Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Минимум тела

Погрешности предельные 5 — 173 Минимум тела 5—169  [c.157]

Размер минимума тела детали. Исполнительные размеры калибра 27,7 27-7 0.03 2 2 + 0,0073 5 / 5 + 0,0075  [c.170]

Здесь f = f x) представляет собой некоторое поле, например поле напряжений, которое должно быть допустимым в том смысле, что оно должно удовлетворять некоторым дифференциальным уравнениям и условиям непрерывности. Через / г обозначен некоторый положительно определенный функционал от г, причем интегрирование распространяется на объем V тела В. Минимум в (3.29) достигается при г = г, где г есть действительное поле, вызванное в В заданными поверхностными нагрузками на Sj. Если, например, С представляет собой упругую податливость тела В, то г есть произвольное кинематически допустимое поле деформаций, а f (г) — соответствующая удельная энергия деформаций.  [c.34]


Действительное напряженное состояние равновесия упругого тела (системы) отличается от всех смежных состояний равновесия тем, что оно дает минимум потенциальной энергии деформации.  [c.67]

Кривая пластичности может иметь еще один минимум, расположенный в области более низких температур, в частности, в том случае, когда при высоких температурах сварочного цикла происходит значительное перераспределение примесей из тела зерна к его границам и образуются новые фазы эвтектического характера. У однофазных сплавов могут образовываться новые границы зерен с более высокими уровнями физической или химической микронеоднородности, приводящей к понижению прочностных и пластических свойств. Иногда первый и второй температурные интервалы низких пластических свойств расположены так близко, что могут сливаться, образуя один т.и.х.  [c.476]

Иначе дело обстоит с решением вариационных задач газовой динамики и с точными решениями уравнений Навье—Стокса. Эти результаты своеобразно и тесно переплетены с численными и экспериментальными исследованиями. Решение краевых задач при оптимизации формы тел в сверхзвуковом потоке газа первоначально проводилось численно, итерационным путем. Обращение в нуль одной из рассчитываемых функций подсказало путь аналитического решения и открыло путь к исследованию необходимых условий минимума и к получению новых решений. При использовании этих результатов для практики в потоках внутри сопел рассчитывался пограничный слой, а результирующая сила тяги была проверена на специальной опытной установке. Расхождение между расчетной силой тяги и ее экспериментальной величиной не превысило 0,1%.  [c.5]

Требование безударности течения ( ф) = (ро Ф) во многих случаях не является необходимым и может быть снято. Устранение ограничения, вообще говоря, может улучшить решение задачи, то есть в задаче на минимум может снизить возможный минимум. В задаче об оптимальной форме контура тела переход от требования <р ф) = <ро ф) к более слабому ограничению (р ф) <Ро(Ф) дает надежду на отыскание тел с меньшим волновым сопротивлением. Если решение приведет к неравенству (р ф) > <ро ф) хотя бы на части характеристики Ьс, то это будет означать, что в треугольнике ab появляются ударные волны.  [c.88]

Если производная d(f/dt при переходе через значение dip/dt = О, непрерывно изменяясь, изменяет знак, то угол поворота ф в этот момент времени достигает максимума или минимума, т. е. изменяется направление вращения тела.  [c.201]


Для выяснения вопроса, является ли данное движение поступательным, нет необходимости проводить в теле множество прямых и проверять, не меняет ли каждая из них своего направления во время движения тела. Движение тела вполне определяется движе-. нием трех его точек, не лежащих на одной прямой. Следовательно, нужно провести минимум две прямые конечно, эти прямые должны быть непараллельны между собой.  [c.160]

Форма интерференционной картины, положения максимумов и минимумов зависят от толщины и формы пластин, от угла между их поверхностями, от состояния поиерхности н т. д. Следовательно, можно, изучая форму и положение интерференционных полос, судить о свойствах исследуемой пластинки. Иначе говоря, интерференционные явления могут быть применены для измерения физических параметров прозрачных тел. Ценность интерференционного метода заключается, в частности, в том, что он чувствителен  [c.104]

Разрешающая сила телескопа. Поскольку телескоп служит для наблюдения удаленных небесных тел, можно считать, что на объектив телескопа падает плоская волна. Это позволяет пользоваться полученной нами ранее формулой sin ср = 0,61 Х/г при рассмотрении дифракции плоской волны на круглом отверстии ( pi — угловой радиус первого дифракционного кольцевого минимума, г— радиус объектива телескопа, %—длина падающей световой волны).  [c.198]

Положение максимумов и минимумов определяется выражением (12.2). При наблюдении в белом свете с помощью установки, изображенной на рис. 12.1, искусственное анизотропное тело из-за зависимости разности показателей преломления о — от длины волны оказывается окрашенным в разные цвета. Распределение окраски будет зависеть от распределения напряжения внутри образца.  [c.285]

