Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Демпфированные колебания

Наличие фазовых переходов уменьшает собственную частоту колебаний и увеличивает декремент затухания, причем это влияние фазовых переходов становится заметнее с уменьшением размера парового пузырька, поскольку при этом возрастает его удельная поверхность, приходящаяся на единицу массы пара и соответственно растет роль происходящих на этой поверхности фазовых превращений. При ф 40 (р 0,2) кривые для to(a) и Л< )(a) в рассматриваемых диапазонах практически совпадают с предельной квазиравновесной кривой фд = ос. Заметим, что для мелких пузырьков с До 1 мм в этом квазиравновесном приближении получаются большие значения декремента затухания, т. е. роль фазовых переходов в демпфировании колебаний настолько велика, что они практически не пульсируют. Отметим, что наиболее принятое значение коэффициента аккомодации для воды р = = 0.04.  [c.303]


Недостатки подшипников качения большие радиальные размеры и масса, высокая стоимость жесткость работы, отсутствие демпфирования колебаний нагрузки шум во время работы, обусловленной погрешностями формы сложность установки и монтажа подшипниковых узлов повышенная чувствительность к неточностям установки невозможность разъема подшипника в меридиональной плоскости металлический контакт между телами качения и обоймами. Долговечность подшипников качения определяется числом циклов нагружения, которое может выдержать материал подшипника при данной нагрузке.  [c.453]

Смазка подшипников качения предназначена для уменьшения потерь мошности на трение, демпфирования колебаний нагрузки, снижения износа и коррозии контактирующих поверхностей, уменьшения шума и лучшего отвода теплоты, заполнения зазоров в уплотнениях, обеспечивая этим герметичность подшипникового узла. Применяют жидкие (минеральные масла и др.) и пластичные (солидолы, консталины и др.) смазочные материалы.  [c.333]

Колпачок и шарик, установленные для передачи усилия пружины строго но оси золотника, компенсируют небольшие перекосы пружины. Демпфирование колебаний золотника клапана осуш еств-ляется пояском 3 стержня 1. Поясок с малым зазором заходит в глухое отверстие золотника 2. При поднятии золотника 2 вверх объем камеры, находяш,ейся над пояском, увеличивается, но из-за малых зазоров между пояском и стенками отверстия рабочая жидкость не успевает быстро заполнить эту камеру, в результате чего возникают силы, тормозящие подъем золотника. При закрытии золотника объем верхней камеры уменьшается и рабочая жидкость через малые зазоры выталкивается в полость Р клапана. В этом случае также возникают силы, препятствующие быстрому опусканию золотника.  [c.109]

По сравнению с электрическими гидравлические следящие системы имеют малую инерционность подвижных частей и поэтому быстрота их срабатывания примерно в десять раз выше, чем электрических систем. Вес и размеры гидравлических следящих систем в 5—6 раз меньше, чем электрических устройств той же мощности. Кроме того, гидравлические системы имеют плавное, равномерное перемещение, бесступенчатое регулирование, высокий коэффициент усиления, надежное демпфирование колебаний системы, простое предохранение от перегрузок, долговечность системы. Достоинства систем гидроавтоматики определяют перспективы применения ее элементов для различных горных машин.  [c.152]


Поперечное сечение транспортного средства, использующего воздушную подушку, изображено на рис. 11.11. Существуют и другие конструкции, отличающиеся от показанной на этом рисунке конфигурации путевого устройства. Воздух под давлением продувается через каналы в корпусе вагона и попадает в воздушную подушку в направляющем пути. Давление воздуха уравновешивает массу вагона, а поступательное движение может осуществляться с помощью различных технических средств ракетных ускорителей, пропеллеров, линейных индуктивных двигателей. Основными недостатками такой системы являются необходимость и.меть вторичное подвесное устройство для демпфирования колебании поезда на неровностях направляющего пути в местах износа и разрыва стыков, которые неизбежно образуются проблемы, связанные с образующимися воздушными потоками некоторая нестабильность движения на больших скоростях, высокие требования к качеству путевого устройства. В Англии, Франции и США исследования по созданию транспортных средств на воздушных подушках начались примерно одновременно. Было построено несколько опытных участков. Но вскоре пришли к заключению, что эта подвесная система имеет свои ограничения, и исследования приняли другие направления.  [c.274]

