Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

см Влияние размера поверхности

Для изотропных жестких пластмасс ( > 10 кгс/см ) влияние размеров образца на прочность может определяться также условиями отверждения пластмассы разной температурой внутри и на поверхности образца вследствие плохой теплопроводности, трудностью выхода возду-зщ и т. д.  [c.114]

Коэффициент влияния абсолютных размеров поперечного сечения (см. табл. 1.2) К = 0.83. По табл. 1.4 при й = 0,8 мкм коэффициент влияния шероховатости поверхности А, - = 0,94. Коэффициен) влияния поверхностного упрочнения = 1 —поверхность вала не упрочняется.  [c.291]


VI — эффективные коэффициенты концентрации напряжений (отношение предела усталости, полученного в результате испытаний гладких образцов, к пределу усталости, полученного на образцах с концентратором напряжений) соответственно при изгибе и при кручении [1, 10, 31, 33] — коэффициент влияния абсолютных размеров поперечного сечения — масштабный фактор (отношение предела усталости образцов и деталей реальных размеров к пределу усталости, полученному при испытаниях стандартных образцов малых диаметров) [1, 31] Кр — коэффициент влияния шероховатости поверхности [10, 31] Ку — коэффициент влияния упрочнения, вводимый для валов и осей с поверхностным упрочнением (закалка ТВЧ — цементация, азотирование и т. п.) [2, 7] и — коэффициенты чувствительности материала к асимметрии цикла напряжений соответственно при изгибе и кручении (см. табл. 16.2).  [c.418]

На адгезию частиц оказывает влияние шероховатость поверхности субстрата. При нанесении частиц может происходить механическое зацепление частиц за выступы шероховатой поверхности. Сила адгезии частиц определяется шероховатостью поверхности субстрата и шероховатостью самих частиц. Подробно эти вопросы рассмотрены в обобщенном виде в работе [1]. Здесь же отметим, что частицы, формирующие покрытие, имеют размеры в пределах 50— 400 мкм. Частицы подобных размеров относятся к классу систем, у которых радиус частицы значительно больше радиуса кривизны выступа шероховатой поверхности. Адгезия таких частиц будет определяться помимо других свойств еще и числом точек контакта с поверхностью, которое будет больше двух. Что касается влияния шероховатости после расплавления частиц и образования пленки, то оно было рассмотрено ранее (см. с. 213).  [c.235]

Влияние состава, состояния поверхности и размеров на стадию // слабее, чем на стадию /. В сплавах протяженность стадии // обычно больше, чем в чистых металлах например, в сплавах Au—Ag протяженность стадии II больше, чем у любого из этих чистых металлов, также в алюминиевых сплавах больше, чем у чистого А1. Иными словами, величина тз (см. рис. 3.9) при легировании растет. Влияние размеров кристаллов на упрочнение в стадии II зависит от ориентировки вблизи направления [110] изменение диаметра в 10 раз с 2 до 0,2 мм практически не влияло [17] на упрочнение однако при ориентировке вблизи направления [100] — влияло. Несмотря на идентичность кристаллических решеток у разных металлов наблюдаются значительные различия в характере пластической деформации, например, у А1 — стадия II очень слабо и нерезко выражена, а у Си и Ag — более резко. Это связано с различной энергией дефекта упаковки.  [c.128]


II для прямых валов, коэффициентом долговечности к олг (см. стр. 223), влияние состояния поверхности и абсолютных размеров — но данным табл. 13 и 22.  [c.236]

