Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Динамический Колебания - Решение системы со многими

В качестве методов выявления указанных выше типов решений системы (28) и исследования их устойчивости во многих случаях могут быть использованы классические асимптотические методы теории нелинейных колебаний. Например, в случае малой объемной концентрации мелкодисперсных фаз движение несущей среды может быть найдено независимо от движения частиц и пузырьков. Динамическое поведение последних удобно исследовать в переменных Лагранжа, после введения которых уравнения движения представляются в виде [4, 5]  [c.110]


Предварительные замечания. Большое число задач динамики механизмов сводится к анализу динамических моделей,,параметры которых изменяются во времени. Для решения этих задач могут быть использованы различные подходы [9, 21, 38, 41, 60, 61, 77, 78, 79], выбор которых во многом зависит от специфики исследуемой системы и поставленной цели динамического расчета. Ниже рассматривается одна из возможных аналогий между параметрическими колебаниями в исходной системе и вынужденными колебаниями в некоторой вспомогательной модели, названной условным осциллятором [21, 25, 28]. Основанный на этой аналогии метод оказывается хорошо приспособленным к кругу инженерных задач динамики механизмов. В частности, в рамках единого подхода удается исследовать параметрические явления, связанные с потерей динамической устойчивости системы, а также строить приближенные решения при медленных и резких изменениях параметров механизма. Метод условного осциллятора может быть отнесен к группе методов анализа линейных нестационарных систем, содержаш,их большой параметр [61, 77, 79].  [c.139]

Как было показано в предыдущем параграфе, динамическая работа фундамента турбогенератора описывается системами со многими степенями свободы, требующими вычисления высших частот колебаний. В ряде случаев необходимо выяснить формы колебаний, что можно сделать, зная лишь точные значения частот. Поэтому наиболее целесообразно решать эту задачу при помощи разложения в ряд векового уравнения движения материальных точек, позволяющего найти весь спектр частот собственных колебаний. Ранее практиковавшиеся способы расчета Л. 20, 21 и 29] не давали обобщенного решения, пригодного для определения колебаний в любом направлении. Ниже дан обобщенный способ решения. Следует заметить также, что применение уточненных схем и точной методики расчета позволяет отказаться от так называемых условных значений частот собственных колебаний, благодаря чему отпадает условность расчетной методики.  [c.109]

Практическое использование уравнений типа приведенных в табл. 5 для определения частот собственных колебаний многомассовых систем затруднительно из-за сложности определения коэффициентов динамической податливости. Более просты методы подбора частот несколькими пробами. Метод цепных дробей в некоторых случаях дает более быстрое решение, все же метод остатка в практике нашел большее применение. Это объясняется двумя его преимуществами метод остатка дает ясное представление о сущности производимых операций, что облегчает проверку правильности вычислений, и применяемый при этом методе тип табличного расчета используется и для нахождения вынужденных колебаний системы со многими массами, поэтому громоздкая работа по определению коэффициентов динамической податливости значительно облегчается.  [c.366]


Как уже говорилось в предыдущем параграфе, демпфирование становится исключительно важным в том случае, когда периодические возмущения имеют частоту, близкую к одной из частот собственных колебаний системы со многими степенями свободы. Вопрос об установившихся вынужденных колебаниях систем с двумя степенями свободы исследовался в п. 3.8 с помощью метода передаточных функций. Этот подход может быть легко распространен на системы с п степенями свободы, при этом основные соотношения [см. выражения (3.51) и (3.52) J сохраняют свою форму неизменной. Однако решение в рамках указанного подхода требует обращения матрицы порядка п X п, содержащей комплексные числа. Если собственные значения и собственные векторы системы предварительно были определены тем или иным способом, подходу с использованием передаточных функций лучше предпочесть метод нормальных форм колебаний. Зная частоту изменения возмущений и собственную частоту колебаний системы, можно непосредственным путем определить динамические перемещения по формам колебаний, чьи частоты близки к частоте возмущения. Ниже, будут рассмотрены возмущения, имеющие вид либо одной гармонической функции, либо произвольного вида периодических функций, при этом будет предполагаться, что система имеет либо пропорциональное демпфирование, либо демпфирование по формам колебаний, аналогичное тому, о котором говорилось в предыдущем параграфе.  [c.306]

