Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Спектр серии

Повторив вывод закона Планка, проделанный Бозе [36] для фотонного газа с энергией фотона, равной До, для фотонного газа с энергией, равной Еу, можно получить уравнение (2-18) распределения энергии в спектре серого тела. Мы указывали, что для вычисления по выражению (2-18) необходимо было определить постоянные С и Структура и физический смысл С и С"а аналогичны Су и Са (1-7), т. е. для серого излу чения имеем  [c.64]

Более сложными А. с. двухэлектронными спектрами) обладают атомы с двумя внеш. электронами ещё сложнее спектры атомов с тремя и более внеш. электронами. Особенно сложны спектры элементов, для к-рых происходит достройка внутр. электронных оболочек (rf-оболочек переходных элементов и оболочек у лантаноидов и актиноидов см. Периодическая система элементов). В сложных спектрах серии уже не удаётся выделить. Спектральные линии образуют группы — мультиплеты. В наиб, сложных А. с. число спектральных линий доходит до многих тысяч. Интерпретация сложных спектров с установлением схемы уровней энергии и квантовых переходов между ними представляет трудную задачу систематики А. с.  [c.153]


Граница диссоциации при 4,2 соответствует ширине запрещённой зоны SэВ (жёлтая часть спектра). Серия начинается с линии п = 2. Это характерно  [c.243]

СЕРОЕ ТЕЛО — тело, обладающее непрерывным спектром излучения подобным спектру абсолютно черного тела. Различие между спектрами серого и абсолютно черного тела состоит лишь в том, что при данной темп-ре Т и длине волны % излучат, способность С. т. Е %, Т) всегда меньше излучат. способности абсолютно черного тела Т). Из подобия спектров следует, что отношение Т)1Е Х, Т) == (спект-  [c.165]

Поэтому спектр серого излучения непрерывен и изображается кривой, подобной кривой спектра черного излучения, показанной на рис. 20-4. Поэтому же общее излучение  [c.288]

Вид. Красное оттенение. На синем конце спектра серии отчетливы, на красном вид их менее ясен.  [c.132]

При п=1 получается серия линий, расположенная в далекой ультрафиолетовой части спектра (серия Лаймана),  [c.440]

В настоящее время проведены исследования на стенде с расходом угля 135 кг/ч и построена модельная установка, содержащая все элементы схемы, на расход угля 550 кг/ч, на которой изучались закономерности псевдо-ожиженного слоя, поведение угля, удаление серы и твердых частиц, загрязнение генераторного газа, его горение и действие на ГТУ. В экспериментах использовался ряд углей и продуктов их переработки (кокс и полукокс) с широким спектром свойств, в том числе с различной тенденцией к спеканию. Содержание золы в них варьировалось в пределах 2—13%, летучих—5—4, углерода— 38— 83%. Размер частиц составлял 200—1200 мкм.  [c.30]

Излучение газообразных тел резко отличается от излучения твердых тел. Одноатомные и двухатомные газы обладают ничтожно малой излучательной и поглощательной способностью. Эти газы считаются прозрачными для тепловых лучей. Газы трехатомные (СО2 и НаО и др.) и многоатомные уже обладают значительной излучательной, а следовательно, и поглощательной способностью. При высокой температуре излучение трехатомных газов, образующихся при сгорании топлив, имеет большое значение для работы теплообменных устройств. Спектры излучения трехатомных газов, в отличие от излучения серых тел, имеют резко выраженный селективный (избирательный) характер. Этн газы поглощают и излучают лучистую энергию только в определенных интервалах длин волн, расположенных в различных частях спектра (рис. 29-6). Для лучей с другими длинами волн эти газы прозрачны. Когда луч встречает  [c.472]

При рентгеновском методе замера напряжений в металлах используется монохроматическое (характеристическое) рентгеновское излучение так называемой /С-серии. Для того чтобы получить такое излучение, необходимо приложить к трубке высокое напряжение, большее некоторой величины, характерной для взятого рабочего металла анода. Например, для исследования стальных конструкций в качестве рабочего металла анода используется кобальт. Если анодное напряжение в трубке не превышает 7710 в, спектр рентгеновского излучения кобальта будет сплошным, охватывающим длины волн от самых коротких, порядка 1,6 А, до длинных волн теплового излучения. При анодном напряжении, превышающем 7710 в, картина резко меняется. Интенсивность сплошного спектра уменьшается, и на его фоне появляются ярко выраженные излучения с определенными.  [c.528]