Свойство газов передавать тепло называется теплопроводностью. Теплопроводность газов при давлениях, близких к атмосферному, обусловлена конвекцией. При более низких давлениях передача тепла происходит путем столкновения молекул. Значения коэффициента теплопроводности (х) различных газов для области давлений, где тепло передается путем межмолекулярных столкновений, приводятся в приложении 1. При дальнейшем понижении давления газа, когда средняя длина свободного пробега молекул становится соизмеримой с размерами сосуда, молекулы, ударяясь о нагретый предмет, могут достигать стенок сосуда без столкновений другими молекулами, и, таким образом, передача тепла происходит без установления в газе градиента температуры. Теплопроводность в этой области пропорциональна давлению и разности температур между нагретым предметом и холодными стенками сосуда. Кроме того, теплопроводность зависит от формы и природы поверхности сосуда. Влияние состояния поверхности на теплопроводность газа учитывается коэффициентом аккомодации. На свойстве газов изменять теплопроводность пропорционально их давлению основан принцип действия теплоэлектрических манометров (см. гл. 3).  [c.8]

Изменение протяженности вставки практически не затрагивает значения Е/ (см. рис. 5.12). Незначительное воздействие этот размер оказывает также на локальную и среднюю интенсивность теплоотдачи (рис. 5.14). На рис. 5.14 сплошными кривыми показано изменение отношения локального числа Nu вдоль вставки длиной / к аналогичной характеристике Nu° для входного участка такой же длины / бесконечно длинной вставки. Штриховыми кривыми показано изменение отношения соответствующих средних значений Nu, Nu . Отклонение этих кривых от единицы и характеризует влияние параметра / вставки (адиабатичности ее выходной поверхности), наблюдается только в случае / < t/и тем заметнее, чем больше последнее неравенство. Причем проявляется это в замедленном (по сравнению с данными, приведенными на рис. 5.11) снижения теплообмена по мере удаления охладителя от входа в пористый элемент н поэтому наибольшее отклонение в сторону увеличения критерия Нуссельта достигается на выходе вставки при i =1 (крайняя правая точка на кривых). Нужно отметить, что для больших значений параметра Ре (Ре = 100) отмеченный эффект пропадает даже при очень малом значении длины / =0,1.  [c.115]

Использование представленного соотношения правомерно, начиная с расстояния не менее 1 мм от поверхности, когда влияние концентрации напряжений у поверхности отверстия пренебрежимо мало на начальном этапе роста трещины. Вместе с тем в этом случае в расчете эквивалентного напряжения интегрально учитывается влияние всех процессов упрочнения и разупрочнения материала в связи с развитой пластической деформацией в области малоцикловой усталости уже в первом цикле приложения нагрузки. Следует подчеркнуть, что выявленные в эксплуатации трещины по своему размеру (в пределах 1 мм) и по характеру возрастания шага усталостных бороздок (линейная зависимость от длины) относят к малым трещинам. Для них точнее и корректнее использовать понятие не напряжения, а размаха деформации или /-интеграла в связи с развитой пластической деформацией (см. главу 5). Вместе с тем для оценки относительных характеристик реализуемого процесса в эксплуатации и при проведении стендовых испытаний представление об эквивалентном напряжении остается по-прежнему корректным. Это связано с тем, что независимо от того, каким образом реализовано нагружение материала, рассматриваемой величине шага усталостных бороздок ставится в соответствие единственное значение именно эквивалентного коэффициента интенсивности напряжения. Его величина полностью определяется эквивалентным напряжением.  [c.550]

Передняя и боковые панели контейнеров легко повреждаемы, при этом характер повреждений может быть самым различным — от небольших дефектов, которые не оказывают влияния на работу контейнера, до катастрофических аварийных повреждений. В металлических контейнерах часто образуются небольшие вмятины, которые особенно характерны для пластичного алюминия. В секциях из стеклопластика — фанеры происходит истирание поверхности при соударениях. Истирание приводит к образованию вмятин без сквозного прорыва. С другой стороны, алюминий имеет склонность к образованию трещин в поврежденных панелях, иногда длиной около 15 см. Внутренним и наружным повреждениям подвержены панели контейнеров всех видов. Эти повреждения, начиная от отверстий небольшого размера до больших разрывов, приводят к замене всей панели.  [c.219]


