Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Излом структура

Серый чугун. Такое название чугун получил по виду изло-ма, который имеет серый цвет. В структуре серого чугуна имеется графит, количество, формы и размеры которого изменяются в широких пределах. Таким образом, в сером чугуне имеется графит, а в белом его нет .  [c.209]

Повторив вывод закона Планка, проделанный Бозе [36] для фотонного газа с энергией фотона, равной До, для фотонного газа с энергией, равной Еу, можно получить уравнение (2-18) распределения энергии в спектре серого тела. Мы указывали, что для вычисления по выражению (2-18) необходимо было определить постоянные С и Структура и физический смысл С и С"а аналогичны Су и Са (1-7), т. е. для серого излу чения имеем  [c.64]


Характерный вид усталостного излома показан на рис. 2.166. Края возникшей трещины нажимают друг на друга, трещина разрастается и поверхности детали в месте трещины как бы пришлифовываются, в результате на изломе часть поверхностей деталей получается гладкой, блестящей. Когда трещина распространится на большую часть сечения, оставшаяся его часть уже не может выдержать нагрузки и происходит излом. Так как излом носит мгновенный характер, то происходит хрупкое разрушение и эта часть излома имеет зернистую структуру.  [c.315]

Наиболее характерными чертами структуры изломов разрушения аморфных сплавов являются 1) разрушение (при растяжении) идет по поверхности, составляющей угол 45° с осью нагружения, т. е. в плоскости действия максимальных сдвиговых напряжений 2) излом всегда включает одну или две переходящих одна в другую плоскости максимальных сдвиговых напряжений  [c.373]

Заливка расплава чугуна с 3,5% С и 2% Si в металлическую форму и последующее приложение механического давления до 50—60 MH/м приводят к тому, что более 70% включений графита при кристаллизации приобретают округлую форму, а 30% сохраняют прежнюю пластинчатую форму [49]. При давлении 150 МН/м графитизация чугуна почти полностью прекращается, отливки имеют белый излом. При атмосферном же давлении у чугуна указанного состава графит пластинчатый, при литье в кокиль — междендритный, при литье в песчаную форму — неориентированный. Кратковременный отжиг при температуре 900—950°С закристаллизованных под давлением образцов чугуна приводит к феррит-ной структуре металлической матрицы и округлой форме графита.  [c.37]

Среди физических методов изучения связи состава и структуры материала с его механической прочностью особое место отводится исследованию поверхностей разрушения (изломов), поскольку излом наиболее четко отражает строение и свойства материала в локальном объеме, в котором протекает процесс разрушения. В ряде случаев эксплуатационных разрушений и повреждений только по излому можно сделать заключение о характере и причинах поломки или аварии.  [c.4]

Если при использовании фрактографии для оценки качества и структуры материала нельзя не учитывать условия получения излома, поскольку сама выявляемость и вид дефекта зависят от условий разрушения, а при изучении кинетики разрушения по излому помимо условий нагружения необходимо учитывать состояние материала, то при анализе эксплуатационных изломов тем более важно знать особенности строения изломов, обусловленных как параметрами нагружения, так и свойствами и структурой материала, в том числе различными дефектами материала.  [c.7]


В некоторых случаях для выявления структуры материала (включения, границы зерен и т. д.) можно применять травление поверхности излома. Для этого используются те же реактивы и методы, что и при обычных металлографических исследованиях. При этом необходимо учитывать, что возможно некоторое искажение рельефа поверхности, в связи с чем излом должен быть исследован сначала без травления, а потом с травлением.  [c.175]

Изломы при скучивании, вызванные превышением предела прочности в зависимости от вязкости материала и формы валов могут проходить вдоль, поперек, под углом 45° или комбинированно. Поверхность излома имеет волокнистую структуру. Из-за небольшой пластической деформации материала поверхность излома оказывается не такой гладкой, как при динамическом изломе от сдвига. Хрупкий излом, вызванный превышением предела прочности, обычно происходит под углом 45°. Для этого вида излома характерным является большая поверхность окончательного излома. Если имеет место сильная концентрация внутренних напряжений, вызванная продольным фрезерованием, то хрупкий излом может возникать в продольном направлении.  [c.35]