Отсюда ясно, что для тел, характер излучения которых сильно отличается от излучения черного тела (например, для тела с ясно выраженными областями селективного излучения), понятие цветовой температуры не имеет смысла, ибо цвет таких тел можно только очень грубо воспроизвести при помощи черного тела. В тех случаях, когда определение цветовой температуры возможно (так называемые серые тела , например, уголь, окислы, некоторые металлы), для ее отыскания необходимо произвести исследование распределения энергии в спектре при помощи соответствующих спектральных приборов. Рис. 37.2 воспроизводит результаты такого исследования для Солнца одновременно на нем нанесены кривые распределения для черного тела при температурах 6000 и 6500 К. Рис. 37.2 показывает, что отождествление Солнца с черным телом  [c.703]

Эта таблица ясно показывает, что мы имеем дело не просто с удачно подобранной эмпирической формулой, а с выражением какой-то внутриатомной закономерности. Это убеждение еще более укрепилось, когда обнаружилось, что открытые позже линии водорода, лежащие в ультрафиолетовой и инфракрасной частях спектра, также укладываются в аналогичные формулы, а именно серия Лаймана (в далекой ультрафиолетовой области) — в формулу  [c.714]

Все линии водородного спектра можно, следовательно,разделить на ряд серий, объединяемых общей формулой  [c.714]

Рис. 38.1. Схематическое изображение спектра атома водорода полный спектр и отдельные спектральные серии. Рис. 38.1. <a href="/info/286611">Схематическое изображение</a> спектра атома водорода полный спектр и отдельные спектральные серии.
Соотношение между различными частями полосатого спектра можно представить и несколько иначе. Вообразим, что в нашей молекуле могут изменяться только электронные состояния, а вращения и колебания отсутствуют, т. е. что энергия стационарных состояний молекулы определяется только величиной Х е- Спектр такой молекулы состоял бы, подобно спектру атомов, из линий, соответствующих электронным переходам с частотой V = (1 —и расположенных по всему спектру примерно на местах, где наблюдаются в действительности системы полос. Эти линии и намечают распределение всей серии по спектру.  [c.747]

С этой целью рассмотрим масс-спектры положительных ионов экстракта, полученного из серого чугуна СЧ18 [9]. Для расчета меры адаптивности были использованы фрагменты масс-спектров серого чугуна (рис. 3.12) и чистых фуллеренов Q,o и С70 (рис. 3.13).  [c.105]

Спектр, линии в А. с. подчиняются определ. закономерностям и в простейших случаях образуют спектральные серии. Каждая спектр, серия получается при возможных квант, переходах с последовательности вышележащих уровней энергии на один и тот же нижележащий уровень (в спектрах поглощения — при обратных переходах). Промежутки между линиями одной серии убывают в сторону больших частот — линии сходятся к границе серии — максимальной для этой серии частоте (см. рис. 1 в ст. Атом). Наиболее чётко выделяются спектр, серии в спектрах атома Н, волн, числа в них с большой точностью определяются ф-лой Бальмера  [c.41]

Спектры атомов щелочных металлов, имеющих один эл-н на внеш. электронной оболочке, схожи со спектром Н, но смещены в область меньших частот число спектр, серий в них увеличивается, а закономерности в расположении линий усложняются. Пример — спектр Ма, атом к-рого обладает нормальной электронной конфигурацией (см. в разделе Электронные конфигурации ст. Атом) 15 2з22/) 35 с легко возбуждаемым внеш. эл-ном Зв. Переходу этого эл-на из состояния Ър в состояние Зв соответствует жёлтая линия N3 (дублет Я=5690 А и 1=5696 А) — наиб, яркая линия Ка, с к-рой начинается т. н. главная серия, линии к-рой соответствуют переходам между состояниями 35 и состояниями Зр, 4р, 5р,. . .  [c.41]

Все реальные тела, используемые в технике, не являются абсолютно черными и при одной и той же температуре излучают меньше энергии, чем абсолютно черное тело. Излучение реальных тел также зависит от температуры и длины волны (при /lx onstизлучения черного тела можно было применить для реальных тел, вводится понятие о сером теле и сером излучении. Под серым излучением понимают такое, которое аналогично излучению черного тела имеет сплошной спектр, но интенсивность лучей для каждой длины волны /х при любой температуре составляет неизменную долю от интенсивности излучения черного тела /,,х  [c.463]


Вихревые трубы целесообразно применять тогда, когда имеется избыточное давление и в технологическом процессе требуется производство охлажденного или подогретого потока газа. О ширине спектра технических приложений вихревых труб свидетельствуют материалы Всесоюзных конференций Вихревой эффект и его применение в технике , организацию которых осуществлял профессор А.П. Меркулов. В основном это периодическое или регулярное охлаждение различных объектов от медико-биологи-ческих, промышленных, технологических систем до систем термостатирования и жизнеобеспечения. Больших успехов в разработке и внедрении от мелких до средних серий добились А.И. Азаров [7—10, 34—40] и Ю.В. Чижиков [204].  [c.218]

