Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Резонанс поверхность

Перейдем к теоретическому анализу дробления пузырька. В разд. 2.6 были даны постановка и решение задачи в свободных колебаниях поверхности газового пузырька, находяш егося в жидкости. Очевидно, что такие колебания могут быть вызваны турбулентными пульсациями жидкости, частота которых совпадает с частотой собственных колебаний поверхности пузырька. Условие совпадения частот колебаний приводит к резонансу колебаний поверхности и к последующему дроблению пузырька газа. Рассмотрим линейные колебания поверхности пузырька. В соответствии с (2. 6. И) частота моды колебаний и-го порядка при малой их амплитуде определяется при помощи соотношения  [c.130]


Условие резонанса представляет собой равенство частот со = (о . Тогда, используя (4. 2. 3), (4. 2. 4), получим соотношение для средней скорости течения жидкости при резонансных колебаниях поверхности пузырька  [c.131]

Теперь рассмотрим случай, когда частота турбулентных пульсаций жидкости соответствует одной из частот собственных колебаний поверхности пузырька (4. 2. 3) для п 2. Так как затухание собственных колебаний поверхности пузырька очень мало, газовые пузырьки в этом случае будут быстро деформироваться и дробиться. Приравнивая характеристическую частоту турбулентных пульсаций каждой такой резонансной частоте, получим выражение, позволяющее определить критические значения критерия Уе, соответствующие условиям резонанса. В общем случае для моды собственных колебаний и-го порядка из (4. 2. 1) и (4. 2. 5) следует выражение для критического значения е в виде  [c.133]

Критический размер дробящегося пузырька при резонансе колебаний моды и-го порядка оказывается меньше, чем при возбуждении низшей моды колебаний поверхности (л=2), Зависимость В В от п, рассчитанная при помощи (4. 2. 17), показана на рис. 41. Таким образом, когда критерий Вебера достигает своего максимального критического значения (4. 2. 7), размеры пузырьков, соответствующие этому значению Уе= Уе2 (т. е. при л=2), оказываются связанными с характеристическими частотами высших мод турбулентных пульсаций жидкости (т. е. при л > 2). Эта зависимость В (л) объясняется тем, что турбулентные пульсации жидкости, частоты которых совпадают с частотами собственных колебаний поверхности пузырьков при л > 2, вызывают дальнейшее дробление дисперсной фазы, что ведет к образованию более мелких пузырьков газа с размерами В Т 2.  [c.133]

Если в механизме имеются подвижные соединения с зазорами (например, кинематические пары в механизмах), вибрационные воздействия могут вызвать соударения сопрягаемых поверхностей, приводящие к их разрушению и генерированию шума. В большинстве случаев разрушение объекта при вибрационных воздействиях связано с возникновением резонансных явлений. Поэтому при поли-гармонических воздействиях наибольшую опасность представляют те гармоники, которые могут вызвать резонанс объекта.  [c.272]

Для излучения и приема ультракоротких (до единиц наносекунд) аку стических импульсов применяют наиболее широкополосные из известных, так называемые толстые пьезопреобразователи [25], Б которых толщина используемых пьезоэлементов намного больше длины волны возбуждаемых в них импульсов УЗК. В этих преобразователях отсутствуют условия для акустического резонанса и электромеханическое преобразование происходит только у излучающей (принимающей) УЗК поверхности пьезоэлемента, где существует резкий скачок поляризации или (и) возбуждающего электрического поля.  [c.219]


Благодаря отсутствию мертвой зоны можно обнаруживать дефекты вблизи поверхности. Результаты контроля получают в наглядной форме (рис. 106). При контроле изделий с периодической структурой внутреннего элемента эта структура становится видимой. Ликоподий удерживается на наклонных поверхностях, поэтому возможен контроль изделий с криволинейными поверхностями. Условием выявления дефекта является наличие резонанса отделенного им участка в диапазоне частот генератора. С увеличением глубины залегания дефекта чувствительность падает.  [c.304]

Резонансный толщиномер. Локальный метод вынужденных колебаний применяют для измерения толщины и дефектоскопии тонкостенных труб и оболочек. Прибор для реализации этого метода называют резонансным толщиномером. Он основан на возбуждении в стенке изделия по толщине ультразвуковых колебаний и определении частот, на которых возникают резонансы этих колебаний. В простейшем случае, представляя изделие как пластину, поверхности которой с обеих сторон свободны, условие возбуждения упругих резонансов записывают в виде уравнения для свободных колебаний (2.26).  [c.128]

