Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Сварка Ударная вязкость

Очень остро решался вопрос о термической обработке для конструкций, изготовленных с применением электрошлаковой сварки. Серьезным недостатком электрошлаковой сварки является интенсивный рост зерна в околошовной зоне, что требует нормализации конструкций для измельчения зерна как в этой зоне, так и в металле шва [130, 194]. Кроме того, в соединениях, выполненных электрошлаковой сваркой, ударная вязкость металла шва и участка крупного зерна в околошовной зоне ниже, чем требуется по техническим условиям.  [c.230]


Вид обработки испытуемых образцов перед сваркой Ударная вязкость (Од, те-м/см )  [c.239]

При нагреве металла в интервале температур 100—500° С (участок старения) его структура в процессе сварки пе претерпевает видимых изменений. Однако в некоторых сталях, содержащих повышенное количество кислорода и азота (обычно кипящих), их нагрев при температурах 150—350° С сопровождается резким снижением ударной вязкости и сопротивляемости разрушению.  [c.212]

Свойства металла шва, наплавленного электродом без покрытия, очень низки (ударная вязкость падает до 0,5 МДж/м вместо 8 МДж/м ). Состав покрытия электродов определяется рядом функций, которые он должен выполнять защита зоны сварки от кислорода и азота воздуха, раскисление металла сварочной ванны, легирование ее нужными компонентами, стабилизация дугового разряда. Производство электродов сводится к нанесению на стальной стержень электродного покрытия определенного состава. Электродные покрытия состоят из целого ряда компонентов, которые условно можно разделить на ионизирующие, шлакообразующие, газообразующие, раскислители, легирующие и вяжущие. Некоторые компоненты могут выполнять несколько функций одновременно, например мел, который, разлагаясь, выделяет много газа (СОг). оксид кальция идет на образование шлака, а пары кальция имеют низкий потенциал ионизации и стабилизируют дуговой разряд, СОг служит газовой защитой.  [c.390]

Причинами разрушения трубопровода на 365-м км трассы явились снижение прочности стыкового шва вследствие некачественного выполнения сварки (наличие в шве непроваров, шлаковых включений, крупнозернистой структуры) и неудовлетворительные механические характеристики металла шва (ударная вязкость составляла 0,56-0,79 кгм/см вместо регламентируемых 3 кгм/см ).  [c.58]

Можно ли практически снизить массу Опыт разработки космических кораблей свидетельствует, что во многих случаях использование композиций не приводит к облегчению конструкции. В 1968 г. был специально проведен анализ конструкции командного модуля Апполона , чтобы выявить места, где композиции помогли бы снизить массу. Модуль в целом весил около 3 т, однако меньше 100 кг можно было бы успешно заменить на детали из композиций. Действительно, около 680 кг из этой массы приходится на разрушающееся покрытие. Около 450 кг — это не-несущие конструкции, где используется алюминий минимальной толщины, к которому не предъявляется особых требований по прочности и жесткости. Около 90 кг весят затворы и механизмы, от материалов которых требуются высокая твердость поверхности, ударная вязкость и изотропность, присущие металлам. Значительная часть массы приходится на тепловой экран из коррозионно-стойкой стали (в то время такая сталь превосходила по теплостойкости композиционные материалы). Другую большую долю составляла внутренняя оболочка, образующая кабину, высокую степень герметичности которой могла обеспечить только сварка. Из оставшегося существенную долю составляла клееная слоистая  [c.105]


Таким образом, в зависимости от марки применяемого электрода и задаваемых режимов сварки по месту сварки на пробе предварительно фрезеруется надрез глубиной, равной /г, с углом раскрытия кромок а=60°. Опытная сварка составной пластины выполняется по подготовленной канавке. Пластина после сварки остается в кондукторе до получения во всех точках температуры не выше 100°С. После снятия усиления шва из Валиковой пробы изготавливаются образцы на ударную вязкость с расположением вершины надреза в металле шва и в исследуемых участках термического влияния сварки.  [c.67]

Результаты испытаний на ударную вязкость показывают, что в случае сварки с применением предварительного подогре-  [c.75]