Если свойство производства холодного потока у вихревых труб применяется довольно широко, то подофев части исходного газа используется заметно реже [15, 34-40, 116]. Однако в последнее время появилась серия работ по вихревым подофевателям [34—40, 86, 135, 141, 144, 154], высокотемпературным вихревым трубам, указывающая на возможные пути расширения спектра  [c.218]

Когда кривая спектрал энергии тела, обладающей лучения, подобна кривой излучение первого назыв коэффициенты е(2, Т)=е = сопз1 играют роль масштабного множителя при сравнении серого излучения с излучением абсолютно черного тела при той же температуре (рис. 1-5). Значения Ямакс для черного и для серого тел равны. Введение понятия серое тело значительно расширяет возможности использования законов излучения, сформулированных для абсолютно черного тела, в практических расчетах, что доказывают, например, (1-19) —(1-21).  [c.19]

ИЯ реальных тел неравномер-ательная способность тела ме-0 излучение называется селек-зности определяется тем, на-данного тела отличается от о тела при той же температу-лективностыо. В качестве при-дены графики излучения воль-0 тела. Из рисунка видно, что ИХ максимумы не совпадают, ьного распределения лучистой о непрерывным спектром из-для абсолютно черного тела, ается серым. В этом случае (Т )=соп51 и а(Я, Т)—а Т)=-  [c.19]

Для рассматриваемой области спектра п([)лученные экспериментальным путем значения е = )(ч) показывают, что неметаллические неорганические соединения могут с достаточной степенью Лочности считаться серыми . Это наглядно подтверждается данными, приведенными на рис, 1-15, 1-16.  [c.45]

Отрыв электрона может произойти и другими способами (при захвате /С-электрона ядром, при отрыве электрона под действием ядерного излучения того же элемента и поглощения соответствующего кванта рентгеновского излучения). На освободившееся место может перейти электрон одной из оболочек L, М, А/ и т. д. Все эти переходы создаются /(-серии рентгеновского спектра, состоящие из линий Ка, Kfi, Ку Очевидно, что в /С-серии самой длинной является /Са-линия, т. е. Аналогичным образом при переходе электронов па освободившееся место в L-оболочке из А1-, Л/-оболочек возникают La-, Lp-лииип и т. д. М- и Л/-серии рентгеновского спектра наблюдаются только у тяжелых элементов. Таким образом, спектры характеристического рентгеновского излучения состоят из линий, составляющ[[х несколько серий.  [c.161]

И та же постоянная, упоминавшаяся выше. Число п определяет серию, т — отдельную линию этой серии при п= 1 получаем серию Лаймана, при п = 2 — серию Бальмера, при п = 3 — серию Пашена, при п = 4 — серию Брэккета, при п — 5 — серию Пфунда. На рис. 38.1 схематически изображен полный спектр водорода и отдельные серии, на которые его можно разложить. Каждая серия состоит из ряда линий, расстояния между которыми, как и следует из формулы, уменьшаются в сторону коротких длин волн.  [c.716]

Постепенно увеличиваясь, частоты линий стремятся к определенному пределу, величину которого легко найти из сериальной формулы. Иногда наблюдается слабый сплошной спектр, примыкающий к границе серии со стороны больших частот. На рис. 38.2 приведена фотография линий серии Бальмера.  [c.716]

Успех Бальмера направил внимание исследователей на поиски сериальных зависимостей в спектрах других веществ. В первую очередь были исследованы спектры щелочных металлов, затем щелочноземельных и некоторых других элементов. Несмотря на трудность расшифровки, и здесь найдены были серии, и, что очень важно, полученные формулы очень напоминали сериальную формулу для водорода. Отличие сводится к поправочным членам а и Р, имеющим для водорода значения, равные нулю  [c.716]

Спектры щелочных и щелочноземельных металлов и других элементов гораздо сложнее спектра водорода. Одним из отличий, имеющих место и в других сложных элементах, является мульти-плетный характер линий линии состоят из нескольких (две, три и более) компонент с близкими значениями частот. Частоты отдельных компонент также подчинены определенным закономерностям. Разыскивать закономерности в таких сложных спектрах нелегко, и это явилось в значительной степени делом догадки и остроумия. Благодаря работам Ридберга и других выяснились некоторые правила, помогающие обнаруживать и выделять отдельные серии. В настоящее время теория атома позволила обосновать многие такие правила. В частности, принадлежность линии к той или другой серии можно установить по характеру аномального расщепления в магнитном поле (см. 172).  [c.717]