В этом случае плоская поверхность преобразователя соприкасается с искривленной поверхностью изделия на сравнительно небольшом участке. Область, в которой устанавливаются резонансы колебаний, сокращается, и высота резонансных пиков сильно уменьшается. Еще одним фактором, мешающим измерению  [c.128]

В уравнениях, приведенных в 2, 3 и 5 для цилиндрической и кубической трубки, встречаются две постоянные — о я /о. которыми существенно обусловливается резонанс теперь мы постараемся вычислить эти постоянные для некоторых случаев. При этом необходимо определить потенциал скоростей для всего рассматриваемого объема воздуха и для движения, которое в цилиндрической трубе поддерживается ее основанием, в кубической же трубе — произвольной частью сосуда. Это опять-таки возможно кри некоторых определенных предположениях относительно ограничения объема воздуха. Мы примем, что для расстояний от отверстия порядка длины волны или больших, простирающихся в бесконечность, объем воздуха или ничем не ограничен, или ограничен частью произвольной конической поверхности, вершина которой расположена в отверстии. Обозначим через г расстояние переменной точки от этой вершины и допустим, что для значений г порядка длины волны или больших, имеет место уравнение (19)  [c.282]

НИК 2/, 3/,. .., kf. Число отверстий в диске рабочего колеса и число отверстий в форкамере выбирают в соответствии с требующимся диапазоном частот для испытания. Геометрические размеры форкамеры должны быть такими, чтобы заключенный в ней объем воздуха не создавал резонанса на низшей собственной частоте. Для уменьшения пульсаций давления, которые могут возбуждаться рабочим колесом в форкамере, внутренние поверхности ее облицовывают звукопоглощающим материалом. Рабочий диапазон давления воздуха в форкамере Ю" —3-10 Па. Повышение давления свыше 3-10 Па нецелесообразно, так как интенсивность звука при этом увеличивается весьма незначительно. Осевой зазор между рабочим колесом и торцовой частью сопл должен быть, по возможности, минимальным (не более 0,03—0,05 мм), чтобы уменьшить потери энергии на утечку воздуха через него. В системе воздухоснабжения генератора используются обычные устройства задвижки, дроссель, ресивер. При значительных колебаниях давления воздуха в подводящей магистрали применяют автоматические устройства, поддерживающие  [c.451]

Влияние демпфера на поведение конструкции при резонансе (рис. 5.6) проявляется в том, что исходная форма колебаний распадается на две формы (рис. 5.7). Нижняя частотная ветвь соответствует случаю, когда массивное тело, имеющееся в демпфере, и поверхность конструкции двигаются по существу син-фазно, тогда как в области пика тело и поверхность колеблются  [c.213]

При резонансе возникают деформации на всех поверхностях выхлопной трубы, причем это справедливо для широкого диапазона частот.  [c.361]

В предыдущем исследовании свободных и вынужденных колебаний предполагалось, что на движение звездочки и обоймы не действуют никакие силы сопротивления. Вследствие этого предположения в случае свободных колебаний было найдено, что амплитуда колебаний остается постоянной, хотя эксперименты показывают, что со временем амплитуды уменьшаются и колебания постепенно затухают. В случае вынужденных колебаний при резонансе было найдено, что амплитуда колебаний может неограниченно увеличиваться, хотя, как мы знаем, вследствие демпфирования амплитуды всегда остаются ниже определенного верхнего предела. Чтобы приблизить аналитическое решение вопроса о колебаниях к действительным условиям, необходимо принять во внимание силы неупругого сопротивления (демпфирования). Эти силы могут возникать от различных причин (трение между соприкасающимися поверхностями, сопротивление воздуха или жидкости, электрическое сопротивление, внутреннее трение вследствие несовершенной упругости и т. д.).  [c.57]