Эффекты трения многообразны и включают потери от упругого гистерезиса, от дифференциального скольжения на площадках контакта, от трения тел качения в гнездах сепаратора и сепаратора о направляющие борты колец, от трения верчения, трения в самой смазке, дополнительного трения от инерционных явлений и т. п. Некоторые из этих факторов взаимосвязаны. Рост частоты вращения приводит к значительному увеличению моментов трения после определенного числа (об/мин), соответствующего минимуму момента трения для данного узла. Снижение вязкости масел при повышении температуры и давления способствует уменьшению потерь на трение.  [c.421]

Угловое ускорение равно нулю при равномерном вращении тела. Условие ё = О в данный момент времени может говорить о максимуме или минимуме угловой скорости в этот момент.  [c.212]

Если возникающая при отклонении от положения равновесия сила направлена к положению равновесия, то при удалении тела от этого положения она совершает отрицательную работу и потенциальная энергия возрастает значит, положению равновесия в этом случае соответствует минимум потенциальной энергии. Если же возникающая сила направлена от положения равновесия, то при удалении тела она совершает положительную работу и потенциальная энергия уменьшается значит, положению равновесия в этом случае соответствует максимум потенциальной энергии.  [c.133]

Конечно, вопрос об устойчивости или неустойчивости состояния равновесия можно решить и не пользуясь указанным критерием, а определяя направление силы, возникающей при смещении тела из положения равновесия. Но даже в рассмотренных простейших примерах систем с одной степенью свободы часто оказывается проще определить, имеет ли потенциальная энергия минимум или максимум, чем найти направление результирующей силы, возникающей при отклонении тела от положения равновесия. Но особенно существенно упрощает решение вопроса об устойчивости состояния равновесия применение указанного критерия в тех случаях, когда система обладает больше чем одной степенью свободы. По-прежнему состояние равновесия устойчиво, если потенциальная энергия U в этом состоя-  [c.136]


В заключение рассмотрим вопрос о влиянии сил трения на устойчивость состояний равновесия. Прежде всего, силы жидкого трения, направленные навстречу скорости тела, всегда препятствуют удалению тела от положения равновесия однако, поскольку эти силы стремятся к нулю вместе со скоростью, они не могут изменить направления движения тела, смещенного из положения равновесия. Поэтому в присутствии сил жидкого трения устойчивость состояния равновесия по-прежнему определяется условием, что потенциальная энергия должна иметь минимум.  [c.204]

В соответствии с геометрическим смыслом производной сила характеризуется тангенсом угла наклона касательной к кривой П = П(х). Следовательно, чем круче эта кривая, тем большая сила будет действовать на тело. В точке С, соответствующей минимуму потенциальной энергии (рис. 39), касательная горизонтальна и сила равна нулю. Очевидно, что и в точках, соответствующих максимуму на потенциальной кривой, сила также равна нулю.  [c.57]

Задаваясь той или иной формой зависимости угла наклона поверхности от длины, можно произвести интегрирование (47) и (48) и получить аналитические зависимости, которые затем использовать, в частности, для отыскания оптимальных значений геометрических параметров тела при каких-либо заданных условиях путем решения задачи на минимум величины Р.  [c.122]

Теплоемкость воды чрезвычайно велика по сравнению с другими телами и имеет минимум примерно при 40°С.  [c.22]

Можно показать, что для упрочняющегося тела это равенство соответствует минимуму дополнительной энергии.  [c.308]

Термодинамика систем с отрицательными температурами изложена в гл. 7. Из этой главы можно заключить, что все вышеприведенные утверждения о системах с отрицательными температурами ошибочны. Спиновые состояния с отрицательными температурами — это равновесные состояния, и поэтому к ним применимо термодинамическое понятие температуры. Состояния эти являются устойчивыми, но в отличие от обычных систем их устойчивость характеризуется не минимумом внутренней энергии и энергии Гиббса, а максимумом этих функций (см. 34). Что касается того, что системы с отрицательной температурой остынут при контакте с телами, имеюш ими положительную температуру, то тело с /=10 С тоже остынет при контакте с термостатом, имеющим температуру / = 5° С, однако это не означает, что первоначальное состояние тела было неравновесным и неустойчивым. Теплый воздух в закрытой комнате зимой тоже остынет через характерное время теплопередачи через стены, хотя состояние воздуха все время равновесно и устойчиво. Состояния с отрицательной температурой нельзя представлять себе как состояния водного раствора соли в стакане в первые секунды после его переворачивания вверх дном, когда плотность раствора вверху больше, чем внизу, и система имеет избыток механической энергии, переходящей со временем в энергию теплового движения. При отрицательной температуре (см. 33) в системе могут быть проведены различные обратимые процессы, чего принципиально нельзя было бы сделать при неравновесном состоянии системы.  [c.174]

