Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Жидкости квантовые

Из уравнений (7.50) и (7.51) можно вывести промежуточную функцию рассеяния для любой системы, в которой известны квантовые состояния. Например [261, часто при рассмотрении молекулярного газа в его основном электронном состоянии хорошим приближением оказывается представление волновой функции % в виде произведения известных поступательных, вращательных и колебательных волновых функций, т. е. г )г (Г) фг(i )Ч г(V). Для реальных рассеивающих систем, таких, как кристаллические твердые тела и молекулярные жидкости, квантовые состояния детально неизвестны, и на практике применяют приближенную модель для расчета функции рассеяния.  [c.270]


Во-вторых, движение составных частей жидкости может быть описано в рамках классических представлений, тогда как движение нуклонов в ядре имеет сугубо квантовый характер.  [c.173]

Следует, однако, самым решительным образом подчеркнуть, что рассмотрение жидкости как смеси нормальной и сверхтекучей ее частей является не более чем способом наглядного описания явлений, происходящих в квантовой жидкости. Как и всякое описание квантовых явлений в классических терминах, оно не вполне адекватно. В действительности надо говорить, что в квантовой жидкости — гелии II — может существовать одновременно два движения, каждое из которых связано со своей эффективной массой (так что сумма обеих этих масс равна полной истинной массе жидкости). Одно из этих движений нормально, т. е. обладает теми же свойствами, что и движение обычной вязкой жидкости другое же — сверхтекуче. Оба эти движения происходят без передачи импульса от одного к другому. В определенном смысле можно говорить о сверхтекучей и нормальной частях массы жидкости, по это отнюдь не означает возможности реального разделения жидкости на две части ).  [c.707]

Помимо отсутствия вязкости, сверхтекучее движение жидкости обладает еще и следующими двумя важнейшими свойствами оно не сопровождается переносом тепла и всегда потенциально. Оба эти свойства тоже следуют из микроскопической теории, согласно которой нормальное движение жидкости представляет собой в действительности движение газа возбуждений напомним, что коллективное тепловое движение атомов квантовой жидкости можно рассматривать как совокупность отдельных элементарных возбуждений, ведущих себя как некоторые квазичастицы, движущиеся в занимаемом жидкостью объеме и обладающие определенными импульсами и энергиями.  [c.708]

Оптические приборы и оптические методы исследования широко применяются в самых разнообразных областях естествознания и техники. Напомним, например, об изучении структуры молекул с помощью их спектров излучения, поглощения и рассеяния света, а также о применении микроскопа в биологии, об использовании спектрального анализа в металлургии и геологии. Оптические квантовые генераторы неизмеримо расширяют возможности оптических методов исследования. Приведем несколько примеров, иллюстрирующих положение дела. Один из новых методов — голография — подробно описан в главе XI. Изучение атомно-молекулярных процессов, протекающих в излучающей среде лазеров, а также рассеяния света и фотолюминесценции с применением лазеров позволило получить большой объем сведений в атомной и молекулярной физике, равно как и в физике твердого тела. Оптические квантовые генераторы заметно изменили облик фотохимии с помощью мощного лазерного излучения могут производиться разделение изотопов и осуществляться направленные химические реакции. Благодаря монохроматичности излучения оптических квантовых генераторов оказывается сравнительно простыми измерения сдвига частоты, возникающего при рассеянии света вследствие эффекта Допплера этот метод широко используется в аэро- и гидродинамике для излучения поля скоростей в потоках газов и жидкостей.  [c.770]


Такое рассмотрение Не II является, конечно, как всякое классическое представление квантовых явлений, лишь удобным способом для выражения поведения квантовой жидкости, каковой является Не II. Никакого разделения частиц гелия на сверхтекучие и нормальные не существует.  [c.335]

По своей физической природе сверхпроводимость является сверхтекучей жидкостью, состоящей из электронов. Однако электроны имеют полуцелый спин и подчиняются статистике Ферми-Дирака, для них Бозе-конденса-ция невозможна. Фермионы как бы отталкивают от своего состояния другие фермионы, а бозоны как бы стараются втянуть в свое состояние другие бозоны. Это проявляется во многих процессах, например в генерации индуцированного излучения фотонов, благодаря которому функционируют лазеры. Построить лазер на электронах в принципе нельзя, потому что даже два электрона нельзя поместить в одно и то же квантовое состояние. Поэтому для объяснения сверхпроводимости необходимо прежде всего понять, каким путем электроны могут подвергнуться Бозе-конденсации.  [c.371]

