Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Спин-фононное взаимодействие электронное

УЗ-вые волны затухают значительно быстрее, чем волны более низкочастотного диапазона, т. к. коэфф. классического поглощения звука (на единицу расстояния) пропорционален квадрату частоты. В низкочастотной области коэфф. релаксационного поглощения также растёт пропорционально квадрату частоты, однако при повышении частоты этот рост замедляется и коэфф. поглощения стремится к постоянной величине. Область, где наблюдается такое изменение хода коэфф. поглощения, наз. релаксационной, а средняя её частота — частотой релаксации. Величина, обратная частоте релаксации,— время релаксации — характеризует процесс перераспределения энергии внутри вещества. Помимо характерного хода коэфф. поглощения УЗ, в релаксационной области наблюдается рост скорости звука с частотой — дисперсия, обусловленная физич. процессами в веществе и отличающаяся от дисперсии скорости звука, характерной для любых частот и связанной с геометрич. условиями распространения волны. Дисперсия УЗ в релаксационных областях обычно не превышает нескольких процентов. В многоатомных газах релаксация связана с обменом энергии между поступательными и внутренними степенями свободы, и характерные частоты лежат в среднем и даже низкочастотном диапазонах. В жидкостях к основным релаксационным процессам относятся, напр., внутримолекулярные превращения, структурная и химич. релаксации соответствующие частоты лежат чаще всего в области частот 10 —10 Гц. В твёрдых телах имеются релаксационные процессы различной природы, обусловленные, напр., взаимодействием ультразвука с электронами проводимости, со спиновой системой (см. Спин-фононное взаимодействие), С колебаниями кристаллической решётки. Влияние этих процессов проявляется в частотной зависимости поглощения УЗ. Резонансные явления типа акустического парамагнитного резонанса (область частот 10 —11 Гц) и акустического ядерного магнитного резонанса (10 —10 Гц) дают соответствующие пики поглощения. Резонансный характер может иметь также и дислокационное поглощение в кристаллах. Все эти особенности поглощения УЗ в твёрдых телах обусловлены взаимодействием УЗ-вых и гиперзвуковых волн с внутренними возбуждениями в твёрдых телах. Возникновение же такого взаимодействия связано с тем, что средние и высокие УЗ-вые частоты становятся сравнимы с характерными частотами процессов в веществе на молекулярном и атомном уровне, а длины волн сравнимы с параметрами внутренней структуры вещества. Последнее обстоятельство объясняет также увеличение рассеяния упругих волн на УЗ-вых частотах, наблюдаемое в микронеоднородных средах, в поликристаллич. телах сечение рассеяния на неоднородностях возрастает, если их размеры становятся порядка длины волны.. Связь характера распространения УЗ и, в частности, его высокочастотной области — гиперзвука — со структурой вещества и элементарными возбуждениями в нём является одной из важнейших особенностей УЗ-вых волн. Она позволяет судить о строении вещества на основании измерений скорости и погло-  [c.11]


Табл. 1.—Константы электронного спин-фононного взаимодействия, см"1 (1 см-1 = 1 986. 10-23 Дж) Табл. 1.—Константы <a href="/info/33262">электронного спин</a>-фононного взаимодействия, см"1 (1 см-1 = 1 986. 10-23 Дж)
Это притяжение в принципе может привести к образованию связанного состояния двух электронов, т.е. может произойти спаривание электронов. Пара электронов обладает целочисленным спином и, следовательно, может испытывать Бозе-конден-сацию. Бозе-конденсат из спаренных электронов составляет сверхтекучую компоненту электронной жидкости. Другими словами, спаривание электронов является результатом электрон-фононного взаимодействия. Идея о спаривании электронов и образовании пар электронов ( куперовских пар ) была выдвинута Купером в 1956 г., а микроскопическая теория сверхпроводимости, основанная на идее Бозе-конденсации куперовских пар, была разработана в 1957 г. Бардиным, Купером и Шри( )фером (теория БКШ). Следует отметить, что сама по себе идея о решают,ей роли электрон-фо-нонного взаимодействия для образования сверхпроводящего состояния была известна за несколько лет до этих работ. Было отмечено, что хорошие проводники типа щелочных и благородных металлов никогда не бывают сверхпроводниками, а такие плохие проводники, как свинец, ртуть, олово, цинк, ниобий, становятся сверх-проводимыми. О прямой связи сверхпроводимости с колебаниями решетки свидетельствует также изотопический эффект  [c.372]

Этот эффект можно учесть, если заменить взаимодействие электронов с фононным полем на прямое взаимодействие между электронами с противоположно направленными импульсами и спинами (модель БКШ) исходя из гамильтониана  [c.282]