Установление сериальных закономерностей, связь между сериями (принцип Ритца), универсальность постоянной Ридберга — всё свидетельствовало о глубоком физическом смысле открытых законов. Тем не менее, попытки установить на основании этих законов внутренний атомный механизм, обусловливающий найденные закономерности, потерпели решительную неудачу. Было ясно, что каждая серия полностью вызвана одним и тем же механизмом. Между тем трудно представить себе возможность излучения целого ряда частот таким простым атомом, как, например, атом водорода. Известны, конечно, типы механических излучателей, дающих ряд колебаний, например струна. Однако спектр такого излучателя состоит из основной частоты и ее обертонов, представляющих целые кратные от основной, даже отдаленно не напоминая закономерностей, наблюдаемых в спектральных  [c.717]


Из соотношений Эйнштейна (211.13) легко видеть, что при прочих равных условиях поглощение сильнее в тех спектральных линиях, для которых большее значение имеет коэффициент Атп-В случае, например, серии Бальмера в спектре атомарного водорода (рис. 38.1 и 38.3) поглощение должно быть слабее у старших членов серии, поскольку для них, согласно приведенным выше данным, коэффициенты Атп меньше. Соотношения (211.13) подтверждаются измерениями без всяких исключений. Поэтому, измеряя коэффициенты поглощения и опираясь на (211.13),- можно определять численные значения первых коэффициентов Эйнштейна Атп-  [c.737]

При обсуждении спектра водорода упоминалось, что в нем наряду с дискретными спектральными линиями, составляющими серии, наблюдается ряд полос, которые при исследовании приборами с достаточной разрешающей способностью расчленяются на ряд тесно расположенных друг около друга линий, образуя так называемый многолинейчатый, или полосатый, спектр. Подобной особенностью отличаются и спектры других газов, молекулы которых состоят из двух или нескольких атомов. Наоборот, для одноатомных газов (благородные газы, пары металлов) характерны только линейчатые атомные спектры. Правда, при значительном давлении пары металлов (например Hg, 2п и др.), равно как и благородные газы, также излучают полосатые спектры, но, как показывают разнообразные исследования, при этих условиях в парах образуются нестойкие соединения типа Hg2, Пег, HgH, Сзо и т. д., т. е. молекулы, с существованием которых и связано излучение полосатых спектров.  [c.744]

Трудности наблюдения полосатых спектров многоатомных молекул и сложность их теоретической трактовки привели к тому, что спектроскопическое исследование их еще не продвинулось достаточно далеко. В дальнейшем изложении мы ограничимся двухатомными молекулами. Схематический вид и фотография типичного молеку лярного спектра испускания представлены на рис. 38.6 и 38.7 Как мы видим, он состоит из ряда линий, сгруппированных в тес ны полосы. Эти полосы, (а, Ь, с) расположены с определенной пра вильностью, образуя системы полос в свою очередь системы А, В,. . полос, разбросанные нередко по всему спектру, составляют группу, или серию, систем полос ). Фотография изображает одну из систем полос в спектре йода. Совокупность таких систем и представляет всю серию, образующую полный спектр йода.  [c.745]

Цветовой метод. Если известно распределение энергии в спектре абсолютно черного тела, то по положению максимума кривой на основании закона смещения Вина (24.10) можно определить температуру. В тех случаях, когда излучающее тело не является абсолютно черным, применение формулы Планка не имеет смысла, так как для таких тел распределение энергии по частотам отличается от планковского. Исключение составляют так называемые серые тела, у которых коэффициент поглощения остается приблизительно постоянным в щироком интервале частот. Такими серыми телами являются уголь, некоторые металлы, оксиды. Если тело не является серьги, но его спектр излучения не слишком отличается от спектра абсолютно черного тела при некоторой температуре, то по максимуму излучения определяют его температуру, которую называют цветовой. Таким образом, цветовая температура есть температура абсолютно черного тела, максимум излучения которого совпадает с максиму.мом излучения исследуемого тела. Так, сопоставление графиков распределения энергии в спектре абсолютно черного тела при температуре 6000 и 6500 К II распределения энергии в солнечном спектре (рис. 25.3) показывает, что Солнцу можно приписать температуру, равную при.мерно 6500 К.  [c.151]

Спектр атома водорода представляет собой совокупность отдельных спектральных линий, группирующихся в серии. Связь между частотами отдельных линий для серии, расположенной в видимой и близкой ультрафиолетовой области, впервые установил Бальмер (1885). Частоты линий этой серии выражаются формулой  [c.229]