Матрица А этого уравнения обладает многими замечательными свойствами. Она является весьма разреженной матрицей общего вида, ее система фундаментальных ортонормированных функций обеспечивает хорошую устойчивость численного процесса решения краевой задачи, в определителе отсутствуют точки разрыва 2-го рода, формируется без привлечения матричных операций. Эти преимущества позволяют эффективно определять спектр собственных значений - корни уравнения (6.61). Точность спектра зависит, естественно, от точности исходной модели, где, напомним, используется только один член ряда (6.2). Уравнение (6.61) позволяет определять критические силы как статическим (при со = 0), так и динамическим методами. При определении собственных значений пластин нужно учитывать, что из уравнения (6.61) можно получить спектры частот и критических сил при фиксированном числе полуволн в направлении оси ох (например, для коэффициентов А, В, С таблицы 17 одна полуволна в направлении оси ох и множество полуволн в направлении оси оу). Вычисляя коэффициенты А, В, С при второй частоте колебаний балки, из уравнения (6.61) можно получить спектры пластины для двух полуволн в поперечном и множества полуволн в продольном направлениях и т.д. Точность решения задач устойчивости и динамики прямоугольных пластин по МГЭ определим из примеров.  [c.220]

Выражения (5.89) совпадают с аналогичными выражениями, полученными в работах [4, 12, 98] методом разложения в ряд по малому параметру решения исходного уравнения и преобразованием Лапласа. Преимуществом изложенной методики является то обстоятельство, что она без принципиальных трудностей переносится на системы со многими степенями свободы, нелинейные системы и позволяет определить требуемые вероятностные характеристики обобщенных координат. При этом охватывается случай исследования устойчивости динамических систем, содержащих перекрестные нелинейные связи. Отметим, что при Sj ( 2) = onst результаты совпадают с данными работы [108]. Исследование частных случаев (5.73) в детерминированной постановке задачи для комбинационного резонанса описано во многих работах [10, 19, 95 и др. ]. Приведенные выше результаты показывают, что, как и в детерминированном случае, спектр частот, при которых возникают параметрические колебания, состоит из ряда малых интервалов. Длины этих интервалов зависят от амплитуды возмущений и стягиваются к нулю, когда амплитуда стремится к нулю. При этом возрастание амплитуды колебаний системы происходит по показательному закону. Выражение (5.89) в этом случае определяет степень опасности комбинационного резонанса, когда спектральные плотности параметрических возмущений соответствуют, например, сейсмическим воздействиям в виде многоэкстремальных функций несущих частот, что особенно часто встречается на практике.  [c.219]


Динамическое состояние зубчатой передачи характеризуется в общем случае поведением ее как колебательной системы со многими степенями свободы. Зубчатое колесо, сидящее на валу, имеет три степени свободы и, следовательно, возможны следующие колебания крутильные колебания колеса вокруг оси изгибные колебания (смещение) зубчатого колеса в плоскости зацепления, вызывающие деформации валов смещение зубчатого колеса в направлении, перпендикулярном к плоскости зацепления. В расчетах учитывают в основном крутильные колебания. С учетом степеней свободы связано число учитываемых при расчете колебательной системы сосредоточенных масс. Так как зубчатая передача обладает двумя или больпшм числом степеней свободы, то упрощенный расчет, использующий одномассовую заменяющую систему, только в некоторых случаях, может дать приемлемое решение.  [c.293]