Рис. 28. Зависимость ударной вязкости участков термического влияния сварки от температуры (сварка при —45°С). Рис. 28. <a href="/info/221251">Зависимость ударной</a> вязкости участков термического влияния сварки от температуры (сварка при —45°С).
Зона старения при ручной сварке расположена на расстоянии 3—10 мм, а при автоматической — на расстоянии 8—18 мм от линии сплавления. Участок, ослабленный в результате старения, определяется экспериментальным путем серийными испытаниями на ударную вязкость по температуре.  [c.80]

Стрела экскаватора разрушается в основном по сварочному шву средней секции, а также по проушинам пяты, по месту сварки пяты с металлоконструкцией и по разным сечениям возле крепления головных блоков. Причинами разрушения при низких температурах являются концентраторы напряжений, низкая хладостойкость применяемого материала II его разупрочнение в зоне шва. Следует отметить, что хладостойкость применяемого материала уже при температуре — 10°С не удовлетворяет требованиям эксплуатации. Ударная вязкость в этом случае составляет 2 кг м/ м (рис. 35, е). Снижение ударной вязкости происходит в том же температурном интервале, что и рост относительной частоты разрушений (от 0°С до —20°С), т. е. основная ответственность за повышение аварийности данного узла ложится на низкие механические свойства применяемого материала.  [c.91]

Отвал бульдозера — сварная конструкция, разрушение которой связано прежде всего с наличием концентраторов напряжений в местах сварки. Для разных типов отвалов интенсивность их разрушений при низких температурах различна, но во всех случаях достаточно высока (рис. 36, а — г). Основной тип исследуемого отвала — отвал бульдозера Д-271. Для изготовления отвала применяется сталь с низкими прочностными свойствами, склонная к хладноломкости (табл. 11). Так, ударная вязкость материала (образцы вырезались из реальных деталей) снижается с 6,5—3,8 кгс-м/см,2 при температуре 20°С до 4,0—0,6 при температуре —30°С. Разброс значений ударной вязкости можно объяснить значительным колебанием, химического состава, а также разным временем, которое отработала каждая деталь до момента разрушения.  [c.92]

Сварочные материалы, применяемые для сварки стальных конструкций, должны обеспечивать механические свойства металла шва и сварного соединения (предел прочности, предел текучести, относительное удлинение, угол загиба, ударную вязкость) не меиее нижнего предела свойств основного металла конструкции (табл. 15).  [c.24]

V. Неудовлетворительные механические свойства сварного шва а) Низкий предел прочности и текучести б) Малый угол загиба в) Низкая ударная вязкость г) малый предел усталое 1 и а) Нарушения технологии сварки б) Неправильная техника сварки в) Неудовлетворительное качество присадочных материалов (проволоки, электродов, флюсов) ( г) несоответствующий состав основного металла Механические испытания на растяжение, изгиб, ударную вязкость, усталость,  [c.558]


Механические испытания прочности сварных соединений производятся в соответствии с требованиями ГОСТ 6996—66. Механическим испытаниям подвергаются стыковые сварные соединения для проверки соответствия их прочностных и пластических свойств требованиям соответствующих стандартов, Основных положений по сварке ОП 1513—72 и технических условий на изготовление арматуры. Основные виды механических испытаний на растяжение, на статический изгиб или сплющивание и на ударную вязкость выполняются с использованием образцов, изготовляемых из контрольных (или производственных) сварных соединений. Нз каждого контрольного стыкового сварного соединения должны быть вырезаны  [c.216]

ТЦО улучшает вязкость зоны термического влияния при электрошлаковой сварке крзчшогаба-ритных плит из стали 10ГН2МФА атомных энергетических установок. Практическое совмещение ТЦО с электрошлаковой сваркой достаточно просто. Оно осуществляется синхронно с прохождением водоохлаждаемого формирующего ползуна перемещением индуктора, питаемого от стабилизированного источника питания повышенной частоты. После электрошлаковой сварки ударная вязкость КСи металла зоны термического влияния при 20 °С составила 26 Дж/см , а после 5 циклов ТЦО она возросла до 158 Дж/см .  [c.603]