Любопытно отметить, что отклонения скорости происходят на поверхности Ферми и поэтому изменяются при деформации поверхности Ферми. По этой причине изменение плотности состояний не влияет на парамагнитную восприимчивость Паули. Так как электрон-фононное взаимодействие не связывает состояний электрона с противоположно направленными спинами, мы можем вычислять собственную энергию электрона для каждого значения направления спина независимо. Когда включается внешнее магнитное поле, энергии Ферми для каждого из значений спина сдвигаются друг относительно друга, и поэтому собственно энергетические поправки сдвигаются, как указано на фиг. 130.  [c.472]


Высокочастотные звуковые волны в газах, жидкостях и твердых телах являются мощным средством исследования движений молекул, дефектов кристаллов, доменных границ и прочих типов движений, возможных в этих средах. Более того, волны большой и малой амплитуды в этих средах находят важные применения в различных технических устройствах. Сюда относятся лпнии задержки для накопления информации, механические и электромеханические фильтры для разделения каналов связи, приборы для ультразвуковой очистки, дефектоскопии, контроля, измерения, обработки, сварки, пайки, полимеризации, гомогенизации и др., а также устройства, используемые в медицинской диагностике, хирургии и терапии. Контрольно-аналитические применения звуковых волн, так же как и их использование в технических устройствах, быстро разрастаются. За последние пять лет изучены такие явления, как затухание звука вследствие фонон-фононного взаимодействия, взаимодействие звука с электронами и магнитным полем, взаимодействие звуковых волн со спинами ядер и спинами электронов, затухание, вызываемое движением точечных и линейных дефектов (дислокаций), а также такие крупномасштабные движения, как движение полимерных сегментов и цепочек и движение доменных границ. Таким образом, очевидно, что эта область науки, получившая название физической акустики, является мощным инструментом исследования и открывает широкие возможности для различных технических применений.  [c.9]

Уравнение Гейзенберга (2) и уравнение (9), на котором основана теория сверхпроводимости, обнаруживают очень близкое сходство. Соответственно, и в теории Гейзенберга, в случае притяжения между первичными частицами, происходит спонтанное нарушение симметрии в результате образования куперовских пар первичных частиц и их бозе-конденсации с появлением параметра порядка, подобного (8). К этому выводу ведет применение к уравнению (2) стандартного аппарата теории сверхпроводимости, которое дает соотношения, представляющие собой релятивистское обобщение обычных сверхпроводящих формул. Необходимо только провести обрезание расходящихся интегралов на некоторой предельной энергии. Любопытно отметить, что аналогичное обрезание имеется и в обычной теории сверхпроводимости, где оно имеет прямой физический смысл, отвечая предельной энергии (энергии Дебая) фононов, переносящих взаимодействие между электронами. Этот механизм спонтанного нарушения симметрии (называемый далее для краткости механизмом БКШ) решает важную проблему массы первичной частицы. Как уже отмечалось в п. 3, требование максимальной симметрии фундаментального уравнения (2) ведет к отсутствию в нем массового члена, неинвариантного относительно масштабного и 75-преобразований. С другой стороны, то же требование означает, что взаимодействия первичных частиц должны обладать максимальной симметрией. Поэтому отсутствие массы у первичной частицы было бы серьезной трудностью для программы Гейзенберга — единственная известная нам частица с массой нуль и со спином 1/2 (нейтрино) не участвует в наиболее симметричном сильном взаимодействии.  [c.185]

Исследуем теперь полуклассическим методом, как меняется со временем электронная функция распределения 2/(р,О- Множитель 2 возник здесь из за суммирования по ориентациям спина. Аналогично обозначим через число фононов с импульсом Л к и поляризацией ц . В отсутствие внешних полей и взаимодействия  [c.329]

СПИН-ФОНОННОЕ взаимодействие — взаимодействие электронных в ядерных спинов атомов твёрдого тела с упругими колебаниями кристаллической решётки. Последним в квантовомеханич. представлении соответствует поле фононов. Колебания решётки, тепловые или вызванные внеш. упругой волной, периодически изменяют расстояния между атомами, что приводит к модуляции как внутрикристаллического поля, так и взаимодействий между спинами электронов и ядер, т. е. к спин-спиповому взаимодействию.  [c.647]