Центральное место занимают третья и четвертая главы, посвященные изложению математиче ских методов анализа волновых процессов в ограниченных системах с движущимися границами. В третьей главе основное внимание уделено способам получения точных аналитических решений эталонных задач в удобной для исследования форме. Такие решения позволяют наиболее полно выявить основные закономерности и эффекты волновых процессов, обусловленные движением границ. Необходимость разработки новых подходов вызвана тем, что многочисленные приближенные методы анализа, опирающиеся на известные представления теории колебаний сосредоточенных систем [9,10], удовлетворительно работают лишь при медленных движениях границы и, как правило, не адекватны волновым процессам при сравнимых скоростях движения границы и волны. Наибольшее распространение получил подход, основанный на разложении искомого решения по набору так называемых мгновенных мод [9,10]. Сами мгновенные моды находятся в квазистатическом приближении, когда в каждый момент времени волновое поле имеет такую же структуру, как и в системе с неподвижными границами, имеющей текущие размеры. При этом явно или неявно предполагается, что время перестройки волновых полей много меньше времени характерного изменения размеров системы. При таком описании исследуемой системе навязывается некоторая, заданная априори, структура поля. И поэтому с его помощью в принципе нельзя выявить такие волновые эффекты, как двойной эффект Доплера, излучение Вавилова-Черенкова, и связанную с ними параметрическую неустойчивость второго рода. В этой же главе показано, что системы с движущимися границами обладают динамическими собственными  [c.15]

Динамические задачи оптимального управления системами математически корректно были, вероятно, впервые сформулированы в работах A.A. Фельдбаума. Основы математической теории оптимальных процессов были заложены коллективом математиков под руководством академика Л.С. Понтрягина. Эти работы послужили источником многочисленных исследований. Одно из направлений исследований связано с решением задач об оптимальном управлении систем с распределенными параметрами (см. [11-13, 26, 27, 31-41, 79, 86, 101]). Те же задачи исследовались методами классического вариационного исчисления [79, 81, 85, 106, 110, 111]. Работам этого типа посвящены многочисленные обзоры (см., например, [12, 91, 127]). В задачах управления упругими колебаниями процесс зачастую можно описать уравнениями с отклоняющимися аргументами. Поэтому в теории управления системы с запаздыванием рассматривались многими авторами (см., например, [73]). Это направление в исследованиях по управлению колебаниями здесь не обсуждается и является темой специального анализа.  [c.7]

Далее оказывается, что усредненная система имеет устойчивое положение равновесия, соответствующее движению всех планет в одной плоскости а одну сторону по круговым орбитам. Движение планет, соответствующее малым колебаниям в линеаризованной около этого равновесия усредненной системе, называется лагранжевым движением. Оно имеет простую геометрическую интерпретацию. Вектор, направленный из фокуса в перигелий планеты и имеющий длину, пропорциональную ее эксцентриситету (вектор Лапласа), в проекции на основную плоскость системы координат является суммой п—1 равномерно вращаюшлхся векторов. Набор угловых скоростей этих векторов одинаков для всех планет. Вектор, направленный по линии пересечения плоскости орбиты планеты с основной плоскостью (линии узлов) и пропорциональный по длине наклонению планеты, является суммой п—2 равномерно вращающихся векторов". Если в некоторый момент времени эксцентриситеты и наклонения достаточно малы, то в усредненной системе они останутся малыми и во все время движения. В частности, оказываются невозможными столкновения планет и уходы на бесконечность. Это утверждение называется теоремой Лагранжа — Лапласа об устойчивости Солнечной системы. С момента доказательства теоремы (1784 г.) центральная математическая задача небесной механики состояла в том, чтобы перенести этот вывод об устойчивости с усредненной системы на точную. На этом пути возникли многие разделы теории динамических систем, в том числе теория возмущений и эргодическая теория. Сейчас решение рассматриваемой задачи значительно продвинуто. Оказывается, при достаточно малых массах планет большая доля области фазового пространства, соответствующей не-зозмущенном движению в одну сторону по кеплеровским эллипсам малых эксцентриситетов и наклонений, заполнена условно-периодическими движениями, близкими к лагранжевым (см. 3). Таким образом, устойчивость имеет место для большинства начальных условий. При начальных условиях из исключительного множества эволюция больших полуосей если и происходит, то очень медленно — ее средняя скорость экспо-  [c.186]



Смотреть страницы где упоминается термин Динамический Колебания - Решение системы со многими : [c.457]    [c.178]    [c.457]    [c.342]   
Машиностроение Энциклопедический справочник Раздел 1 Том 1 (1947) -- [ c.0 ]



ПОИСК



Решение системы

Системы динамические



© 2025 Mash-xxl.info Реклама на сайте