Электрохимическая гетерогенность поверхности определяет также величину измеряемого потенциала и его изменение Аср под влиянием деформации. Однако если полная дифференциальная емкость с увеличением степени деформации становится независящей от размера рабочей поверхности, то потенциал, а точнее, его сдвиг Аф, существенно зависит от этой величины (см. рис. 72, кривые 3 и 4). Это связано с тем, что локализация активированных анодных процессов с ростом деформации увеличивает действующую площадь катодов (или менее эффективных анодов), что ведет к уменьшению сдвига стационарного потенциала.  [c.180]

Из анализа приведенных данных можно сделать вывод о том, что для получения упрочненной поверхности с минимальной шероховатостью обработку целесообразно выполнять при 0,6 > /Сп > > 0,8. Экспериментальные исследования также показали, что, помимо коэффициента перекрытия, на высоту микронеровностей большое влияние оказывает также изменение плотности мощности в пятне фокусирования лазерного излучения, причем, наименьшая высота неровностей и, следовательно, наилучшее качество упрочненной поверхности достигается при невысоких плотностях мощности (для стали, например, при (7 = (5...10)- 10 Вт/см ). Однако, как было показано выше, при сравнительно малых q обеспечиваются небольшие размеры зоны упрочнения. Поэтому оптимальную величину плотности мощности нужно выбирать так, чтобы зона упрочнения имела по возможности большие размеры.  [c.78]

Вышеуказанные положения относятся к усредненной четко выраженной текстуре плит и листового материала и не дают полного описания характеристик микроструктуры. В работе [243] отмечено, что при горячей обработке в области высоких температур в сплаве Ti — 6 А1 — 4V образуются пластинчатые структуры, в которых группы пластин а-фазы общей ориентации концентрируются в локализованной зоне. Такие структуры без сомнения относятся к структурам с колониями а-фазы, о которых упоминалось выше. Как было показано, такие структуры не оказывают ярко выраженного влияния на КР. Однако осторожность должна быть проявлена в случае изгиба деталей большого сечения с пластинчатой структурой. Возможно, что подобная ситуация может возникать в случае алюминиевых сплавов, в которых высотное направление наиболее опасное. Можно ожидать, что для титановых сплавов важным фактором является боковая протяженность пластин структуры а-фазы, хотя это не было исследовано подробно. Существование таких полос в структуре обусловливает, вероятно, области полосчатости, наблюдаемые на многих поверхностях разрушения (см. рис. 109, а). Если это справедливо, то небольшая боковая протяженность полосчатости указывает, что полосы имеют подобный небольшой боковой размер, поэтому такие структуры могут быть более точно определены как двояковыпуклые, а не пластинчатые.  [c.423]

Допуски резьб. Существующие допуски цилиндрических резьб (см. т. 5, гл. 1) достаточно хорошо обеспечивают надёжность резьбовых соединений для самых разнообразных назначений. В части влияния отклонений размеров отдельных элементов резьбы на её прочность следует отметить а) отрицательное влияние больших отклонений половины угла профиля при переменных и ударных нагрузках, связанное с явлениями пластической деформации на кромках витков и приводящее в конечном итоге к снижению предварительной затяжки б) малое влияние наименьших предельных рабочих высот витка и несколько большее — при переменных нагрузках, также связанное с обмятием поверхностей контакта и также приводящее к снижению затяжки.  [c.189]

Известно, что чем меньше радиус частицы, тем выше химический потенциал ее атомов и, следовательно, выше растворимость, подчиняющаяся уравнению Томсона—Фрейндлиха [104 ]. Однако этот эффект, обусловленный свободной энергией на поверхности раздела, имеет значение только для тел с большой удельной поверхностью. Расчет по указанному уравнению для типичного материала с. атомной массой 50, плотностью 10 г/см и свободной поверхностной энергией 5 <10 Дж/см показывает, что влияние размера частиц на растворимость начинает существенно проявляться только при радиусах кривизны менее 5 А. Сказанное полностью относится к растворению микровыступов на поверхности металла преимущественное растворение их относительно гладкой поверхности возможно только в случае очень острых микронеровностей, радиус закругления которых не превышает 5 А. Очевидно, в общий баланс гетерогенной реакции такие субмикровыступы не внесут заметного вклада, так как растворятся в первую очередь при очень малом материальном выходе.  [c.171]