Рис. 5. Излом образца из плиты толщиной 12,7 мм сплава 1099-Н14, испытанного при 4 К, в структуре которого обнаружены полосы рекристаллизованного материала вдоль плоскости сдвига. Х10 (а) и X 100 (б) (уменьшено на 40% при Рис. 5. Излом образца из плиты толщиной 12,7 мм сплава 1099-Н14, испытанного при 4 К, в структуре которого обнаружены полосы рекристаллизованного материала вдоль <a href="/info/46399">плоскости сдвига</a>. Х10 (а) и X 100 (б) (уменьшено на 40% при
В отдельных случаях в АЛ производится специальный контроль валов оптический (надрезы, шлифовочные прижоги ), с помощью индукционных токов (трещины на поверхности, изменение металлографических структур), ультразвуковой (окалина, излом).  [c.237]

Испытание на скручивание проволоки (ГОСТ 1545—63) определяет способность металла принимать заданное кручение. По числу оборотов судят о пластичности металла, а по излому — о структуре металла. За один оборот принят оборот на 360°. Проба на скручивание производится до разрушения образца с расчетной длиной, равной 100 диаметрам проволоки.  [c.8]

Излом ударный — Структура 3 — 43 Излучение абсолютно чёрных тел I (1-я) — 500  [c.87]

Перегрев. Крупноигольчатая структура и крупнокристаллический излом. Низкие пластические свойства Нагрев выше нормальной температуры закалки То же  [c.577]

Нафталиновый излом в быстрорежущей стали. Крупнозернистая структура. Крупнокристаллический излом с блёстками Окончание ковки или прокатки при температуре выше 1100° С или вторичная закалка без предварительного отжига Предупреждение дефекта окончание ковки или прокатки при температуре ниже 1100° С отжиг перед вторичной закалкой. Исправление дефекта перековка на новый профиль  [c.577]

Условия охлаждения отливок также оказывают влияние на структуру ковкого чугуна при быстром охлаждении от 450° С происходит выделение цементита на поверхностях зерен феррита (белый излом), и сопротивляемость ковкого чугуна ударным нагрузкам резко снижается при сохранении всех прочих его свойств. Это явление полностью исключается, если отливки охлаждаются от 650° С со скоростью, большей 100° С в час, или весьма медленно.  [c.707]

Излом сварного шва хорошего качества отличается мелкозернистой, плот- ой и однообразной структурой, отсутствием усадочных раковин, газовых пузырей, прослоек и окалины.  [c.325]

Производится испытание и на излом для определения однородности структуры, отсутствия газовых пор и посторонних включений.  [c.60]

Трудности в установлении однозначной связи между шероховатостью поверхности и фрактальной размерностью структуры излома вполне очевидны. Уже отмечалось, что в реальных физических процессах самоподобие фракталов обеспечивается на ограниченных масштабах. Причиной этому является зависимость рельефа поверхности от локальных процессов разрушения, формирующих излом. Здесь мы опять приходим к проблеме о связи процессов на различных масштабных уровнях. Накопленный массив экспериментальных данных, полученных при электронномикроскопических исследованиях хюверхно-сти изломов показывают, что установление этой связи требует учета многих внешних факторов, влияющих на механизм локального разрушения. Фракто-графические исследования позволяют заключить, что на микроуровне и мезо-уровне сохраняются те же характерные признаки вязкого и хрупкого разрушения, как и на макроуровне. В этой связи следует отметить, что большую информацию несут фрактографические исследования усга юстных разрушений при низких скоростях роста трещины. В этом случае легко выявляется кооперативное взаимодействие хрупких и вязких механизмов разрушения. На рисунке 4.43 показаны фрактограммы, полученные при большом увеличении с локальных зон усталостных изломов.  [c.330]


