проф. Н. И. Мерцалов дал новые оригинальные решения задач кинематики и динамики механизмов. В 1914 г. он написал труд Динамика механизмов , который явился первым систематическим курсом в этой области. Н. И. Мерцалов первым начал исследовать пространственные механизмы. Акад. В. П. Горячкин провел фундаментальные исследования в области теории сельскохозяйственных машин.  [c.7]

Производная (iyv/d(() подсчитывается или численным дифференцированием на ЭВМ, или графическим дифференцированием (см. 3.4). Другой значительно более точный (но и более трудоемкий) способ определения производной iyv/(li( можно найти в литературе. (См. Минут С. Б. Об определении производной приведенного момента инерции массы звеньев механизма. — Науч. тр. МВТУ им. Н. Э, Баумана, 1970 Зиновьев В. А.. Бессонов А. fl. Основы динамики машинных агрегатов. М., 19Н4).  [c.155]

В разделах кинематики и динамики механизмов рассматриваются пространственные механизмы промышленных роботов и манипуляторов. В разделе Основы теории машин-автоматов излагаются методы лостроения систем управления машин-автоматов с механическими, пневматическими и гидравлическими элементами.  [c.391]

Теория проектирования лгашин-автоматов и автоматических систем машин могла начать свое развитие только после того, как были созданы основы теории структуры, кинематики и динамики механизмов. Первые работы по теории машин-автоматов, появившиеся в предвоенные и послевоенные годы, были посвящены, в основном, методам анализа машин-автоматов и теории их производительности. Особое внимание исследованиям в области теории машин-автоматов и автоматических систем машин уделяется после решений ХХП съезда КПСС о путях развития современного производства и задачах перехода на комплексную механизацию и автоматизацию всех производственных процессов.  [c.32]

До Великой Октябрьской социалистической революции исследования в области механики машин проводились лишь в немногих университетских городах — в Петербурге, Москве, Одессе, Харькове, Киеве. Революция изменила и расширила географию высших учебных заведений страны, что сразу же отразилось и на развитии науки о машинах исследования по теории механизмов публикуются также в Томске, Владивостоке, Свердловске и других научных центрах Союза. До середины 30-х годов усилия отдельных ученых были разобш ены затем на основе общности тематики и методов исследования начинают складываться научные школы. Основной тематикой сперва были вопросы структуры и классификации механизмов, кинематика и кинетостатика плоских и пространственных механизмов значительно в меньшей степени изучались методы синтеза механизмов, кинематика и динамика кулачковых и зубчатых механизмов. Немного работ было посвяш,ено вопросам теории машин автоматического действия и динамике машин.  [c.225]

Проектирование соврейенных машин ведется на основе многих технических дисциплин. Однако важно подчеркнуть, что при проектировании любой машины, прибора или устройства механического действия обязательно приходится решать вопросы, связанные с выбором кинематических схем механизмов, их расчетом, динамикой их движения, с подбором основных параметров двигателя. Вот почему для понимания принципа действия принятых на производстве машин, а тем более для создания новых и усовершенствования существующих необходимо знать методы проектирования кинематических схем механизмов и иметь представление о построении машинных агрегатов.  [c.3]


На протяжении пятидесяти лет советскими учеными были изучены вопросы, относящиеся буквально ко всем разделам науки о машинах. Осваивая классическое наследство, советская школа теории мез,анизмов и машин начала свои исследования с развития учения о структуре механизмов, которое могло бы быть положено в основу дальнейших изысканий. Затем последовали работы в области кинематики и кинетостатики механизмов, их синтеза, динамики и, наконец, в области динамики машин и машинных агрегатов. Постепенно усложняя объект изучения, советские ученые в то же время совершенствовали свои методы исследования. Если исследования в двадцатых и тридцатых годах выполнялись в основном в теоретическом плане, а эксперимент вводился в них крайне редко, то с сороковых годов экспериментальные исследования начинают играть все более и более важную роль. В свйзи с этим разрабатывается методика эксперимента и подбирается соответствующая аппаратура, значительная часть которой создается одновременно с проводимыми исследованиями.  [c.363]