Сопоставление экспериментальных данных (см. табл. 6) для образцов различных размеров показывает, что влияние размеров для электрополированных образцов из среднеуглеродистой стали проявляется в том, что с их уменьшением заметно уменьшаются напряжения, необходимые для развития усталостных трещин в области существования нераспространяющихся трещин. Вместе с тем напряжения, необходимые для возникновения усталостных трещин в той же области, остаются постоянными независимо от размеров образца. Влияние размеров для образцов из той же стали, но с механически обработанной поверхностью проявляется, как и в предыдущем случае, в существенном уменьшении разрушающих напряжений с увеличением размеров образцов при наличии нераспространяющихся усталостных трещин. Однако в этом случае он сопровождается заметным уменьшением напряжений, необходимых для возникновения усталостных трещин. Основной же закономерностью является постоянство критического радиуса при вершине надреза для всех размеров образцов.  [c.79]

Некоторое различие абсолютных значений Uh, полученных разными исследователямй для смесей одинакового состава и примерно при одинаковых температурах и давлениях (см., например, [Л. 19]), можно объяснить главным образом погрешностями подсчета размеров поверхности фронта воспламенения или влиянием каких-либо других неучитываемых факторов.  [c.32]


Качество поверхности отливок. Многие эксплуатационные свойства (например, коррозионная стойкость, износостойкость, долговечность, термостойкость и др.) в большой степени определяются состоянием поверхности изделий. Качество поверхности отливок оценивается по ГОСТ 26645—85, прежде всего, степенью точности поверхности (СТП) и зависит как от их шероховатости, так и от наличия поверхностных дефектов (пригара, наростов, оксидов, волнистости). Однако в требованиях к шероховатости поверхности отливок присутствие поверхностных дефектов литья не оговаривается. В то же время ГОСТ 26645—85 регламентирует минимальный припуск на механическую обработку для устранения дефектов литой поверхности. Зависимость степени точности поверхности отливки от способа литья см. в табл. 16.2. Шероховатость поверхности чаще всего оценивается по наибольшим или номинальным значениям (диапазонам значений) следующих параметров (мкм) среднего арифметического отклонения (Лд) и высоты неровностей профиля по десяти точкам (Л ). Соответствие шероховатости техническим условиям на нее определяют на предварительно очищенной дробью (илк металлическим песком) поверхности отливки. На шероховатость поверхности оказывают влияние размер и конфигурация (сложность формы) отлинки, состав сплава и способ литья. Наименьшие значения шероховатости поверхности отливок достигаются при М ье под давлением, по выплавляемым моделям и в гипсовые формы.  [c.376]

Мур [954], рассматривая предложение Питерсона, указал на то, что поверхность может быть упрочнена либо сжимающими напряжениями в поверхностном слое, вызванными полировкой, либо перегруппировкой кристаллов. В обоих этих случаях источник трещин может быть на некотором расстоянии от поверхности . Может представлять значение тот факт, что Мае-сонне [1014] обнаружил меньшее влияние размеров на усталостную прочность при электролитической полировке образцов, чем при механической (см. табл. 14.3). Результаты исследований Мура полированных и затем отожженных в вакууме образцов показали некоторый малый, но определенный масштабный эффект (см. табл. 2.3). В обоих случаях напряжения в поверхностном слое, вызванные полировкой, успешно устранялись.  [c.56]

Дефекты не связаны с обработкой поверхностей, наличием примесей и границами кристаллов. Фабер установил, что дефекты в олове обычно лежат на поверхности и имеют размеры порядка 10 —Ю см. Однако еслн поверхностный слой образца снять электрополировкой, то появляются новые дефекты, что указывает на равномерность их распределения по всему объему образца. Как правило, нагревание образца до комиатно температуры и последующее его охлаждение не влияют на дефекты, однако обработка образца оказывает на них влияние. Фабер и Пиппард предполагают, что дефекты—это области, где кристаллическая решетка разрушена сеткой дислокаций.  [c.658]