Нормы механических испытаний сварных соединений трубопроводов из углеродистых сталей предел прочности — не ниже предела прочности основного металла угол загиба — не ниже 100° при дуговой сварке и не ниже 70° при газовой сварке ударная вязкость — не ниже 6 кгс м1см".  [c.429]

При сварке малоуглеродистой стали стык, сваренный вполне качественно оплавлением, без последующей термической обработки обладает высокой прочностью при действии статической, ударной и циклической (регулярной повторно-переменной) нагрузок. Предел прочности сварного соединения со снятым гратом и полностью удаленным усилением, как правило, не ниже предела прочности основного металла. Ударная вязкость образцов с надрезом в плоскости стыка обычно лежит в пределах 6—12 KZMj M . Относительно невысокая ударная вязкость сварного соединения по сравнению с соответствующими показателями для основного металла и значительное рассеяние результатов испытания сварных соединений на удар объясняются крупным зерном в зоне сварки. Ударная вязкость сварного соединения может быть существенно повышена термической обработкой сварного соединения (его нормализацией при температуре около 930 или низким отжигом при Г= 630ч-650°).  [c.89]

Согласно требованиям ГОСТ 9467—75 в условном обозначении электродов для сварки углеродистых и низколегированных сталей с временным сопротивлением разрыву менее 60 кгс/мм в знаменателе (во второй строке — см. рис. 69) группа индексов, указывающих характеристики паплавлешюго металла, должна быть записана следующим образом первые два индекса указывают минимальное значение величины Ов (кгс/мм ), а третий индекс одновременно условно характеризует минимальные значения показателей 65 и температуры при которой определяется ударная вязкость.  [c.106]

В условном обозначении электродов для сварки сталей с > > ()0 кгс/мм группа индексов, обозначающих характеристики нанлавлеппого металла и металла шва, указывает среднее содержание основных химических элементов в наплавленном металле и минимальную температуру, при которой ударная вязкость металла составляет не менее 3,5 кгс-м/см . Эта запись включает  [c.107]

Сварка на повышенных силах тока приводит к получению металла швов с пони/кенными показателями пластичности и ударной вязкости, что вероятно объясняется повышеппыми скоростями охлаждения. Свойства металла шва, выполненного на обычных режимах, соответствуют свойствам металла шва, выполненного электродами типа Э50А. В промышленности находит применение и сварка в углекислом газе порошковыми проволоками. Технология этого способа сварки и свойства сварных соединений примерно те же, что и при использовании их при сварке без дополнительной защиты.  [c.227]

Это всегда следует учитывать при выборе сварочных материалов для легированных конструкционных сталей. Так, например, при сварке низколегированной стали с временным сопротивлением 50 кгс/мм применение электродов типа Э50А может привести к значительному повышению временного сопротивления металла шва и существенному снижению пластичности и ударной вязкости. Это происходит ввиду легирования металла элементами, содержащимися в основном металле при проплавлении последнего. Характер изменения этих свойств зависит от доли участия основного металла в формировании металла шва. Поэтому, как правило, следует выбирать такие сварочные материалы, которые содержат легирующих элементов меньше, чем основной металл.  [c.248]

Рис. 134. Изменение твердости и ударной вязкости основного металла зоны термического влняння вблизи границы сплавления. Сварные соедиЕсения сталей 14X17112 (а) и 20X13 (б) толщиной 4 мм иосле сварки и отпуска Рис. 134. Изменение твердости и <a href="/info/4821">ударной вязкости</a> <a href="/info/384895">основного металла</a> зоны термического влняння вблизи <a href="/info/384862">границы сплавления</a>. Сварные соедиЕсения сталей 14X17112 (а) и 20X13 (б) толщиной 4 мм иосле сварки и отпуска

Механические свойства сварных соединений, сваренных приведенными выше сварочными материалами, кроме ударной вязкости в зоне термического влияния, соответствуют свойствам основного металла. Швы, выполненные автоматической сваркой под флюсом электродной проволокой марки Св-13Х25Н18 (а также и при ручной дуговой сварке электродами на этой проволоке, например марки ЦЛ-8), оказываются склонными к межкристал-литной коррозии, определяемой, видимо, повышенным содержанием углерода и отсутствием стабилизируюш,их элементов.  [c.277]