По определению термодинамического равновесия, температура во всех частях тела будет одной и той же. Найдем второе условие равновесия для тела, находящегося в поле, в котором потенциальная энергия на одну частицу равна ф, исходя из минимума термодинамического потенциала при равновесии.  [c.342]

Так как действительному напряженному состоянию в упругом теле соответствует минимум потенциальной энергии деформации, то искомую комбинацию параметров А,-, при которой удовлетворяются условия сплошности, можно найти из системы уравнений  [c.61]

Наконец, из условий, вытекающих из свойства минимума потенциальной энергии деформации для действительного напряженного состояния в упругом теле  [c.63]

Отсюда следует, что из всех возможных перемещений, т. е. удовлетворяющих условию сплошности тела и принимающих заданные значения на S , действительными будут те, при которых функционал П имеет минимум. В этом и состоит принцип минимума потенциальной энергии.  [c.100]

Размеры минимума тела детали (это понятие замещает термин непроходпая сторона ) контролируются в отдельности щупами, вкладышами (фиг. 224, д), пробками (фиг. 224, г) и т. п. Допуски на изготовление этих калибров располагаются симметрично относительно размера минимума тела независимо от типа калибра. Величины допусков приведены в табл. 109—111. Допуски контркалибров для калибров минимума тела по величине и расположению совпадают с указанными выше для контркалибров максимума тела.  [c.170]

Примеси, удовлетворяющие этим требованиям, обладают естественной активностью. Естественная активность дисперсных частиц, взвешенных в жидкости, связана с закономерностями зарождения центров кристаллизации на твердых поверхностях, которые rj общем виде были сформулированы П. Д. Данковым и С. Т. Конобеевским. Превращение на поверхности твердого тела развивается таким образом, чтобы конфигурация атомов твердой фазы сохранилась (или почти сохранилась) и в новой твердой фазе. Возникающая при указанном процессе кристаллическая решетка новой фазы сопрягается с кристаллической решеткой старой фазы подобными кристаллографическими плоскостями, параметры кото[)ых 01личаются друг от друга минимально. Причина закономерной ориентации двух фаз с термодп-ппмическои точки зрении состоит в том, что минимум поверхностной энергии обеспечивается при максимальном сходстве в расположении атомов на соприкасающихся гранях старой и новой фаз.  [c.36]

На рис. 10.51 приведена схема гидравлической виброзащитной системы кресла I человека-оператора, содержащая упругий элемент 2, гидроцилиндр J, силовой стабилизатор 4 н виде датчика пульсации давления рабочей жидкости и элемента типа сопло -заслонка, обратные связи. 5, 6 по положению и по ускорению. Обратная связь по положению обеспечивает стабилизацию кресла от-носи1ельно фундамента. Обратная связь по ускорению введена для предсказания возмущающего воздействия с опережением, необходимым для компенсации возмущения и [ювышения эффективности системы в резонансных зонах тела человека-оператора. Система позволяет свести до минимума вертикальные колебания кресла с оператором.  [c.306]


Критерий Гриффитса. В 1920 г. была опубликована фундаментальная работа А.А. Гриффитса Явления разрушения и течение твердых тел . В ней впервые были выведены уравнения для определения разрушающего напряжения при нагружении хрупких твердых тел. А.А. Гриффитс использовал теорему минимума энергии , согласно которой равновесное состояние твердого тела при нaгpyжe raи в ynpyiofi области отвечасг минимуму потенциальной энергии системы в це гом. При анализе критерия разрушения А.А. Гриффитс дополнил эту теорему положением о том, что состояние равновесия возможно, если оно отвечает условию, при котором система может переходить от неразрушения к разрушению путем процесса, включающего непрерывное уменьшение потенциальной энергии.  [c.288]

В состоянии термодинамического равновесия свободная энергия, как известно, минимальна. Если на тело не действуют никакие внешние силы, то F как функция от 1 должно иметь минимум при Uih = 0. Это значит, что квадратичная форма (4,3) должна быть положительна. Если выбрать тензор таким, что иц = О, то в (4.3) останется только первый член если же выбрать тензор вида Uih = onst-6 , то останется только второй член. Отсюда следует, что необходимым (и, очевидно, достаточным) условием положительности формы (4,3) является положительность каждого из коэффициентов К и  [c.22]