Гигроскопичность диэлектриков зависит от их структуры и состава. Неполярные органические диэлектрики, например парафин, полиэтилен, полипропилен, обладают очень малой гигроскопичностью, почти не поглощают влаги из возду а и даже при длительном пребывании во влажной среде сохраняют хорошие диэлектрические свойства. Полярные диэлектрики обладают обычно большей гигроскопичностью, причем закрепление полярных молекул воды около полярных групп молекул диэлектрика замедляет поглощение влаги и равновесное состояние (предельное влагопоглоще-ние) наступает в них за большее время, чем у неполярных. Некоторые вещества, поглощая влагу, образуют с ней твердый коллоидный раствор — набухают. У таких диэлектриков (например, целлюлозные материалы) влагопоглощение может быть очень большим и вызывать сильное ухудшение электрических параметров. Наличие в диэлектриках водорастворимых составных частей и солей повышает их гигроскопичность. Многие неорганические диэлектрики, обладающие плотной структурой, например стекло, непористая керамика, практически не обнаруживают объемного поглощения воды. Проникновение влаги в диэлектрик может происходить через имеющиеся в нем поры. По своему характеру пористость может быть открытой в виде каверн на поверхности закрытой — в виде внутренних воздушных пустот, не сообщающихся с окружающей средой сквозной — в виде каналов, пронизывающих диэлектрик насквозь. Наибольшее влияние на электрические параметры оказывает влага, попадающая в сквозные поры. Конденсируясь на их стенках, вода образует сплошные пленки повышенной проводимости. Имеют значение и размеры пор, которые могут быть разными от макроскопических до суб-микроскопических размером (5—10)-10 см.  [c.110]

Омываемая поверхность сварных крышек поворотнолопастных турбин выполняется торовой из штампованных листов либо в виде ряда усеченных конусов (см. рис. И.4) из вальцованных листов, что проще. Возникающая в последнем случае небольшая огранка на условия обтекания существенного влияния не оказывает. В поворотнолопастных турбинах при малых размерах (Di=s 4,5 м) применяют крышки, объединенные с верхним кольцом направляющего аппарата (см. рис. И.6).  [c.96]

Наружные размеры и форма корпуса и отношение /Свт, как уже указывалось в II. 1, оказывают большее влияние на гидродинамические качества рабочего колеса. Наиболее распространены следующие формы корпусов цилиндрическая (см. рис. V. 1,6), в которой верхняя часть (до осей поворота лопастей) выполняется по цилиндру и ь иже переходит в конус с образующей, очерченной по дуге окружности сферическая — со сферическим поясом, расположенным в зоне лопастей (см. рис. V.6), и доходящей до сферы цилиндрической частью. В зарубежных турбинах применяют иногда корпуса, в которых верхняя часть выполняется в виде расширяющегося кверху тела вращения с образующей, совпадающей с контуром проточной части. На поверхности такого корпуса возникает гидравлическая сила, направленная противоположно осевой силе, возникающей на рабочем )солесе существенных преимуществ они не имеют.  [c.141]

Затраты на повышение надежности можно распределить так, чтобы получить наибольший эффект, а во многих случаях добиться повышения надежности не за счет дополнительных затрат, а путем применения рациональных конструктивных решений. Так, например, выбор оптимальных размеров узла трения обеспечит более длительное сохранение им точности (см. гл. 7, п. 5), выбор схемы механизма и допусков на сопряженные поверхности сократит период макроприработки (см. гл. 8, п. 3), рациональный выбор типа механизма и расчет его на износ позволит при прочих равных условиях добиться более равномерного износа и меньшего его влияния на выходные параметры изделия (см. гл. 6) и т. п.  [c.567]