Наличие в металле эндогенных шлаковых включений, служащих концентраторами напряжений, сильно влияет на физикомеханические свойства металла шва, в частности, на его пластичность и ударную вязкость. При сварке низкоуглеродистых низколегированных сталей ударная вязкость достаточно большая и влияние концентраторов напряжений мало, но при сварке средне-и высокоуглеродистых и легированных сталей, запас пластичности у которых мал, влияние таких концентраторов может привести к образованию холодных трещин или замедленному разрушению при высоком уровне напряжений и при наличии других охрупчи-вающих факторов (водород).  [c.373]

Трубопровод Оренбург-Заинск (Dy = 1000 мм, Ру = 5,6 МПа) с 1971 г. служит для транспортировки газа ОНГКМ на Заин-скую ГРЭС. Он сооружен из труб 01020x16 мм на участках I-II категории протяженностью более 16,5 км и труб 01020 х 14 мм на участках III-IV категории. Трубы изготовлены из низколегированной стали типа 17ГС, содержащей, % С — 0,16 Si — 0,39 Мп — 1,44 Р — 0,018 S — 0,015 с пределом прочности не ниже 520 МПа пределом текучести не ниже 300 МПа и ударной вязкостью 5 кгм/см при температуре минус 40°С. Углеродный эквивалент — не выше 0,45. Сварка труб проводилась в соответствии с рекомендациями ВНИИСТа поворотных стыков — электродами Гарант , УОНИ 13/55 и проволокой СВ-08ГА под флюсом неповоротных стыков — электродами Гарант и УОНИ 13/55. Трубы покрыты битумно-резиновой изоляцией усиленного типа.  [c.61]

Установленная- целесообразность применения при сварке дугой в вакууме в Качестве плавящегося электрода проволоки того же состава или несколько более легированной подтверждена и другими экспериментами. Ток при АДЭСПЭа в разделку сплава ЗВ толщиной 15— 60 мм проволокой ВТбСв (т. е. той же системы, но более легированной) были получены равнопрочные сварные соединения, имеющие большую прочность, пластичность и ударную вязкость, чем основной металл.  [c.144]

Более высокие результаты были достигнуты в случае сварки горизонтальным и наклонным лучами. Показана возможность качественного соединения титановых сплавов при сварке за один проход со сквозным проплаалением и свободным формированием вершины и корня шва титановых сплавов толщиной 140—160 мм. Получены бездефектные сварные соединения, равнопрочные и равно пластичные основному металлу. Данные соединения по своей прочности превосходят соединения, выполненные при АДЭСПЭВ, но уступают им по пластичности и ударной вязкости. Это, как свидетельствуют результаты газового аньигиза, является результатом сравнительно более жесткого электронно-лучевого переплава в вакууме.  [c.144]

Нержавеющие стали. Основной легирующий элемент нержавеющих сталей — хром, который повышает механические свойства стали и способствует образованию на ее поверхности тонкого слоя окислов, облагораживающего электродный потенциал стали и повышающего ее коррозионную стойкость. Она повышается не монотонно, а скачкообразно. Первый порог коррозионной стойкости достигается при концентрации хрома, равной 12,8 %. При увеличении содержания хрома до 18 или до 25—28 % достигается второй порог коррозионной стойкости и наблюдается дальнейшее повышение коррозионной стойкости стали. Однако повышение содержания хрома приводит к понижению механических свойств стали, особенно ударной вязкости, а также затрудняет сварку, вызывая хрупкость сварного шва. Стали с высоким содержанием хрома после сварки требуют термической обработки. Повышение содержания углерода в нержавеющих сталях понижает их коррозионную стойкость, что связано с уменьшением содержания хрома в твердом растворе вследствие образования карбидов. Поэтому повышение содержания углерода в стали вызывает сдвиг порога коррозионной стойкости в область более высокой концентрации хрома. Понижение содержания углерода ниже 0,02% делает сталь стойкой против карбидообразо-вания.  [c.31]