Среди физич. механизмов, обусловливающих затухание звука в кристаллах, можно выделить следующие рассеяние звука на микродефектах, поглощение, обусловленное термоупругими и тепловыми эффектами, дислокационное поглощение, поглощение, вызванное взаимодействием упругой волны с тепловыми колебаниями кристаллич. решётки — фононами (см. Поглощение звука) , кроме того, в металлах и полупроводниках существует специфич. вид поглощения звука, обусловленный взаимодействием ультразвука с электронами проводимости, в ферромагнитных кристаллах дополнительное поглощение УЗ обусловлено движением доменных стенок и спин-фононным взаимодействием, в сегнетоэлектрич. кристаллах наблюдается специфич. возрастание поглощения вблизи точки фазового перехода (см. Сегнетоэлектр ичество).  [c.296]


СПИН-ФОНОННОЕ ВЗАИМОДЕЙСТВИЕ — взаимодействие между магнитными моментами парамагшхтных частиц или ядер (спин-системой) и упругими колебаниями окружающей их среды (фононами). Обычно раз-лртчают электронное С.-ф. в. и ядер-ное С.-ф. в.  [c.333]

АКУСТИЧЕСКИЙ ПАРАМАГНИТНЫЙ РЕЗОНАНС электронный (АПР), избирательное поглощение энергии упругих волн (фононов) определ. частоты в парамагн. кристаллах, помещённых в пост. магн. поле. АПР тесно связан с обычным электронным парамагнитным резонансом (ЭПР). Передача акустич. энергии парамагн. ч-цам при АПР происходит посредством спин-фононного взаимодействия, к-рое осуществляется путём модуляции акустич. колебаниями внутрикристалли-ческих полей (электрич. пли магнитных). Возбуждение в парамагн. кристалле, помещённом во внешнее магн. поле акустич. колебаний с частотой V, удовлетворяющей условию "а —  [c.15]

В парамагнетиках прохождение Г. подходящей частоты и поляризации в результате спин-фононного взаимодействия может вызвать изменение магн. состояния атомов. Так, Г. с частотой 10 Гц, распространяясь в кристаллах парамагнетиков, помещённых в магн. поле, может привести к избират. пох лощению, т. е. акустическому парамагнитному резонансу (АПР). При помощи АПР оказывается возможным изучать переходы между такими уровнями атомов в парамагнетиках, к-рые явл. запрещёнными для электронного па- рамагнитного резонанса. В магнитО упорядоченных кристаллах (антифер-ро- и ферромагнетиках, ферритах), помимо рассмотренных выше вз-ствий Г. с в-вом, появляются другие, где играют роль магнитоупругие вз-ствия (магнон-фононные вз-ствия). Так, распространение гиперзвук, волны вызывает появление спиновой волны и, наоборот, спиновая волна вызывает появление гиперзвук, волны. Поэтому в общем случае в таких кристаллах распространяются не чисто спиновые или упругие волны, а связ. магнитоупругие волны.  [c.123]

Осцилляции коэф. поглощения полупроводника, находящегося в магн. поле, возможны также при непрямых переходах электронов (с участием поглощённого или излучённого фонона, необходимого для сохранения квазиимпульса при переходе), а также при запрещённых переходах, к-рые возникают при расщеплении валентных зон вследствие спин-орбитальпого взаимодействия. Эти эффекты используются для точного определения частот циклотронного резонанса электронов и дырок, для определения параметров зонной структуры полупроводников.  [c.702]

Теория БКШ слишком сложна, чтобы ее мой но было изложить в этой главе, однако некоторых основных физических идей мы все же коснемся (в нестрогом изложении). Согласно представлениям теории многих тел, в системе могут образовываться квазичастицы путем перехода электрона (из-за взаимодействия с фононом) в состояние над поверхностью Ферми при этом энергия возбуждения будет порядка Такое состояние системы является возбужденным. Бардин, Купер и Шриффер показали, что энергия системы была бы ниже, если бы заполнение некоторых возбужденных состояний было заданным, а все другие возбужденные состояния образовали бы пары. Они обнаружили, что максимальное уменьшение энергии будет в том случав, если а) все пары к, (фиг. 56) имеют одну и ту же величину волнового вектора q (это вытекает из закона сохранения импульса) б) в основном состоянии q == О, т. е. пары имеют вид kg, к (фиг. 56) в) каждая пара состоит из квазичастиц с противоположро направленными спинами обменное взаимодействие между парами с одинаковым спином, как было показано, уменьшает суммарную энергию взаимодействия.  [c.136]

Модель, к-рая описывается гамильтонианом [6], позволяот объяснить явление сверхпроводимости [12], что было сделано сначала для упрощенной модели, в к-рой взаимодействие электронов через П01.е фононов (испускание и поглощение электронами фононов) заменено прямым взаимодействием п оставлено лишь взаимодействие пар с противоположно нап 1аи-ленными импульсами и спинами [13] (модельный гамильтониан Бардина — Купера — Шриффера)  [c.260]