В храповых стопорных механизмах двустороннего действия (храповых тормозах, рис. 98, а), характер крутильных колебаний будет отличаться от колебаний механизмов одностороннего действия, так как при колебаниях ведомой системы храповой останов двустороннего действия обладает одинаковой упругой податливостью как при вращении в одну сторону, так и в другую. Поэтому в кинематической цепи с храповым устройством двустороннего действия возможны крутильные колебания с переходом через нуль и при условиях близких к резонансу, нагрузки могут достигать довольно значительной величины, определяемой по формуле (402). Поэтому для устранения чрезмерно больших динамических нагрузок и повышения выносливости рабочих поверхностей и в этом случае необходимо подобрать жесткость так, чтобы обеспечивалось условие р ф ы или в общем виде (р ф ка,). Если учесть, что под действием демпфирования собственные колебания быстро затухают и остается только установившийся процесс вынужденных колебаний, постоянно поддерживаемый действием возмущающего момента, то второй член уравнения (401), будет равен нулю. Тогда уравнение примет вид  [c.181]

Для получения нескольких резонансов в исследуемом диапазоне частот использовался стержень 1, имеющий длину 150 см и поперечное сечение 5x4 см. Стержень контактировал с жестким массивным столом 3 по трем площадкам 2 диаметром по 5 мм. Контактирующие детали изготовлены из стали 20 с плоскими соприкасающимися поверхностями, имевшими чистоту обработки V7. Контактные площадки нагружались весом стержня приблизительно равномерно (рис. 1).  [c.76]

В основном упругой деформацией выступов и дальнейшим сближением иоверхностей. Потери энергии в контакте соизмеримы с потерями на внутреннее трение в стержне. С увеличением амплитуды тангенциальной силы увеличиваются площадь контакта и доля проскальзывания (необратимой части деформации), а также связанные с ними потери на внешнее трение. При увеличении перемещения на порядок от 0,05 до 0,5 мкм потери энергии увеличиваются примерно на два порядка, и такое же увеличение потерь имеется при увеличении перемещений в 4 раза — от 0,5 до 2 мкм. При последовательном увеличении амплитуды силы возбуждения происходит незначительное уменьшение резонансной частоты колебаний. Амплитудно-частотные характеристики при перемещениях на резонансе выше 0,5 мкм имеют выраженный наклон в сторону меньших частот, а скелетная кривая соответствует мягкой характеристике жесткости. Жесткость контакта с сухими поверхностями составила —5-1Q5 кгс/см, со смазываемыми — 4-10 кгс/см.  [c.78]

Касаясь различных точек вибрирующей детали легкой проволочкой с шариком (диаметром 1—2 мм) на конце, можно по интенсивности движения шарика, звенящему звуку и ощущению руки легко заметить резонанс и проследить расположение пучностей и узловых линий при колебаниях. Последней цели служат и так называемые песочные фигуры, которые получаются при посыпании вибрирующей детали мелким песком или каким-либо другим порошком. При вибрациях песок располагается вдоль узловых линий (см. фиг. 20 и 68). Если поверхность исследуемой детали изогнута, то для получения песочных фигур, необходимо с помощью специального приспособления поворачивать вибрирующую деталь так, чтобы различные части ее поверхности ставились в горизонтальное положение. Чтобы песок не осыпался, полезно слегка смочить поверхность изогнутой детали керосином.  [c.383]

Нелинейные муфты (см. также стр. 357) успешно применяют для борьбы с сильными резонансами системы. При конструировании муфты предусмотрено, чтобы с увеличением крутящего момента жесткость муфты повышалась. На фиг. 50, а показана схема муфты с профилированными на поверхности дисков полумуфт канавками, в которые заложены стальные пластины. Прогибаясь, пластины прилегают к профилям канавок и свободная их длина уменьшается.  [c.393]

Совпадение периодов собственных колебаний и замеров приводит к появлению систематической ошибки. Так, определяя температуру уходящих газов сразу после обдувки на протяжении месяца, мы получим верное представление о динамике заноса поверхностей нагрева, однако температура будет ниже средней. Однако большинство случайных стационарных процессов имеет переменный период, и поэтому наступление подобных резонансов маловероятно.  [c.132]

Вынужденные колебания М. происходят с частотой внеш. воздействия, при совпадении к-рой с одной из собств. частот имеет место резонанс. М. представляет собой излучатель звука с неравномерным распределением колебат. скорости по поверхности. Излучение М,, возбуждённой на осн. частоте, обладает меньшей направленностью, чем излучение на той же частоте поршневой диафрагмы той же конфигурации.  [c.96]