Эта аналогия с газом, однако, весьма ограничена уже потому, что ядро само по себе имеет конечный объем и почти постоянную плотность, а не стремится занимать максимальный объем, как это положено газу. Постоянство плотности роднит ядро с жидкостью, которую из-за резкого проявления квантовых свойств называют ферми-жидкостью. Но капля жидкости должна иметь сферическую форму.  [c.112]

Основным элементом лазера — прибора квантовой электроники— является его активная среда, которая генерирует излучение в нужном диапазоне спектра в импульсном или непрерывном режиме. В качестве такой среды может служить жидкость, газ или твердое тело. Соответственно лазеры называют жидкостными, газовыми или твердотельными.  [c.57]

ДИАМАГНЕТИЗМ <возникновение в веществе (диамагнетике) намагниченности, направленной навстречу внешнему (намагничивающему) полю Ландау — диамагнетизм, вызванный движением свободных электронов вещества по спиральным квантовым орбитам под воздействием) внешнего магнитного поля ДИСЛОКАЦИЯ <—дефект кристалла, представляющий собой линию, вдоль и вблизи которой нарушено правильное расположение атомных плоскостей винтовая — дислокация, моделью которой может служить атомная плоскость, имеющая вид пологой винтовой лестницы краевая — дислокация, моделью которой может служить оборванная внутри кристалла атомная плоскость) ДИСПЕРГИРОВАНИЕ— тонкое измельчение твердых тел или жидкостей, приводящее к образованию дисперсных систем  [c.229]

ЖИДКОСТЬ [—вещества в конденсированном агрегатном состоянии, промежуточном между твердым и газообразным идеальная — жидкость, в которой отсутствует внутреннее трение квантовая — жидкость, свойства которой определяются квантовыми эффектами, в частности сверхтекучестью неньютоновская— жидкость, вязкость которой не является постоянной величиной ньютоновская — жидкость, подчиняющаяся при своем течении закону пропорциональности касательных напряжений и скорости сдвига (перегретая — метастабильное состояние жидкости, нагретой до температуры выше температуры ее равновесного фазового перехода в газообразное переохлажденная — метастабильное состояние жидкости, охлажденной до температуры ниже температуры ее равновесного фазового перехода в твердое) состояние при данном давлении]  [c.230]

НАКАЧКА — процесс возбуждения активной среды лазеров и других квантовых генераторов и усилителей, в результате которого нарушается равновесное распределение микрочастиц среды по их энергетическим уровням НАМАГНИЧЕННОСТЬ <—векторная физическая величина, характеризующая состояние вещества и равная отношению магнитного момента малого объема вещества к величине этого объема насыщения характеризует состояние ферромагнетика, при котором увеличение абсолютного значения напряженности внешнего магнитного поля не ведет к увеличению намагниченности ферромагнетика остаточная определяется намагниченностью, которую имеет ферромагнетик при напряженности внешнего магнитного поля, равной нулю) НАМАГНИЧИВАНИЕ- возрастание намагниченности магнетика при увеличении напряженности магнитного поля НАПОР в гидравлике -линейная величина, выражающая удельную механическую энергию жидкости в данной точке потока  [c.252]


Приведенный график давление — объем жидкости показывает, что процесс состоит из плавных обратимых изменений, связанных с самопроизвольным изменением давления при постоянном насыщении обратимые изменения чередуются с необратимыми изменениями объема, а весь процесс удаления жидкости является квантовым.  [c.306]

Явления сверхтекучести, открытые П. Л. Капицей, и теория квантовых жидкостей, развитая Л. Д. Ландау, так же как и свойства сверхпроводимости, рассматриваются в настоящее время как проявление практической обратимости процессов, происходящих при близких к абсолютному нулю температурах.  [c.9]

Следует еще раз подчеркнуть, что открытие особых свойств квантовых жидкостей вовсе не ставит под сомнение то обстоятельство, что реальные процессы, происходящие в теплоэнергетических установках, всегда в той или иной степени необратимы.  [c.10]