Простейшие слоистые материалы состоят из связанных гомогенных изотропных пластин. При изготовлении этих материалов слабые плоскости можно располагать благоприятным образом — так, чтобы обеспечить высокую вязкость разрушения композита. Рассмотрим идеализированный слоистый материал, изображенный на рис. 25. Поле напряжений перед трещиной задается уравнением (2). На небольшом расстоянии перед вершиной трещины развиваются поперечные растягивающие напряжения 0 . Они, в сочетании со сдвиговыми напряжениями Хху (возникающими при любых зиачениях угла 0, кроме 0=0°), могут вызвать межслоевое разрушение. Маккартни и др. [24] изучали сопротивление развитию трещины слоистого материала из высокопрочной стали (203 кГ/мм ) для случаев низкой, средней и высокой прочности связи. Связь низкой прочности (3,5—7,0 кГ/мм ) обеспечивали с помощью эпоксидных смол, а также оловянного и свинцово-оловянного припоя, связь средней прочности (38—60 кГ/мм )—с помощью серебряного припоя, а высокопрочную связь (140 кГ/мм ) — путем диффузионной сварки слоев. Во всех случаях при испытании на ударную вязкость по Шарпи образцы разрушались лишь до первой плоскости соединения слоев. Остальная часть образца сильно деформировалась и расслаивалась по той же поверхности раздела, но не разрушалась. Сходные результаты получил и Эмбе-ри с сотр. [9]. Если прочность связи уступает прочности листов, то происходит торможение трещины. Ляйхтер [23], однако, установил, что охрупчивающая фаза, возникающая при использовании некоторых твердых припоев, может существенно снизить вязкость разрушения.  [c.296]

На рис. 8 показан боковой обратный клапан фирмы Whirlpool, установленный в промывном аппарате для тканей. Клапан изготовлен прессованием из стеклонаполненного сополимера полистирола и акрилнитрила. Фирма выбрала эту формовочную композицию, так как она обладает низким влагопоглощением, обеспечивает стабильность размеров и ударную прочность изделий. Добавление 20% стекловолокна повышает вдвое прочность при растяжении и ударную вязкость. Детали из этого материала дороже, чем цинковые отливки. Однако при конструировании детали из стеклопластика оказалось возможным исключить резиновый шар, винты и другие, ранее необходимые детали. Для соединения трех частей клапана используют ультразвуковую сварку. Это позволяет снизить стоимость механической обработки, сборки и исходного сырья, а также повысить эффективность труда. Успешно эксплуатируются несколько миллионов таких клапанов, изготовленных из формовочной композиции марки В-20000 FG фирмы Tbermofil 1пс.  [c.389]

Для каждого рассмотренного случая технологического режима сварки полностью выдерживалась описанная методика проведения экспериментов, в соответствии с которой из-потавливались составные валиковые пробы и сварные соединения для определения механических характеристик. В результате последующих испытаний получено множество температурных зависимостей ударной вязкости различных участков сварного соединения, исполненного по конкретному технологическому режиму. Имея такую зависимость, можно определять критическую температуру хрупкости для кан дого случая. В наших опытах в качестве критической температуры брали верхний порог хладноломкости (максимальная температура, при которой начинается резкое падение значений ударной вязкости)—3 кгс-м/см . Установленные при этом верхние пороги хладноломкости различных участков сварных соединений, изготовленных при разных режимах, сопоставлялись с соответствующими значениями погонной энергии сварки, приведенными к одинаковой толщине проб. Такой подход позволяет более четко выявить в конкретных случаях наиболее оптимальный режим сварки, обеспечивающий лучшую хладостойкость сварного соединения (рис. 24—26).  [c.68]


Э42А, Э46А и Э50Л — для сварки углеродистых и низколегированных конструкционных сталей с временным сопротивлением разрыву до 50 кгс/мм , когда к металлу сварных швов предъявляют повышенные требования по пластичности II ударной вязкости  [c.24]

По ударной вязкости при 20 и — 40° С сварные швы не уступают основному металлу. Склонность к образованию горячих и холодных трептн при сварке у стали отсутствует. В зоне влияния сварки металл имеет твердость Wfi 220. Ударная вязкость после старения при отрицательных температурах резко уменьшается. Штампу ем ость удовлетворительная. Температура нагреза металла при прокатке лист 1180 — 1200° С, фасонный прокат 1250 — 1260° С. Температура конца прокатки лист 700—750° С. фасонный прокат 860—900° С.  [c.292]