Опыт промышленнсюти показывает, что соблюдение внутренней взаимозаменяемости составных частей машин, механизмов и агрегатов позволяет обеспечить взаимозаменяемость всех выпускаемых однотипных изделий по их эксплуатационным (функциональным) показателям. Взаимозаменяемость изделий по оптимальным эксплуатационным показателям является основой принципа взаимозаменяемости в машиностроении, и ее называют функциональной взаимозаменяемостью. Это название подчеркивает необходимость нормирования точности функциональных параметров, определяющих эксплуатационные показатели изделий, исходя из их связи с этими показателями и допусков на них. Эксплуатационные показатели - это параметры, характеризующие качество выполнения машиной требуемых от нее функций. Общими для всех машин являются показатели надежности динамики, эргономики, экономические показатели.  [c.264]

Износ элементов машин, взаимодействующих с твердой средой или телом. Целый ряд элементов машин изнашивается при контакте с твердой средой или телом, не являющимся частью машин. В этом случае необходимо оценить износ одной поверхности, учитывая все основные воздействия внешней среды, которые определяют интенсивность этого процесса и распределение износа по поверхности трения. Характерным для этих деталей является, во-первых, формирование внешних воздействий из условий динамики работы данного механизма с учетом обтекания средой поверхностей трения и, во-вторых, влияние, как правило, самого износа на изменение условий контакта. Примерами таких элементов машин могут служить лемех плуга при его взаимодействии с почвой, зубки горнорежущего инструмента врубовых машин и комбайнов, фильеры для пропуска нитей основы текстильных машин, лотки и шнеки для подачи заготовок, грузов или сыпучих смесей, протекторы автомобильных колес и др. Все эти элементы находятся, как правило, в тяжелых условиях работы и во многом определяют надежность всего узла или машины. Для расчета износа  [c.318]

Мерцалов впервые создал логически строгий и очень содержательный курс теории машин. Правда, основой его по-прежнему оставалась динамика поршневого двигателя, но изучена она была весьма подробно. Личные интересы Мерцалова лежали в области теории шарнирных механизмов этот раздел кинематики механизмов он изложил, применяя теорию Рело и переработанные механиками второй половины XIX века (в том числе и русскими) классификационные принципы Виллиса (лекции которого по теории машин в частности слушал К. Маркс).  [c.24]

Все же первое десятилетие XX века и в этом отношении не было безрезультатным. В России в 1904 г. вышло стеклографированное издание учебника Н. И. Мерцалова — первая обобш,ающая работа по динамике машин. Были заложены основы кинетостатического расчета механизмов. Здесь основное затруднение заключалось в том, что СИДЫ, действуюш ие между звеньями механизма, являются внутренними по отношению к последнему и поэтому взаимно уничтожаются, если вести расчет всего механизма в целом. Надо было найти такой метод, при помош,и которого внутренние силы не исключались бы. При этом такой метод должен был также учитывать и те силы, которые возникали в процессе движения звеньев механизма  [c.89]

Инженер-механик высокой культуры и очень широких познаний, Радциг занимался различными областями науки о машинах и неоднократно как в Киеве, так и в Петербурге читал курс теории механизмов, хотя предпочтение оказывал теплотехнике. Разработанный им краткий курс прикладной механики несколько раз переиздавался и в течение многих лет служил учебником в высшей технической школе. По кинематике механизмов Радциг давал лишь самые необходимые сведения основы теории кинематических нар, кинематической цепи, преобразования шарнирного четырехзвенника, кривошипно-шатунный механизм, теорию инверсора Поселье — Липкина. Значительно подробнее он излагал динамику машин — здесь сыграли роль его научные интересы.  [c.176]

Следует особо подчеркнуть, что в основе приведённых данных по теории и расчёту сельскохозяйственных машин лежат, с одной стороны, труды основоположника этой науки—академика В./7. Горячкина и его последователей, а с другой стороны — труды советских агробиологов К- А. Тимирязева, В. Р. Вильямса И. В. Мичурина, Т. Д. Лисенко. Расчет ряда специальных механизмов сельско-хозяйственных машин дан на базе науки о кинематике и динамике пространственных механизмов, созданной Н. И. Мерцаловым.  [c.723]

Термин У. и. не является удачным, т.к. униполярные машины как минимум биполярны. Тем не менее он весьма распространён. Довольно часто У. и. называют любые проявления эл.-магн. индукции в произвольно движущихся намагниченных телах (твёрдых, жидких, газообразных). В таком расширенном понимании У. и. лежит в основе механизма возникновения эдс в магнитогидродинамич. генераторах, позволяет объяснить формирование магн. полей и динамику магнитосфер звёзд (в частности, пульсаров) и планет.  [c.225]