МЕРКУРИЙ — ближайшая к Солнцу большая планета Солнечной системы. Ср. расстояние от Солнца 0,387 а. е. (57,9 млн. км). Эксцентриситет орбиты 0,2056 (расстояние в перигелии 46 млн. км, в афелии 70 млн. км). Наклон плоскости орбиты к эклиптике V. Период обращения М. вокруг Солнца (меркурианский год) 87 сут 23 ч 16 мин. Фигура М. близка к шару с радиусом на экваторе (2440 2) км. Масса М. 3,31 10 кг (0,054 массы Земли). Ср. плотность 5440 кг/м . Ускорение свободного падения на поверхности М. 3,7 м/с . Первая космическая скорость на М. 3 км/с, вторая — 4,3 км/с. Период вращения М. вокруг своей оси равен 58,6461 0,0005 сут. Он соответствует устойчивому режиму, при к-ром период вращения равен /д периода орбитального обращения (58,6462 сут). В этом случае малая ось эллипсоида инерции планеты при прохождении ею перигелия совпадает с направлением на Солнце. Это — вариант резонанса, вызванного действием солнечного притяжения на планету, распределение массы внутри к-рой не является строго концентрическим. Определяемая совокупным действием вращения и обращения по орбите длительность солнечных суток на М, равна трём звёздным меркурианским суткам, или двум меркурианским годам, и составляет 175,92 ср. земных суток. Наклон экватора к плоскости орбиты незначителен (яиЗ°), поэтому сезонные изменения практически отсутствуют.  [c.97]


Контролируемое изделие помещают на подложку из материала, демпфирующего упругие колебания (рис. 102). Магнитострикцион-ный вибратор через контактный наконечник возбуждает в поверхностном слое металла упругие колебания частотой 20—100 кГп. При прохождении упругой волны через зону дефекта возникает явление локального резонанса — поверхность изделия в дефектных участках начинает колебаться с алшли-тудой болыпе й, чем в ноне качественного сосдннения.  [c.175]

Колебания инструмента снижают качество обработанной поверхности (шероховатость возрастает появляется волнистость) усиливается динамический характер силы резания, а нагрузки на движущиеся детали станка возрастают в десятки раз особенно в условиях резонанса, когда частота собственных колебаний системы СПИД совпадает с частотой колебаний при обработке резанием. Стойкость инструмента, особенно с пластинками из твердых сплавов, при колебаниях резко падает. При наличии вибраций возникает шум, утомляюще действующий на людей.  [c.273]

В заключение отметим, что если щ связанную систему, как бы она сложна ни бьыга, действует периодическая внешняя сила, частота изменения которой совпадает с одной из нормальных частот системы, то может возникнуть явление резонанса. Важным условием возникновения резонанса является и то, чтобы внешняя сила была прилоятена достаточно далеко от узловой точ[(и, узловой линии или узловой поверхности.  [c.199]

Электрическое сопротивление преобразователя Zn. э — комплексное электрическое сопротивление, измеренное на зажимах преобразователя при опре-деленмон акустической нагрузке на его рабочей поверхности. Различают электрическое сопротивление нагруженного преобразователя Z" g и не-нагруженного 3. График зависимости модуля I Zn, э I от частоты имеет в области рабочих частот два характерных экстремума минимум на частотах резонанса и антирезонанса. Значения Z . g и его параметры используют для определения оптимальных условий согласования преобразователя с электронным блоком дефектоскопа, а также для диагностирования его качества. Например, при нарушении склейки пьезопластины с демпфером значения Z g,  [c.214]

Определим, как будет характеризоваться уровень снижения скоростей при нанесении на поверхность вибропоглощающего материала с коэффициентом rij. В случае виброзадемпфированной поверхности мы получим выражение, аналогичное (192), но вместо т] будет т]2, где выражает коэффициент потерь в комбинированном вибропоглощающем слое. Тогда снижение уровня колебательной скорости при нанесении вибропоглощающего слоя в условиях резонанса (т. е. когда oDj = со,,) определится формулой  [c.130]