Чтобы ускорить вращение тела, нужно или увеличить J>i, или же увеличить )], для чего человек должен взять в руку акой-либо предмет, например длинный стержень или вращающееся колесо. Для иллюстрации сказанного служит опыт Жуковского. Круглая площадка может поворачиваться вокруг вертикальной оси, причем влияние трения сведено к минимуму человек, стоящий на площадке и имеющий в руке вращающееся колесо или просто враииющий руку, будет поворачиваться вместе с площадкой в сторону, противоположную вращению колеса.  [c.189]

Так, например, анализ рабочих чертежей элементов конструкции ЭМУ, выполненных в соответствии с требованиями ЕСКД, показал, что эти чертежи содержат не менее 100—150 графических элементов (отрезков прямых линий, окружностей и дуг окружностей и пр.). Кроме того, графическое изображение на чертеже сопровождается поясняющим текстом (в среднем 10—15 строк). Принимая во внимание, что программы, предназначенные для изготовления чертежей на графопострюи-телях, должны применяться при различных значениях параметров чертежа (геометрических размеров или координат характерных точек элементов изображения), необходимо предусмотреть специальные части этих программ, выполняющие функции формирования массива чертежа, элементы которого задают численные значения параметров в операторах черчения (см. 5.3). По объему эти части программ черчения в ряде случаев оказываются не меньше, чем собственно графические, в которых, в свою очередь, необходимо иметь как минимум один оператор для формирования каждого графического элемента. Поэтому общий объем одной программы для изготовления чертежа в данном случае составляет в среднем 200—300 операторов.  [c.267]

Состояния равновесия, устойчивые по отношению к близлежащим состояниям и неустойчивые по отношению к некоторому более удаленному состоянию, называются метастабильными (полуустойчивыми). Метастабиль-ные состояния возникают в тех случаях, когда характеристические функции системы имеют несколько точек экстремума (рис. 3.1). Метастабильное состояние соответствует относительному экстремуму (не наибольшему максимуму и не наименьшему минимуму) характеристической функции. Наличие метастабиль-ных состояний означает, что термодинамическая поверхность тела состоит из двух вообще не связанных листов, первый из которых описывается уравнением состояния и содержит все стабильные состояния, а второй —только метастабильные состояния. Обратимого перехода с одного, листа на другой не существует. Однако для каждого из этих листов справедливо третье начало термодинамики, так что в каком бы состоянии — стабильном или метастабильном — ни находилось тело, при Т —> О его энтропия имеет одно и то же значение 5 = 0. Система, находящаяся в метастабильном состоянии, по истечении некоторого времени и при наличии необходимых условий переходит в стабильное состояние.  [c.112]

Для уменьшения погрешностей в устройствах, основанных на калориметрическом методе, конструктивно их исполняют так, чтобы потери тепла были либо полностью исключены, либо сведены к минимуму. При использовании в качестве тепловоспринимающего тела жидкостей и газов для уменьшения (Зпот опытные участки тщательно теплоизолируют от окружающей среды или применяют охранные нагреватели, мощность которых регулируется так, чтобы в местах их установки тепловые потери отсутствовали. В устройствах с твердым телом тепловоспринимающий элемент 3 (рис. 14.1) устанавливается на теплоизоляционных стержнях или призмах с минимальными зазорами относительно корпуса устройства 2. Размеры корпуса выбираются такими, чтобы отношение площади его тепловоспринимающей поверхности к полной теплоемкости корпуса было одинаковым с соответствующим отношением для тепловоспринимающего тела. В этом случае температура корпуса и тепловоспринимающего тела практически одинакова и кондуктивный теплообмен между ними (тепловые потери) пренебрежимо мал.  [c.274]

Покажем, что в случае линейно-упругого тела увловие (5.37) превращается в условие минимума потенциальной энергии. Для этого довтаточно убедиться, что при сообщении вариаций действительным перемещениям Ut приращение функционала П будет положительным,  [c.99]

Так как б Л (а,у) = Л (бст у) > О, приходим к следующему выводу, называемому принципом минимума дополнительной работы или вариационным принципом Каетильяно из всех статически возможных напряженных состояний тела при заданных внешних силах в действительности реали-вуется та напряженное состояние, для которого функционал Ч над тензором напряжений (о ), называемый дополнительной работой, имеет минимум.  [c.103]


Смотреть страницы где упоминается термин Минимум тела : [c.93]    [c.170]    [c.61]    [c.211]    [c.47]    [c.118]    [c.213]    [c.210]    [c.415]    [c.54]    [c.88]    [c.74]    [c.117]    [c.62]   
Машиностроение Энциклопедический справочник Раздел 3 Том 5 (1947) -- [ c.169 ]



ПОИСК



Линейные профильные «минимума тела» - Размер

Минимум

Тела Перемещения — Принцип минимума



© 2025 Mash-xxl.info Реклама на сайте