Причина проста электросопротивление при комнатной температуре является мерой электрон-фононного взаимодействия. В формуле для Тс по теории БКШ мы должны в качестве 2) (ер) брать значение функции плотности состояний для э.тектронов с одинаковым направлением спина.  [c.447]

Читателя, который помнит, какие большие поправки к электронной плотности состояний дает учет электрон-фононного взаимодействия (см. гл. 26.— Ред.) при вычислеиии электронной теплоемкости, может удивить, что при расчете восприимчивости Паули столь большие поправки не возникают. Между этими двумя случаями имеется существенное различие. При вычислении теплоемкости находят не зависящую от температуры поправку к электронной плотности уровней, а затем подставляют эту фиксированную плотность уровней в формулы [подобные (2.79)], описывающие изменение энергии в зависимости от температуры. Когда же меняется магнитное поле, изменяется непосредственно плотность уровней. Мы уже отмечали, например, что (без учета фононных поправок) при наличии поля плотность уровней, отвечающая различным значениям спина, сдвигается по энергии вверх или вниз. Фононная поправка к плотности уровней существенна вблизи уровня Ферми (в области, ширина которой Йсод велика по сравнению со сдвигом ЙсОд, обусловленным полем). Однако магнитное поле, изменяющее плотность уровней (без фононных поправок), не влияет на положение уровня Ферми. Поэтому нельзя просто подставить плотность уровней с фононными поправками в (31.68), как это можно было сделать в (2.79), поскольку зависимость скорректированной плотности уровней от поля в корне отличается от соответствующей зависимости для нескорректированной плотности уровней. Внимательное рассмотрение показывает, что, поскольку фононная поправка связана непосредственно с уровнем Ферми, она оказывает очень малое влияние на зависимость намагниченности от поля, приводя к относительному изменению восприимчивости на величину порядка (т1М) (в отличие от теплоемкости, соответствующая поправка к которой совпадает по порядку величины с ней самой).  [c.280]


Особенностью УЗ в высокочастотном и гиперзвуковом диапазонах является возможность применения к нему представлений и методов квантовой механики, поскольку длины волн и частоты в этих диапазонах становятся одного порядка с параметрами и частотами, характеризующими структуру вещества. Упругой волне данной частоты при этом сопоставляется квазичастица — фонон, или квант звуковой энергии. Квантово-механич. представления удобны при рассмотрении различных взаимодействий в твёрдых телах. Напр., рассеяние и поглощение звука колебаниями кристаллич. решётки можно рассматривать как взаимодействие когерентных и тепловых фононов, комбинационное рассеяние света (см. Манделъштама — Бриллюэна рассеяние) — как взаимодействие фотонов с фо-нонами, а взаимодействие с электронами проводимости в металлах и полупроводниках и со спинами и спиновыми волнами в магнитоупорядоченных кристаллах (см. Магнитоупругие волны) — соответственно как электрон-фо-нонное, спин-фононное и магнон-фононное взаимодействия.  [c.12]

Делая это утверждение, мы, однако, пренебрегаем эффектами высшего порядка в электрон-фононном взаимодействии. Они могут несколько изменить форму по-нерхности Ферми даже при Г = О и привести к слабой зависимости ее от температуры (см. разд. 5.5). Небольшое влияние на спиновое расщепление возможно также через изменения спин-орбитального взаимодействия.  [c.111]

Природа электрических явлений, сопутствующих парапро- цессу, может быть понята из следующих соображений. Рас-смотрим, например, что будет происходить с -электро- 1 нами, если мы будем нагревать ферромагнетик. В обычных металлах принято считать, что причиной возрастания электросопротивления с температурой является взаимодействие электронов проводимости с тепловыми колебаниями ионов в кристаллической решетке (фононами). В результате этого взаимодействия -электроны отдают свою энергию и импульс, вследствие чего электросопротивление растет. Взаимодействие между электронами и фононами, которое можно рас- сматривать как столкновения между ними, определяет тем- пературную зависимость электросопротивления металла. В случае ферромагнитных металлов Вонсовский допускает, что наряду с этими процессами столкновений 5-электро- нами с фононами имеют место процессы столкновения между 5-электронами и так называемыми ферромагнонами (спиновыми волнами, создаваемыми -электронами). Представление о спиновых волнах было введено Блохом для расчета обменного взаимодействия между спинами электронов. Он показал, что при низких температурах энергия электронов при учете обменного взаимодействия может быть представлена как сумма энергий отдельных элементарных возбуждений . Последним сопоставляются квазичастицы — фер-ромагноны, или спиновые волны. Введение этих частиц значительно упрощает вычисление обменного взаимодействия между спинами.  [c.197]