Локальный метод вынужденных колебаний обычно называют резонансным методом. В стенке изделия с помощью пьезопреобразователя возбуждают ультразвуковые волны (рис. 2.5, б). Частоту колебаний модулируют фиксируют частоты, на которых возбуждаются резонансы колебаний. По резонансным частотам определяют толщину стенки изделий и наличие дефектов. Дефекты, параллельные поверхности изделия, вызывают погрешность измеряемой толщины, а расположенные под углом к поверхности — исчезновение резонансных явлений. Для высокоточного измерения толщины труб также применяют локальный метод свободных колебаний, получивший название метод предеф.  [c.99]

В работе [31] электрохимический метод использовался также для определения пористости волокна и типа (]зункциональных групп на его поверхности. По скорости изменения электрического заряда после возникновения скачка потенциала можно в какой-то мере судить о пористости волокна, однако этот параметр не связан со сдвиговой прочностью композита. Наличие функциональных групп на поверхности можно установить только для обработанного волокна ourtaulds путем определения электрического заряда при восстановлении поверхностных групп, которое сводится к простому переносу электронов и обнаруживается с помощью усиленного сигнала электронного спинового резонанса. В случае волокна Gourtauldsi добавление одного электрона соответствует содержа-  [c.255]

В ОФНК АН БССР камера используется для изучения кристаллической структуры полюсных наконечников электромагнитов радиоспектрометров ядерного магнитного резонанса в процессе их изготовления как после механической, так и после термической обработки поверхностей.  [c.201]

При обсуждении данных, полученных в результате исследования рассматриваемой системы с помощью электронных вычислительных машин, можно кратко отметить ее некоторые характерные особенности. Изменение относительной величины изменяющей массы р, приводит к сдвигу состояния резонанса. Так, при увеличении р от нуля до единицы происходит медленное смещение по А-х состояния резонанса с Ах = 1 до А,х = 1,15, что показано штриховыми линиями на рис. 2. Предварительно осуществив пересечение поверхности А = / (р, Ах) плоскостями Ах = onst, сможем установить влияние относительной величины изменяющей массы р на амплитуду колебаний А при различных значениях Ах. Под величиной А подразумевается условно принятая амплитуда колебаний, которая равна А= /г (xi—Хо)-Безразмерная амплитуда колебаний А с максимальными действительными  [c.144]

Система с идеальным источником энергии. Опыты с идеальным источником энергии проводились в два этапа сначала были получены зависимости x=f (v) для различных фиксированных значений скорости ф = Q= onst, затем — зависимости х=/ (Q) для различных фиксированных значений частоты v. На основании этих зависимостей возможно построение поверхности ж=/ (v, Q), что дает полное представление о характере колебательной скорости X в широком диапазоне изменения частоты v и скорости Q. Для получения указанных зависимостей при помощи интегратора медленно (квазистационарно) изменялась частота v (Q= onst) и скорость й (v = onst) эти изменения на рисунках обозначены соответственно как v (т) и Q (т ), где т — медленное время. Скорости изменения v и Q варьировались, поэтому на ниже приведенных рисунках имеются почернения различной степени. В областях захватывания и их близких окрестностях скорость изменения частоты V выбиралась намного меньше, чем в других областях это связано с тем, что скорость изменения частоты существенно влияет на резонансные свойства системы амплитудные кривые деформируются, зона резонанса сдвигается, расширяется или сужается и т. д.  [c.35]

Улучшение вибрационных характеристик лопаток осевой решетки РК достигается устройством сопрягаемых кромок лопаток радиальной и осевой решеток срезанными по высоте под углом 45° к плоскости лопаток таким образом, что образуются поверхности, которыми лопатки прижимаются друг к другу. Поскольку масса и форма лопаток сопрягаемых решеток различны, они имеют и разную собственную частоту колебаний. При вращении РК возникающие колебания демпфируются в результате касания лопаток по плоскостям срезов, и резонанс не достигается  [c.72]