След распространяющейся по поверхности детали усталостной трещины имеет криволинейную траекторию, что обусловлено сдвиговым разрушением материала у поверхности детали, приводящим к формированию скосов от пластической деформации (см. главы 3 и 6). Наиболее интенсивное формирование скосов от пластической деформации (СПД) происходит на мезоуровне П с переходом к нестабильному развитию трещины. Поверхность СПД ориентирована под углом 45° к поверхности детали и представляет собой поверхность наклонной усталостной трещины. Если на первой стадии роста трещины (микроскопический масштабный уровень) размер скосов мал и их влиянием на развитие трещин можно пренебречь, то на последующих этапах разрушения (мезоскопический масштабный уровень) пренебрегать влиянием СПД на процесс роста трещин нельзя. Использовать зону СПД в управлении кинетикой устал ост-  [c.455]


Для кабелей телефонной или телеграфной связи, которые в местах пересечения с другими трубопроводами, имеющими катодную защиту, испытывают влияние с изменением потенциала более чем на 0,1 В должны быть проведены мероприятия по нормали VDE 0150 (см. раздел 10). По изменению потенциала, измеренному на поверхности земли нельзя судить о фактическом изменении рптенциала на границе раздела фаз металл—грунт или о величине плотности тока коррозии, поскольку важные для этого влияющие факторы (например, расстояние между кабелем и трубопроводами, размер дефектов покрытия и их местоположение) обычно не бывают известны точно. Опасность коррозии под действием защитного тока трубопровода в месте его пересечения с кабелем может  [c.304]

By предполагает, что в условиях простого напряженного состояния (например, растяжения) статистический разброс прочности материала можно отнести за счет изменения размеров микродефектов и, следовательно, изменений критического объема, характеризуемого расстоянием Гс. При таком подходе напряженное состояние на поверхности объема гс) выражается при помощи сингулярных форм а,/ (см., например, (6.18)) при г = Гс- Это означает, что Гс всегда лежит в зоне преобладающего влияния упругой особенности типа квадратного корня от г в знаменателе. Отличное экспериментальное подтверждение подхода By было получено на одно-наиравлениом стеклопластике (S ot hply 1002) для смешанного вида нагружения при наличии трещин, параллельных волокнам. Более того, оказалось, что Ki и Кпс и величина критического объема для различных ориентаций трещины относительно приложенных нагрузок постоянны. Величина Гс оказалась приблизительно равной 1,95 мм.  [c.237]

Испытание производится следующим образом (см. ОСТ НКТП 7872). Смазка наносится толстым слоем на предварительно взвешенный стальной валик определенного размера, имеющий в нижней части вид усеченного конуса, отделенного от цилиндрической части валика тонкой кольцевой выточкой. Выравнивание слоя смазки на валике производится проворачиванием валика в специальной муфте со смазанной внутренней поверхностью до полного заполнения смазкой зазора между валиком и муфтой. Валик извлекают из муфты под влиянием собственного веса и взвещивают после выдерживания в шкафу при режиме, установленном техническими условиями.  [c.549]

Равномерно распределенная нагрузка по поверхности модели заменялась системой сосредоточенных сил, приложенных в 64 точках при расстоянии между их центрами 24,5 см. Чтобы уменьшить влияние местных нагрузок, на модели устанавливали подкладки пз пенопласта размером в плане 12x12 см (рис. 2.34). Принятое расстояние кежду силами диктовалось необходимостью установки приборов сверху оболочек. Каждая оболочка загружалась отдельным домкратом. Все домкраты присоединялись к одной насосной станции. Все опоры модели выполняли шаровыми. Модель при испытанпи на равномерно распределенную нагрузку показана на рис. 29, б.  [c.100]