Приступая к проектированию машинного агрегата, надо сопоставить требования, вытекающие из его целевого назначения, кинематики и динамики, наметить вид двигателя я типы механизмов, принципиально необходимых для силовой передачи затем, на основе сравнительного анализа разновидностей типовых механизмов, выбрать наиболее подходящие. При проектировании надо сравнивать разные варианты возможных решений и выбирать наиболее оптимальные как с технической, так и с экономической точек зрения. Успех при проектировании во многом зависит от умения разбираться в строении, кинематическом и динамическом анализе рас-пфостраненных в технике машинных агрегатов, от понимания протекающих при их работе физико-механических процессов, от знания их эксплуатационных характеристик и умения давать им всестороннюю оценку.  [c.209]

Развитие всех разделов современной техники указывает на все возрастающее значение механики. Изучение общих законов механического движения обогащает исследователей — инженеров и ученых—плодотворными могущественными методами, помогая раскрывать истинное содержание многообразных явлений природы и технической практики. Исследования, проведенные в последние годы в теории автоматического регулирования, теории гравитации, в задачах динамики полета управляемых ракет и космических кораблей, квантовой механике и теории относительности, неоспоримо выявляют более глубокое и широкое значение общих закономерностей механического движения для современного научно-технического прогресса. Несомненно, ошибаются те ученые, которые считают, что механика закончилась в своем развитии. Теоретическая механика является одной из наук о природе. Предмет исследования этой науки вечен и безграничен в своем объеме. Все исполнительные механизмы в орудиях труда и разнообразных машинах в подавляющем большинстве случаев создаются и действуют в строгом соответствии с законами механики. В этой науке есть подлинная романтика и математически строгий анализ, помогающие человечеству идти вперед к неслыханной производительности умственного и физического труда, преобразующего лицо нашей планеты. Межпланетные полеты пилотируемых космических кораблей будут реальностью в ближайшие 10—15 лет. Совершенствование орудий труда, проводимое на основе законов механики, позволяет уже в наши дни осуществлять изменения поверхности Земли, по масштабу не уступающие геологическим потрясениям.  [c.5]


Выбор степени точности для конкретной машины может быть произведен на основе кинематического расчета погретттностей всей передачи, расчета динамики передачи, вибрации, прочности и долговечности механизма.  [c.50]

Одним из методов решения задач динамики машин является кине-тостатический анализ, то есть расчет на основе уравнений статики по схеме, эквивалентной схеме динамического нагружения системы [1]. В излагаемой работе дается обоснование схемы нагружения ползуна, применяемого в исполнительных механизмах поперечно-строгальных, долбежных и других типов металлорежущих станков. В рабочем режиме поперечно-строгального станка на ползун действует система сил, показанных на рис. 1.  [c.404]

Блестящим развитием механики Ньютона стала Механика Эйлера, начавшая новый — аналитический этап истории механики. Популяризация Мопертюи, Вольтером, Клеро и другими французскими учеными ньютонианских идей на континенте привела к их критической переоценке и попыткам построения общей теории движения и равновесия тел на базе новых понятий и принципов. Динамика и статика системы тел (Даламбер), абсолютно твердого тела (Эйлер), совершенствование аппарата математического анализа и связанных с ним разделов математики, решение новых задач небесной механики, теории корабля, баллистики, теории машин и механизмов стали основой для создания Лагранжем Аналитической механики , для дальнейшего развития теоретической механики в работах Боссю, Монжа, Л. Карно, Лапласа, Пуансо, Пуассона, Кориолиса, Гамильтона, Якоби, Гаусса, Остроградского и их последователей.  [c.272]

КИНЕТОСТАТИКА (от греч. Мпё-1бз — движущийся и статика), раздел механики, в к-ром рассматриваются способы решения динамич. задач (особенно в динамике машин и механизмов) с помощью аналитич. или графич. методов статики. В основе К. лежит Д Аламбера принцип, согласно к-рому ур-ния движения тел можно составлять в форме ур-ний статики, если к действующим на тело силам и реакциям свйзей присоединить, силы инерции  [c.286]


Смотреть страницы где упоминается термин ОСНОВЫ ДИНАМИКИ МЕХАНИЗМОВ И МАШИН : [c.206]    [c.16]    [c.19]    [c.221]   
Смотреть главы в:

Теория механизмов и деталей машин  -> ОСНОВЫ ДИНАМИКИ МЕХАНИЗМОВ И МАШИН



ПОИСК



Динамика машин

Динамика машин и механизмов

Динамика механизмов

Механизмы машин



© 2025 Mash-xxl.info Реклама на сайте