Анализируя затруднения модели Резерфорда, ученые обратили внимание на еще одан непонятный факт. Электроны, вращающиеся вокруг ядра, должны излучать с частотой, равной частоте их обращения. Но при падении электрона на ядро радиус орбиты электронов уменьшается, частота вращения возрастает, следовательно, спектр излучения резерфордовского атома должен был бы быть непрерывным. Между тем многочисленные исследования спектров различных атомов показывали, что они представляют совокупность дискретных линий, характерных для каждого атома (рис. 48). Этот своеобразный паспорт атомов составляет основу для химического анализа различных веществ. Были и первые попытки найти определенные закономерности в расположении спектральных линий. В 1885 г. швейцарский ученый И. Бальмер установил, что длины волн, соответствующих некоторым линиям спектра водорода, образуют серию, которая хорошо описывается с помощью формулы  [c.163]

Позднее (в начале XX в.) были открыты серии частот в спектре атомарного водорода, попадающие в ультрафиолетовую (серия Лаймана) и инфракрасную (серии Пашена, Брэкета, Пфунда) части спектра. Закономерности в структуре всех этих серий оказались такими же, как и в серии Бальмера, что позволило обобщить формулу (3.1.1)  [c.61]

Богатый экспериментальный материал по атомным спектрам, накопленный к началу XX в., не имел теоретического обоснования. Почему спектры атомов линейчатые Чем объясняются наблюдаемые закономерности в структуре серий спектральных линий Как устроен атом и как связаны с его строением закономерности в спектре На все эти вопросы в то время ответа не было. Не был известен физический механизм испускания света атомом. Было неясно, в частности, что же именно испускает отдельный атом сразу все линии в спектре данного элемента или только одну линию из спектра. Первой точки зрения придерживался, например, Кайзер. Вторая была высказана в 1907 г. Конвеем, который полагал,  [c.61]

Эти результаты, получеггные Шоттки [182], использовались Симоном [183] для объяснения отклонений теплоемкости лития, натрия, кремния, серого олова и алмаза от формулы Дебая (5.6). Однако теплоемкость этих веществ меняется с температурой монотонно, любой же монотонный ход теплоемкости, как отмечал Блекмен [39], может быть получен из соответствующего непараболического спектра решетки. Поэтому рассмотренную выше схему энергетических уровней следует использовать для объяснения поведения теплоемкости только при наличии максимумов теплоемкости. Так, нанример, для некоторых редкоземельных элементов [99] подобные максимумы связываются с переходами между 4/-уровнями, расщепленными внутрикристаллическим нолем (см. п. 20).  [c.366]

В рассмотренном простейшем случае спектр поглощения твердого тела в области экситонного поглощения состоит из серии дискретных линий (рис. 55). Частота со первой линии определяется равенством Нсо = ДЕ—Граница серии характеризуется предельной частотой соь которую находят из условия Ь(01 = АЕ. При частотах больще предельной часто-  [c.162]

В монохроматоре (или спектрометре) нужная длина волны определяется положением выходной щели относительно диспергирован,ного спектра. В спектрографе на месте выходной щели ставится фотографическая пластинка с широким интервалом чувствительности, на которой интенсивность света на каждой длине волны регистрируется в виде серии более или менее непрозрачных полос или линий. Полученная таким образом спектрограмма сканируется световым пятном,, и детектор регистрирует плотность полос на спектрограмме в зависимости от длины волны. Прибор, работающий по такому принципу, называется микрофотометром.  [c.167]


При выбранном положении камерного объектива, но при различных углах наклона е фотопластинки, делается серия фотогра- фий того же спектра. Рассматривая в микроскоп крайние участки полученных изображений спектра и сравнивая их, находят такой угол наклона, при котором все линии на спектрограмме окажутся одинаково резкими.  [c.27]


Смотреть страницы где упоминается термин Спектр серии : [c.284]    [c.608]    [c.228]    [c.29]    [c.534]    [c.335]    [c.713]    [c.726]    [c.61]   
Справочник по рентгеноструктурному анализу поликристаллов (1961) -- [ c.15 , c.17 ]



ПОИСК



Длины волн L-серии рентгеновского излучения (18,19). 1-1в. Относительные интенсивности линий К-серии характеристического спектра

Серии линий (дублетов)* в спектре асимметричных волчков

Спектр относительные интенсивности липни /(-серии

Спектр характеристический, длины волн L-серии



© 2025 Mash-xxl.info Реклама на сайте