Битумы — черные, твердые или пластичные вещества с аморфной структурой, состоящие в основном из сложной смеси углеводородов и продуктов их дальнейшей полимеризации и окисления. Природные битумы, называемые также асфальтами, содержат различные минеральные примеси. Битумы при нагревании переходят в жидкое состояние, при охлаждении затвердевают. При низких температурах они хрупки и дают характерный излом в виде раковины. Лучшие электроизоляционные свойства, как правило, имеют более тугоплавкие битумы, они труднее растворяются и более хрупки. Температура размягчения битумов может быть повышена путем пропускания воздуха через расплавленный битум. По своим диэлектрическим характеристикам битумы могут быть отнесены к слабополярным соединениям. Для электроизоляционной техники наиболее широко применяют нефтяные битумы марок БН-111, BH-IV, БН-V и более тугоплавкие спецбитумы марок В и Г.  [c.224]

Большое влияние на структуру и свойства сплавов на основе меди оказывает температура расплава в момент приложения давления. Изучение влияния высоких давлений (150 и 300 МН/м ) на структуру и механические свойства бронз Бр. С20, Бр. ОС6-20 и Бр. ОС10-10 показано [79, 80], что в слитках (D—50 мм, HID=2,4 и D=110 мм, HjD=, A) наибольшее измельчение структуры наступало при малом перегреве расплава в момент приложения давления. При перегреве 5° С и давлении 150 МН/м включения свинца становились мельче и равномерно распределялись среди тонких ветвей дендритов эвтектоида (а+б). Излом образцов приобретал мелкокристаллический характер. Для сплава Бр.С20 основные показатели механических свойств увеличиваются примерно в два раза, а у бронз БР.ОС6-20 и Бр.ОС10-10 несколько меньше (числитель — атмосферное давление, знаменатель — давление 300 МН/м для первых двух бронз и 150 МН/м для Бр. С20)  [c.129]

Описано изменение свойств огнеупорных материалов при воздействии электрических полей. Изложена методика изл<ерения электропроводности огнеупоров. Показана зависимость электропроводности от структуры и химического состава огнеупоров. Рассмотрено электролитическое разложение огнеупоров и указано применение их в технике в качестве электроизоляционных и проводящих материалов.  [c.37]

Если поверхность закаленной детали твердая, следует определить глубину слоя. Проще всего это сделать по излому детали, например с помощью пресса, предварительно надрезав в желаемом месте излома, расточив или рассверлив деталь. Некоторые мелкие или тонкостенные детали легко разрушаются и без подготовки. По излому, ие всегда правильному, перпендикулярному поверхности, ясно виден закаленный слой, его структура. Фар-форовндность, дан<е маслянистость излома закаленного слоя свидетельствует о тонкой структуре закаленной стали, о правильно выбранном режиме нагрева. Глубина этого слоя в направлении, перпендикулярном поверхности, считается глубиной ио излому и незначительно отличается от глубины полумартенситной зоны, чаще всего принимаемой за основу определения глубины закалки.  [c.62]

Из результатов исследования влияния структуры на механизмы разрушения молибдена [396] следует, что наблюдаемый излом (рис. 5.3, в) соответствует ситуации, когда каждый элемент структуры ведет себя как микрообразец с образованием до разрыва микрошейки. Схематически процесс формирования ямочного излома при образовании пор-расслоев по границам элементов структуры показан на рис. 5.10. Размер в поперечнике отдельных фрагментов поверхности разрушения соответствует размеру зерен и ячеек, возникаюгцих при деформации как в процессе предшествующей обработки, так и во время испытания образцов. В работе [411 показано, что наиболее крупные поры-трубки образуются по тройным стыкам зерен.  [c.198]