С учетом случайного характера, влияние тепловых деформаций станков на точность обработки может быть представлено в виде схемы (см. рис. 2). Величина допуска 6 на обработку цилиндрической поверхности, равная разности верхнего х max ) и нижнего (л тт) отклонений, расходуется на различные погрешности обработки. Погрешность формы, зависящая от начальных неточностей изготовления станка, погрешность его. настройки на данный размер и погрешности от быст-ропротекающих процессов при обработке первых деталей партии занимают часть допуска, величина которой является случайной в силу случайности составляющих погрешностей, и характеризуется математическим ожиданием и зоной рассеивания Ai.  [c.308]

Для определения влияния ширины, длины и глубины опиливания были проведены хро-иометражпые исследования по опиливанию поверхностей с разными размерами и разными глубинами для стали а = 50- -60 KZjM.u и стали а = 70-f-80 л г/лл2. Результаты наблюдений показали, что продолжительность опиливания 1 см зависит от ширины поверхности и глубины. Изменения продолжительности опиливания 1 см в зависимости от указанных факторов были нанесены иа двойную логарифмическую сетку (фиг. 32). Опи-  [c.503]

Минимальные размеры рабочего пространства при известной топограмме парциальных переходных функций hi lv), парциальных функций влияния Xiilv), полученных методом локального воздействия влияющего фактора (см. гл. И) на участки поверхности средства и объекта измерения, можно определить по выражениям  [c.178]

С целью выявления практической ценности уравнений (4-122) — (4-124), выведенных на основе целого ряда приближений, а также особенностей протекания процесса теплопереноса клее-сварных и клее-заклепочных соединений в зависимости от технологии изготовления, рода материала и размеров соединяемых элементов, разновидностей клеев, толщины клеевой прослойки и т. д. были проведены опытные исследования. Испытания осуществлялись стационарным методом на установке, приведенной выше (см. рис. 4-2—4-4). Основные характеристики исследуемых образцов представлены в табл. 4-13. Для сведения до минимума влияния ориентационного эффекта на тепловые свойства клеевой прослойки поверхности субстратов обрабатывались парафиновой эмульсией. Образцы с клее-сварными соединениями изготавливались из дюралюминиевых листов с поверхностью обработки 7-го класса чистоты на сварочной машине УМП75 со сменными электродами. Толщина клеевой прослойки варьировалась с помощью специальных ограничителей усилием предварительного обжатия.  [c.181]

В общем случав на тип М. д. с. существенное влияние оказывают особенности магн. анизотропии (число осей лёгкого намагничивания) ориентация ограничивающих кристалл поверхностей относительно кристаллографич. осей форма и размеры образца, а также всевозможные дефекты — магн. и немагн. включения, дефекты упаковки, границы двойников (см. Двойникование), дислокации и др.  [c.653]


Смотреть страницы где упоминается термин см Влияние размера поверхности : [c.325]    [c.163]    [c.70]    [c.386]    [c.478]    [c.150]    [c.309]    [c.80]    [c.674]    [c.421]    [c.402]    [c.29]    [c.22]    [c.143]    [c.53]   
Машиностроение Энциклопедический справочник Раздел 1 Том 2 (1948) -- [ c.127 ]



ПОИСК



902, 903 — Износ — Влияние на чистоту поверхности деталей 895 — Размеры

Влияние концентрации напряжений на сопротивление усталоСопротивление усталости в зависимости от состояния поверхности изделий и от их размеров

Влияние концентрации напряжений, размера и степени чистоты обработки поверхности детали на ее сопротивление усталости

Влияние концентраций напряжений, состояния поверхности и размеров детали на усталостную прочность

Влияние размера и состояния поверхности нагрева на величину кр

Влияние скорости деформирования, размера образцов и состояние их поверхности на хладноломкость

Влияние скорости течения на размеры впадин, образующихся на поверхности мягкого алюминия

Влияние состояния поверхности и размеров детали на усталостную прочность

Влияние характера напряженного состояния, состояния поверхности, размера образцов на хладноломкость. Влияние скорости деформации на критическую температуру хрупкости

Излучение звука. Влияние размеров колеблющейся поверхности

Поверхность влияния

Размеры поверхностей



© 2025 Mash-xxl.info Реклама на сайте