Для сушествования К. в. необходимо, чтобы полная диссипация энергии, сопровождающая кристаллизацию и плавление, была достаточно мала. В обычных классич. кристаллах это условие не выполняется, и процесс ус-тановлепия равновесной формы носит апериодич. характер. В случае границы сверхтекучая квантовая жидкость — квантовый кристалл (поверхность кристалла Не) возникновение К. в. оказывается возможным, если темп-ра Т достаточно низка (гораздо ниже л-точки) и если поверхность кристалла находится в особом квантове пгероховатом состоянии, являющемся квантовым аналогом классич. атомно-шероховатого состояния (см. Кристаллизация),  [c.496]

Ф Л МИ ЖИДКОСТЬ — квантовая /кидкость, имеющая спектр элементарных поэбуждений фермиенского тина. ваптовые свойства Ф. к. проявляются, как и и случае газа, при достаточно низких темн-рах,  [c.297]

Ф. — Д. с. существеппым образом влияет па низкотемпературные свойства систем, состоящих из большого числа Ферми частиц, приводя к т. н. фермиев-скому вырождению (см. Ферми газ, Ферми жидкость. Квантовая жидкость. Металлы).  [c.299]

При температурах, близких к абсолютному нулю, в свойствах жидкости на первый план выдвигаются квантовые эффекты в таких случаях говорят о квантовых жидкостях. Фактически лишь гелий остается жидким вплоть до абсолютного нуля все другие жидкости затвердевают значительно раньше, чем в них становятся заметными квантовые эффекты. Существуют, однако, два изотопа гелия —" Не и Не, отличающиеся статистикой, которой подчиняются их атомы. Ядро Не не имеет спина, и вместе с ним равен нулю и спин атома в целом эти атомы подчиняются статистике Бозе — Эйнштейна. Атомы же Не обладают (за счет своего ядра) спином /2 и подчиняются статистике Ферми — Дирака. Это различие имеет фундаментальное значение для свойстй образуемых этими веществами квантовых жидкостей в первом случае говорят о квантовой бозе-жидкости, а во втором — о ферми-жидкости. В этой главе будет идти речь только о первой из них.  [c.706]

Следует отделить свойства гелия как квантовой жидкости от других его апомалпй. Благодаря наличию высокой нулевой энергии гелий не может затвердевать иод давлением насыщенных паров это относится к обоим изотопам гелия. Аномальные же свойства жидкости, сказывающиеся на явлении переноса, присущи в силу квантовой статистики только тяжелому изотопу.  [c.786]

Несомненный успех двухжидкостной модели в форме, предложенной Тисса, вызвал тенденцию приписывать ей часто больший физический смысл, чем тот, которого вообще можно было от нее требовать. Не говоря уже о том, что в атомных масштабах разделение атомов I от атомов II недопустимо с точки зрения квантовой механики, в этой модели должны возникать и другие трудности. Представление о том, что при абсолютном нуле гелий должен состоять целиком из атомов с нулевым импульсом, оставляет необъясненной одну из замечательных особенностей этого вещества, а именно его большую нулевую энергию. По этой же причине объяснение термомеханического эффекта на основании этой модели является до некоторой степени иллюзорным. Выравнивание разности концентраций в этом случае рассматривается как аналогия осмотической диффузии через полупроницаемый капилляр. Очевидно, однако, что подобный диффузионный процесс не может иметь места в смеси, одна из компонент которой—нормальная жидкость—неподвижна благодаря трению, а другая—сверхтекучая жидкость—имеет нулевой импульс. Эти трудности можно обойти, если приписать сверхтекучей компоненте некоторый импульс, но тогда и без того неясная связь свойства сверхтекучести с конденсацией Бозе—Эйнштейна станет еще более туманной.  [c.803]

Он доказал, что в квантовой жидкости не может быть непрерывного перехода от состояний потенциального движения (rot v=0) к состояниям вращательного движения (rot v 0) и что между низшими уровнями фонон-иого п ротонного спектров должна существовать энергетическая щель. Из простых соображений размерности следует, что щель должна быть порядка  [c.806]

Оптические квантовые генераторы (ОКГ), или лазеры, дают мощное когерентное излучение, которое невозможно получить при использовании обычных источников света. Если раньше когерентное электромагнитное излучение получалось и широко использовалось только в радиодиапазо не, то с появлением лазеров сфера его применения распространилась и на оптический диапазон спектра. Действие ОКГ основано на явлении вынужденного излучения, которое было открыто Эйнштейном в 1917 г. Идея использования этого явления для усиления света в среде с инверсной населенностью энергетических уровней принадлежит В. А. Фабриканту (1939). Первые квантовые генераторы были созданы в 1954 г. Н. Г. Басовым и А. М. Прохоровым в СССР и Ч. Таунсом в США. В них использовалось вынужденное излучение возбужденных молекул аммиака на длине волны А,= 1,27 см. В 1960 г. был создан лазер на кристалле рубина, работающий в видимой области спектра (А = 694,3 нм), а в 1961 г. — лазер на смеси газов гелия и неона. В настоящее время имеются самые разнообразные типы лазеров, использующие в качестве рабочих сред газы, жидкости и твердые тела. Мощное и высококогерентное излучение ОКГ находит широкое применение в различных областях науки и техники.  [c.278]