Как было показано выше, появление в структуре сплава фаз или сегрегаций легирующих элементов (или примесных атомов), обладающих более отрицательным потенциалом, чем матрица, приводит после нарушения пассивности к созданию более отрицательного компромиссного потенциала и усилению анодного тока. Скорость репассивации активной поверхности замедляется. Пример этого—сплав ВТ5-1, состаренный при 500°С в течение 10—100 ч. Вязкость разрушения в коррозионной среде этого сплава в состаренном состоянии 40,3 — 46,5 МПа /м. Излом темноюерый— характерный для коррозионного растрескивания. Однако достаточно этот же сплав подвергнуть закалке с 900—1000°С, обеспечивающей скорость охлаждения в интервале 400—600°С более 50 град/мин, как сплав становится нечувствительным к коррозионному растрескиванию. Величина вязкости разрушения поднимается до 93 — 108,5 МПа y/lA. Излом образцов становится светлым, как у металла, нечувствительного к коррозионному растрескиванию. В этом случае за счет устранения в структуре сегрегатов или упорядоченного а-твердого раствора (по алюминию) снижается величина анодного тока, уменьшается анодное растворение, создаются более благоприятные условия для репассивации поверхности после нарушения защитной пленки, в результате чего уменьшается возможность проникновения и диффузии водорода.  [c.71]

Рис. 2.2 (окончание). (6) тонкие плены но поверхности границ зерен разрушенного в процессе эксплуатации штифта крепления вентиляторной лопатки двигателя ГТД-350 вертолета Ми-2, изготовленного из сплава ЭИ-481, и структура материала с дефектами типа неметаллические включения (литейные плены) в плоскости шлифа, перпендикулярно излому. Блок мезолиний h усталостного разрушения характеризует продвижение трещины за один цикл нагружения детали земля-воздух-земля  [c.86]

Диаграммы Эшби показывают наличие областей, определяемых интервалами изменения тех или иных параметров внешнего воздействия, в которых излом имеет неизменную и однородную структуру, — процесс разрушения материала в этих областях является автомодельным и самоподобным. Один и тот же рельеф излома, как было указано выше, может быть реализован при широкой вариации величин, одновременно воздействующих на материал факторов. Следовательно, анализируя рельеф излома, нельзя по его параметрам дать оценку того или иного фактора воздействия по уровню или величине — разное сочетание параметров воздействия приводит к реализации подобного механизма разрушения. В связи с этим рассматриваемый металл представляется как некоторая открытая система, 1СС5торая в процессе распространения в ней трещины осуществляет непрерывный обмен энергией с окружающей средой, при этом происходит тот или иной механизм разрушения, присущий данному материалу при многопараметрическом внешнем воздействии.  [c.99]


Однозначной связи между шероховатостью излома и скоростью развития трещины нет. При усталостном разрушении (макрохрунком), как правило, чем больше скорость развития трещины, тем более шероховатый излом. Однако в зависимости от структуры материала может наблюдаться и обратная зависимость. Так, например, при испытании образцов с поверхностным надрезом из штампованного полуфабриката алюминиевого сплава Д1 различных плавок наблюдался значительный разброс значений долговечности (0,12—1,6-10 циклов). Начальная зона изломов образцов с большой долговечностью имела шероховатую поверхность (рис. 4), с малой — гладкую. В первом случае была более резко выражена текстура деформации материала и трещина изменяла траекторию. Это способствовало уменьшению скорости ее развития. Материал при этом имел повышенную чистоту по железу и кремнию.  [c.16]

Необходимо отметить, что, подобно танталу и ниобию, ванадий и его сплавы в агресстаных восстановительных средах наводороживаются, в результате чего резко возрастает их хрупкость. Ванадий и его сплавы, которые оказались нестойкими в любой восстановительной кислоте, интенсивно наводороживаются. Химическим анализом при этом обнаруживается увеличение содержания водорода в сплаве в 2 раза и более. В структуре появляются гидриды (рис. 62,а), твердость сплава повышается (на Я860-120), образцы разрушаются хрупко при небольшом усилии, образуя блестящий кристаллический излом. Однако вакуумный отжиг (1100° С, 1—2 ч) (А  [c.66]