Экспериментальное исследование влияния колебаний в замкнутом объеме на естественную конвекцию проведено в работах [27, 36]. Экспериментальная камера, образованная двумя вертикальными пластинами с различным отношением высоты Н к ширине зазора между пластинами В HIB = 9,4 - 42,7), подвергалась вибрации [36] в вертикальном направлении с частотами О—400 Гц и с ускорениями О—llOg. В результате визуального наблюдения пограничного слоя на горячей и холодной пластинах установлено, что в зависимости от частоты колебаний пограничный слой на пластинах может быть как ламинарным, так и турбулентным. В области частот, близких к первой резонансной гармонике, наблюдается турбулентный пограничный слой, при значительном отклонении от резонанса — ламинарный и смешанный (на определенном расстоянии ламинарный слой переходит в турбулентный). В работе получено существенное увеличение коэффициента теплоотдачи при вибрациях в диапазоне резонансных частот колебаний. Причиной, вызывающей увеличение коэффициентов теплоотдачи, вероятно, является развивающаяся турбулентность пограничного слоя по всей поверхности замкнутого объема, которая была тем значительней, чем ближе частота вынужденных колебаний совпадала с резонансом (собственной частотой колебаний столба жидкости в камере). Параметрами, оказывающими влияние на теплоотдачу, являются частота колебаний  [c.172]


Однако многочисленные наблюдения и исследования показывают, что при определенных условиях роторы начинают вибрировать и при скоростях, отличных от критических.. 9ти гямовоз-буждающиеся колебания не связаны непосредственно с наличием неуравновешенности или других возмущающих воздействий. Причинами, вызывающими эти вибрации, являются силы трения между поверхностями движущихся твердых тел, силы внутреннего трения в материале, силы сопротивления аэродинамического и электромагнитного происхождения и т. д. Эти силы в зависимости от характера их действия, скорости вращения ротора и ряда других причин могут или стабилизировать движение и ограничивать амплитуды колебаний при резонансе, или, наоборот, вызывать раскачку колебаний. По существу их нельзя называть силами сопротивления, так как при одном виде движения они могут быть силами сопротивления, при другом — движущими силами. Исследованию этих вопросов посвящена обширная отечественная и зарубежная литература.  [c.196]

Сложную структуру имеют ветровые волны, характеристики к-рых определяются скоростью ветра и временем его воздействия на волну. Мехлниам передачи энергии от ветра к волне связан с тем, что пульсации давления в потоке воздуха деформируют поверхность. В свою очередь эти деформации влияют на распределение давления воздуха вблизи водной поверхности, причём эти два эффекта могут усиливать друг друга, и в результате амплитуда возмущений поверхности нарастает (см. Автоколебания). При этом фазовая скорость возбуждаемой волны близка к скорости ветра благодаря такому синхронизму пульсации воздуха действуют в такт с чередованием возвышений и впадин (резонанс во времени и пространстве). Это условие может выполняться для волн разных частот, бегущих в разл. направлениях по отношению к ветру получаемая ими энергия затем частично переходит и к другим волнам за счёт нелинейных взаимоде11Ствий (см. Волны), В результате развитое волнение представляет собой случайный процесс, характеризуемый неирерывным расиреде-ление.м энергии ио частотам и направлениям (пространственно-временным спектром). Волны, уходящие из области действия ветра (зыбь), приобретают болео регулярную форму.  [c.333]

ГИГАНТСКИЕ РЕЗОНАНСЫ (гигантские мультиполь-ные резонансы) — высокопозбуждённые состояния атомных ядер, к-рые интерпретируются как коллектинные когерентные колебания с участием большого кол-ва нуклонов (см. Колебательные возбуждения ядер). Известны Г. р., соответствующие колебаниям объема ядра, ядерпой поверхности, протонов относительно нейтронов, колебания, связанные с переворотом спина нуклонов и с обменом зарядом (см. ниже). Экспериментально Г. р. проявляются как широкие максимумы в  [c.455]

Нек-рые свойства М, (гл, обр. в сильном магн. поле) очень чувствительны к форме поверхности Ферми де Хаава — ван Альфена аффект. Циклотронный резонанс, геом. резонанс и др.). Они позволили восстановить по-  [c.116]


Смотреть страницы где упоминается термин Резонанс поверхность : [c.165]    [c.135]    [c.54]    [c.129]    [c.63]    [c.327]    [c.275]    [c.57]    [c.459]    [c.478]    [c.664]    [c.10]    [c.155]   
Динамические системы-3 (1985) -- [ c.170 ]



ПОИСК



Резонанс

Резонанс вибратора на поверхности

Резонанс прмеикпка на поверхности

Резонансы дифракции световой волны на шероховатой поверхности



© 2025 Mash-xxl.info Реклама на сайте