Комбинационное рассеяние. Наряду с рассеянием без изменения частоты возбужденная световой волной квантовая система может в определенных условиях переизлучать энергию с изменением частоты. Это излучение с изменением частоты обусловливает некогерентное рассеяние света, поскольку вследствие различия частот падающего и рассеянного излучений между ними не может существовать никакого определенного фазового соотношения. Некогерентное рассеяние с изменением частоты называется комбинационным. Оно было открыто Раманом и Кришнаном в жидкостях и газах и независимо Мандельштамом и Ландсбергом в твердых телах.  [c.265]

С только что описанной точки зрения сосуществование коллективных и одночастичных моделей выглядит парадоксальным, поскольку в этих моделях о свободном пробеге нуклона в ядре делаются противоположные и взаимоисключаюш,ие допущения. Разрешение этого парадокса состоит в том, что для нуклона в ядре просто нельзя вводить понятие свободного пробега, причем по двум причинам во-первых, из-за того, что в ядре слишком мало частиц, чтобы трактовать его как сплошную среду во-вторых, вследств1 е того, что движение нуклонов в ядре является существенно квантовым процессом, ибо дебройлевская длина волны нуклона в ядре имеет порядок размеров ядра. Другими словами, парадокс возник за счет слишком буквального понимания терминов, заимствованных из физики жидкости и твердого тела.  [c.83]

КРИСТАЛЛЫ валентные (атомные) содержат в узлах кристаллической решетки нейтральные атомы (С, Ge, Те и др.), между которыми осуществляется гомеополярная связь, обусловленная квантово-механическим взаимодействием глобулярные представляют собой частный случай молекулярных кристаллов и имеют вид клубка полимеров жидкие обладают свойствами как жидкости (текучестью), так и твердого кристалла (анизотропией свойств) внутри малых объемов идеальные не имеют дефектов структуры иопные обладают гетерополярной связью между правильно чередующимися в узлах кристаллической решетки положительными и отрицательными ионами квантовые характеризуются большой амплитудой нулевых колебаний атомов, сравнимой с межатомным расстоянием металлические образуются благодаря специфической химической связи, возникающей между ионами кристаллической решетки и электронным газом (Си, А1 и др.) молекулярные (Лг, СН , парафин и др.) формируются силами Ван-дер-Вальса, главным образом дисперсионными нитевидные вытянуты в одном направлении во много раз больше, чем в остальных оптические [активные поворачивают плоскость поляризации света вокруг падающего линейно поляризованного луча анизотропные обладают двойным лучепреломлением, состоящим в том, что луч света, падающий на поверхность кристалла, раздваивается в нем на два преломленных луча двуосные имеют две оптические оси, вдоль которых свет не испытывает двойного лучепреломления одноосные (имеющие одну оптическую ось отрицательные, в которых скорость обыкновенного светового луча меньше, чем скорость распространения необыкновенного луча положительные, в которых скорость распространения обьпсновенного светового луча больше, чем скорость распространения необыкновенного луча))] КРИСТАЛЛИЗАЦИЯ— образование кристаллов из паров, растворов, расплавов веществ, находящихся в твердом состоянии в процессе электролиза и при химических реакциях  [c.244]

ОБЕРТОН —гармоническая составляющая сложного негармонического колебания с линейчатым спектром с частотой, более высокой, чем основной тон ОБЛАСТЬ сиботаксичес-кая малый объем жидкости, в котором относительное расположение сохраняет достаточную правильность ОБОЛОЧКА [адиабатная не допускает теплообмена между рассматриваемой системой и внешней средой в механике--пространственная конструкция, ограниченная двумя криволинейными поверхностями, расстояние между которыми мало по сравнению с другими его размерами электронная как совокупность (всех электронов, входящих в состав атома или молекулы состояний электронов в атоме, имеющих дашюе значение главного квантового числа и находящихся от атомного ядра примерно на одинаковых расстояниях) ядерная как совокупность нуклонов в атомном ядре] ОБЪЕМ [когерентности — часть пространства, занятого волной, в которой волна приблизительно сохраняет когерентность критический объем вещества в его критическом состоянии молярный — объем, занимаемый одним молем вещества при нормальных условиях парциальный газа -объем, который имел бь[ данный газ, входящий в состав смеси газов, если бы все остальные газы были удалены, а давление и тем-  [c.254]