Излом от сдвига при кручении может иметь место в деталях, изготовленных из вязких материалов. Структура излома ровная, гладкая, с ярко выраженным пластическим скручиванием. Избежать эти виды излома можно путем повышения предела текучести. Усталостные изломы при кручении на гладких валах представляют хрупкий излом под углом 45° даже при вязких материалах на мелкошлицевых валах. Фронт усталостного излома часто проходит даже поперек детали. При этом от каждого основания шлица проходят частичные усталостные изломы, идущие по радиусу к центру поперечного сечения.  [c.35]

Таким образом, при циклическом упруго-пластическом деформировании аустенитной стали Х18Н10Т развитие процессов деформационного старения зависит от условий нагружения (температура испытания, уровень нагрузки и форма цикла). При испытании в условиях интенсивного деформационного старения (650° С) процессы упрочнения и охрупчивания материала связаны с образованием карбидной фазы (в основном карбида МегзСб), при других температурах нагружения (например, 450° С) процессы упрочнения и изменения пластичности материала могут быть связаны с формированием блочной структуры. При этом карбидообразование протекает менее интенсивно и существенно зависит от формы цикла (причем в отличие от испытаний при 650° С при 450° С наблюдается в данной стали преимущественно карбид МеС). Развитие карбидообразования и формирования блочной структуры в зависимости от уровня нагрузки при 450° С, так же как и при 650° С, может приводить к возникновению хрупких состояний, и излом при этом носит хрупкий характер. В связи с изложенным, наблюдающееся изменение циклических характеристик (ширина петли гистерезиса, односторонне накапливаемая деформация, пре-де.л текучести и др.) при температуре 650° С может быть связано в основном с развитием деформационного старения (выпадением карбидных частиц), а при 450° С — с формированием блочной ( решетчатой ) структуры.  [c.71]

Ниже представлены результаты исследования структуры поверхности, полученные с помощью метода скользящего пучка. Исследовали образцы из технической меди и сплавов на основе меди (латуни, бронзы) после трения в паре со сталью 45 на машине 77МТ-1 с возвратно-поступательным перемещением в среде глицерина [23, 44]. Рентгеновский анализ проводили в Со/Са-излу-чении, фиксировали интерференционные линии — отражения от  [c.20]

Соверщенно недопустим в структуре цементованного слоя феррит. Наличие феррита, хотя и в незначительных количествах, приводит к усталостному излому детали, так как по прочности феррит — наименее слабая структура стали и по границе ферритных зерен могут возникнуть микротрещины, а затем трещины усталости.  [c.494]

Микроструктура. Отливки из обезуглеро-женного ковкого чугуна имеют излом блестяще-белого или матово-серого цвета в отличие от черного в графттизирозанном ферритном ковком чугуне. Микроструктура обез-углероженного ковкого чугуна весьма резко изменяется от периферии к центру отливок, в особенности при большой толщине их. Структура обезуглероженного чугуна перлитно-ферритная, а при более высоком содержании связанного углерода может быть чисто перлитной. В качественных отливках из обезуглероженного ковкого чугуна перлит должен быть мелкослойным. При недостаточно полной декарбюризации образуется в сердцевине отливок перлитно-цементитная структура. При значительном количестве свободного цементита металл весьма твёрд и хрупок. Чем ближе к поверхности, тем количество углерода меньше, и в структуре получается преобладание феррита. У наружной поверхности структура обычно чисто ферритная.  [c.77]

Ввиду постоянного и довольно длительного воздействия различных факторов межкристаллитной коррозии на металл поверхность его излома по трещине имеет мелкозернистую структуру темного цвета, тогда как свежий излом чисто механического происхождевдя имеет иную структущу - И светлый цвет %  [c.259]