СПИН-ФОНОННОЕ ВЗАИМОДЁЙСТ-ВИЕ, взаимодействие между магн. моментами парамагн. ч-ц в в-ве или ядер (системы спинов) и упругими колебаниями окружающей их среды фононами). Различают электронное С.-ф. в. и ядерное С.-ф. в.  [c.714]

ФЁРМИ-ГАЗ—газ из частиц с полуцелым (в единицах Л) спином, подчиняющихся квантовой Ферми—Дирака статистике. Ф.-г. из невзаимодействующих частиц наз. идеальным, а в отсутствие внеш. полей—свободным. К Ф.-г. относятся электроны в металлах и полупроводниках, газы из атомов с нечётным числом нуклонов (напр., Не) электроны в атомах с большими атомными номерами, изучаемые в Томаса—Ферми теории нуклоны в тяжёльсх сильно возбуждённых ядрах, описываемые в рамках статистической модели ядра элементарные возбуждения электронов, взаимодействующих с фононами в кристаллич. решётке, и т. д. (см. также Ферми-жидкость).  [c.282]

Многие квантовые системы можно рассматривать как смесь слабо взаимодействующих газов квазичастиц (фононов, электронов, магнонов и т.д.). Тогда кинетическая стадия эволюции системы описывается одночастичной матрицей плотности где сложный индекс I включает всю информацию о базисных ква-зичастичных состояниях (тип квазичастицы, импульс, проекцию спина и т.д.). Такое описание предполагает, что гамильтониан системы имеет вид Я = Я + Я, где Я — гамильтониан свободных квазичастиц, а Я — гамильтониан слабого взаимодействия. Обычно базисные состояния 11) удобно выбрать так, чтобы в представлении чисел заполнения Я был диагонален  [c.82]

Гц, распространяясь в кристаллах парамагнетиков, помещённых в магнитное поле напряжённостью —1000 Э, может вызвать переход атома с одного магнитного уровня на другой, сообщая ему определённую энергию. При этом происходит избирательное поглощение Г. на частотах, к-рые соответствуют возможным переходам. Это явление называется акустическим парамагнитным резонансом (АПР), оно аналогично электронному парамагнитному резонансу (ЭПР). При помощи АПР оказывается возможным изучать переходы между такими уровнями атомов в парамагнетиках, к-рые являются запрещёнными для ЭПР. Используя взаимодействие когерентных фононов со спин-орби-тальной системой, можно в парамагнитных кристаллах при низких температурах усиливать и генерировать гиперзвуковые волны, пользуясь тем же принципом, на к-ром работают квантовые генераторы.  [c.89]

Найденная в опытах величина заряда ч-ц, создающих своим движением сверхпроводящий ток (е = 2 е), подтверждает Купера эффект, на основе к-рого в 1967 Дж. Бардин, Л. Купер и Дж. Шриффер (США) и Н. Н. Боголюбов (СССР) построили последовательную микроскопич. теорию С. Согласно Куперу, два эл-на с противоположными спинами, взаимодействуя через посредство крист, решётки (обмениваясь фононами), могут образовывать связанное состояние (куперов-скую пару). Заряд такой пары равен 2е. Пары обладают нулевым значением спина и подчиняются Бозе — Эйнштейна статистике. В сверхпроводящем металле пары испытывают т. н. бозе-конденсацию (см. Квантовая жидкость), и поэтому система куперовских пар обладает св-вом сверхтекучести. Т. о., С. представляет собой сверхтекучесть электронной жидкости.  [c.659]


Смотреть страницы где упоминается термин Спин-фононное взаимодействие электронное : [c.44]    [c.45]    [c.35]    [c.331]    [c.262]    [c.44]    [c.8]    [c.521]    [c.414]    [c.96]    [c.194]    [c.585]    [c.310]    [c.260]    [c.148]   
Ультразвук (1979) -- [ c.333 ]



ПОИСК



1) -спин

Взаимодействие фононов

Взаимодействие электрон-фононное электронное

Взаимодействие электрон-электронное

Взаимодействие электронами

Взаимодействие электронно-фононное

Взаимодействие электронно-электронное

Газ фононный

Газ фононов

Спин электрона

Спин-фононное взаимодействие

Спины

Спины взаимодействующие

Спины электронов

Фононы 1-фононные

Фононы 2-фонониые

Фононы взаимодействие с электронами

Электрон-фононное взаимодействи

Электрон-фононное взаимодействие

Электрон-электронное взаимодействие фононом



© 2025 Mash-xxl.info Реклама на сайте