ОПТИКА [ асферическая содержит элементы, поверхности которых, не имеют сферической формы просветленная обладает уменьшенными коэффициентами отражения света у отдельных ее элементов путем нанесения на них специальных покрытий) как оптическая система (волновая изучает явления, в которых проявляется волновая природа света волоконная рассматривает передачу света и изображений по световодам и пучкам гибких оптических волокон геометрическая изучает законы распространения света в прозрачных средах на основе представлений о световых лучах интегральная изучает методы создания и объединения оптических и оптоэлектронных элементов, предназначенных для управления световыми потоками квантовая изучает явления, в которых при взаимодействии света и вещества существенны квантовые свойства света и атомов вещества когерентная изучает методы создания узконаправленных когерентных пучков света и управления ими нелинейная изучает распространение мощных световых пучков в оптически нелинейных средах (твердые тела, жидкости, газы) и их взаимодействие с веществом силовая изучает воздействие на твердые тела интенсивного светового излучения, в результате которого может нарушаться механическая цельность этих тел статистическая изучает статистические свойства световых полей и особенности их взаимодействия с веществом тонких слоев изучает прохождение света через прозрачные слои вещества, толщина которых соизмерима с длиной световой волны физическая изучает природу света и световых явлений) как раздел оптики электронная занимается вопросами формирования, фокусировки и отклонения пучков электронов и получения с их помощью изображений под воздействием электрических и магнитных полей корпускулярная изучает законы движения заряженных частиц в электрическом и магнитном полях нейтронная изучае взаимодейс вие медленных нейтронов со средой) как раздел физики]  [c.255]

Необходима дополнительная экспериментальная проверка обобщенных кинетических уравнений переноса для, газа (пара), жидкости и твердого тела. В эти соотношения входят молекулярно-кинетические, термодинамические и атомные характеристики. Уточнение уравнений целесо-ббразно проводить с использованием аппарата термодинамики, квантовой MiexaHHKH и молекулярной физики.  [c.228]

Этот гамильтониан представляет собой квадратичную форму относительно операторов Ъ и к приводится к диагональному виду с помощью Боголюбова канонического преобразования. Т, о., для энергии квазичастиц получается ф-ла (2). Анализ утой ф-jnii показывает, что модель слабонеидеального Б.-г, может объяснить свойство сверхтекучести, типичное для квантовых жидкостей, а также образование вихревых нитей.  [c.219]


Оптические квантовые генераторы (ОКГ, лазеры). Колебат. системами ОКГ являются открытые резонаторы с размерами 1 >Х, образованные двумя или более отражающими поверхностями. Семейство газовых лазеров многочисленно, они перекрывают диапазон длин волн от УФ области спектра до субмиллиметровых волн. В твердотельных лазерах активной средой являются диэлектрич. кристаллы и стёкла. Особый класс твердотельных ОКГ составляют полупроводниковые лазеры, в к-рых используются излучательные квантовые переходы между разрегпёнными энергетич, зоиами, а не дискретными уровнями энергии. Жидкостные лазеры работают на неорганических активных жидкостях, а также на растворах органич. красителей (см. Лазеры на красителях).  [c.434]


Смотреть страницы где упоминается термин Жидкости квантовые : [c.219]    [c.381]    [c.805]    [c.786]    [c.806]    [c.814]    [c.223]    [c.922]    [c.277]    [c.278]    [c.289]    [c.310]    [c.219]    [c.235]    [c.262]    [c.423]    [c.424]    [c.424]    [c.539]   
Теплопередача при низких температурах (1977) -- [ c.66 , c.68 , c.346 , c.348 ]



ПОИСК



Гелий-3 и гелий-4, растворы квантовых жидкостей

Ландау теория квантовых жидкостей

Методы гриновских функций (в квантовой и теория ферми-жидкости

Шум квантовый

Энергетический спектр квантовой жидкости и сверхтекучесть



© 2025 Mash-xxl.info Реклама на сайте