Уже в начальной стадии формирования литых деталей и слитков наблюдаются такие дефекты, как засоры, ужимины, спаи, завороты, рубцы, плены, газовые раковины, поры, шероховатость поверхности и пр. При физико-химическом взаимодействии расплава с материалом формы и окружающей средой в контактной зоне отливки образуется поверхностный слой, отличающийся от основного металла по структуре, составу и свойствам, например обезуглероженный слой в стальных отливках, альфированный слой в титановых, окисные плены в магниевых чугунах, тонкая феррито-графитная эвтектика в эвтектических чугунах, черный излом в алюминиевых отливках и др. Этот поверхностный слой, как правило, ухудшает свойства отливок. Изучению механизма образования поверхностных дефектов и разработке мероприятий по их предупреждению посвящено огромное количество работ, в частности работы Г. Ф. Баландина, Н. Д. Дубинина, В. А. Ефимова, И. Б. Куманина, Ф. Д. Обо-ленцева, А. М. Лясса, А. А. Рыжикова, А. Н. Цибрика,  [c.7]

Таким образом, при /з< о/е многоканальная система имеет большую вероятность выполнить задание, превосходящее в т раз задание одноканальной системы. Увеличивая количество каналов при заданных /,/ и t, можно снизить Qiita, t, т) до любого желаемого уровня. Этим рассматриваемая система существенно отличается от системы с жесткой структурой, которая рассматривалась в 5.2. Следует отметить, что графики функции Qi(/.i, t, т) имеют излом в точке tj= т—1)//т (рпс. 5.3). При ts> (т—l)tlm, когда задание уже нельзя выполнить с мепьшим чем m количеством каналов, происходит наиболее быстрый рост вероятности срыва функционирования. РГменно на этом участке пересекаются графики зависимости Qi от Kta для систем с m и т—1 каналами (на рис. 5.3 при Я з = 0,575 и 0,695 для т = 2 и 3 соответственно) и вероятность срыва функционирования ж-канальной системы становится больше вероятности срыва функционирования систем с меньшим количеством каналов.  [c.170]


Излом под действием вибрации отличается от излома при перегрузке. Имеются две зоны зона притертого излома, мелкозернистая, заметно отличающаяся структурой от крупнозернистой зоны внезапного излома ослабленной детали. Излом имеет характерную м1ногаило1С1ко1стиую форму, ограничен рядом криволинейных поверхностей (рис.10-7). На поверхности излома можно обнаружить линии усталости. Эти линии указывают направление вибрации,вызвавшей поломку. Они, как правило, перпендикулярны направлению разрушительной вибрации. Если в сечении металла была трещина или другое ослабление (рис. 10-7,6), то линии усталости концентричны контурам порока и лишь примерно перпендикулярны направлению вибрации (обозначенному кружком с двумя стрелками). У вибрационного излома  [c.201]


Смотреть страницы где упоминается термин Излом структура : [c.328]    [c.123]    [c.33]    [c.181]    [c.28]    [c.19]    [c.410]    [c.22]    [c.76]    [c.243]    [c.48]    [c.214]    [c.424]   
Основы металловедения (1988) -- [ c.44 ]



ПОИСК



Деркаченко, Е. Е. Шкляревский. Влияние условий плазменного напыления на характер структуры и излома покрытия из окиси алюминия

Излом

Излом ударный - Структура

Колмаков А. Г ВЗАИМОСВЯЗЬ МУЛЬТИФРАКТАЛЬНЫХ ХАРАКТЕРИСТИК СТРУКТУР СТАТИЧЕСКИХ ИЗЛОМОВ И МЕХАНИЧЕСКИХ СВОЙСТВ МОЛИБДЕНА

Образование слитка. Изломы металла. Сущность макро- и микроструктурного методов. Полиэдрическая (зернистая) структура



© 2025 Mash-xxl.info Реклама на сайте