Сварка автоматическая под слоем флюса марки АНЗ-48. 1Механические свойства металла стыкового шва. определяюишеся путем заварки швов толщиной 20—30 млс. а = 40 — - 50 кГ мм = 56 кГ/мм- , = 23 24% ф = 50 ударная вязкость при 17 ,  [c.301]

Стали относятся к группе мартенситных, хорошо закаливаются на воздухе или в масле, обладают высокими механическими свойствами при комнатных и повышенных температурах. При температурах глубокого холода имеют малую ударную вязкость. Коэффициент линейного расширения этих сталей невелик, что очень важно для уменьшения зазора в осевых компрессорах газовых турбин. Большинство сталей при охлаждении на воздухе с температур выше критических нодзакаливаются, что следует учитывать при сварке, термической обработке и обработке давлением.  [c.131]

Достаточно высокие значения ударной вязкости этих сталей зависят от режима термической обработки и старення. С понижением температуры она несколько упрочняется, но отпуск при температуре около 500° С значительно улучшает ударную вязкость после двойной закалки и сварки.  [c.232]

В целях улучшения качества сварных швов и экономии никеля предложены хромомарганцовоникелевые стали типа 18-8 с 2 и 6% Мп, которые /гц в состоянии после сварки и термической обработки имеют значения ударной вязкости, указанные lOO в табл. 61.  [c.233]

В связи с этим оценка склонности реакторных сталей к хрупкому разрушению по результатам испытаний стандартных образцов на ударную вязкость принималась необходимой, но недостаточной для предотвращения опасности хрупкого разрушения. В конце 50-х-начале 60-х годов в СССР, США и Англии были проведены испыгания крупногабаритных образцов толщиной от 50 до 250 мм и шириной от 200 до 1200 мм [2, 7, 14, 16]. Эти образцы имели острые надрезы типа дефектов и трещин, сварные швы часть образцов подвергалась предварительному деформационному старению. Для испытаний таких образцов были использованы уникальные установки с предельными усилиями от 1500 до 8000 тс (15-80 МН), По результатам проведенных испьпаний была определена область критических состояний, характеризуемых резким уменьшением прочности и пластичности реакторных сталей как для стадаи возникновения, так и для стадии развития хрупких трещин. В последнем случае при температурах ниже критических разрушающие напряжения оказывались весьма низкими (0,05-0,15 от предела текучести). При наличии высоких остаточных напряжений от сварки разрушения крупногабаритных образцов с дефектами также происходили при низких номинальных напряжениях от нагрузки. Этими оп<,пными данными была обоснована необходимость расчета прочности атомных реакторов [5] по критическим температурам хрупкости и разрушающим напряжениям кр хрупких состояниях с введением запасов [ДГ] и кр соответственно, а также важность проведения термической обработки для снятия остаточных напряжений.  [c.39]

Характерные для швов, сваренных с ЭМП, отличия в структуре и распределении легирующих элементов дополняются при сварке материалов, претерпевающих полиморфные превращения в твердой фазе, благоприятным изменением характера выделения продуктов распада первичной структуры, что делает конечную структуру более однородной. Это приводит к повышению ударной вязкости металла шва при сварке с ЭМП, например, сплава ВТ6С (на образцах, подвергнутых старению) с 5 кгс м/см до 7,55 кгс м см и снижению порога хладноломкости сварных соединений стали 09Г2С с минус 60 до минус 70° С.  [c.29]


Смотреть страницы где упоминается термин Сварка Ударная вязкость : [c.214]    [c.216]    [c.220]    [c.268]    [c.271]    [c.144]    [c.219]    [c.63]    [c.151]    [c.147]   
Диффузионная сварка материалов (1981) -- [ c.22 ]



ПОИСК



Вязкость ударная

Ударная вязкость см- Вязкость

Ударная вязкость см- Вязкость ударная



© 2025 Mash-xxl.info Реклама на сайте