Демпфирование колебаний вала / производится посредством прикрепленного к нему крыла 2, движущегося в закрытой камере 3, наполненной вязкой жидкостью.  [c.265]

Демпфирование колебаний вала I производится посредством прикрепленного к нему при помощи изогнутого штока 2 поршня 3, движущегося в закрытой камере 4, наполненной вязкой жидкостью.  [c.265]

Демпфирование колебаний вала 1 со связанной с ним стрелкой происходит вследствие перемещения поршня 2 в кольцевом цилиндре 3, наполненном вязкой жидкостью. Конец а кольцевой трубки имеет меньший диаметр для увеличения степени демпфирования колебаний стрелки вблизи ее крайнего положения.  [c.266]

Демпфирование колебаний весов, связанных с корпусом 4 успокоителя, производится посредством поршня 1, двигающегося в цилиндре 2. Степень демпфирования регулируется при помощи винта 3, изменяющего проходное сечение воздушного канала 5.  [c.491]

Найденные расчетом но изложенной выше методике инерционно-диссипативные параметры демпфера обеспечивают демпфирование колебаний в указанной резонансной зоне до безопасного уровня (рис. 88, б кривая 2).  [c.296]

Экспериментальные исследования показали, что нелинейность демпфирования колебаний штока с инструментом снижает Ту до величины, значительно меньшей и поэтому может быть исключено из уравнений. В этом случае по условию (6.4) можно найти динамические характеристики привода в функции производительности Qo- Так, минимально допустимая частота автоколебаний привода fa определится соотношением  [c.148]

Демпфирование колебаний разъемными соединениями  [c.81]

Исследования демпфирования колебаний в зубчатом зацеплении [37] показали, что коэффициент поглощения, отнесенный к жесткости зубьев, уменьшается от 0,6 до 0,3 при изменении частоты от 500 до 3000 Гц.  [c.82]

Демпфирование колебаний роторов можно производить и с помощью специальных конструкций подшипников скольжения и качения. Примером этого может являться специальная конструкция подшипника качения (рис. 111.20). В этой конструкции демпфирующая жидкость подается под давлением по кольцевому каналу 4 через дросселирующие отверстия 2 в гнезда 3 и, выталкивая тела качения 6, перемещает их до упора с беговой дорожкой. Перемещения кольца 1 при колебаниях ротора и создают силу демпфирования, передающуюся на обойму 5.  [c.150]

Решение указанных выше задач позволило теоретически обосновать методы нелинейного демпфирования колебаний элементов различных машин и сооружений с помощью применения упругих элементов, имеющих специальные нелинейные упругие характеристики. Наиболее детально это было проделано для роторов турбомашин. Полученные результаты были проверены экспериментально.  [c.3]

Оптимальное отношение l/d для большинства стационарных машин равно 0,6...0,9. Более высокие значения отношения оправданы только в случаях высоких требований к демпфированию колебаний, особо высокой жесткости валов или самоустанавливйющихся конструкций подшипников.  [c.375]


Листовые рессоры (рис, 20.1 1, а, б) для повьииения гибкости составляют из листов разной длины, что приближает их к телам равного сопротивления изгибу. Трение между листами обеспечивает демпфирование колебаний. Листовые рессоры применяют в основном для упругой подвески автомобилей, железнодорожного подвиж-  [c.416]

Частота собстиенпых колебаний системы с муфтоГ] должна бып. существенно ниже частоты возмущающих си./1. В этих условиях демпфированием колебаний можно пренебречь и определять коэффиниент 1 но зависимости  [c.429]

Демпфирование колебаний онределяют следующими способами по загуханию свободных колебаний форме резонансной кривой мощности, затрачиваемой на колебания теплообразованию при циклическом деформировании площади петли гистерезиса.  [c.482]

В и б р о и 3 о л я т о р, или ам(5ртизатор, — элемент виброзащит-ной системы, наиболее существенная часть которого — упругий элемент. В результате внутреннего трения в упругом элементе происходит демпфирование колебаний. Кроме того, в ряде конструкций амортизаторов применяют специальные демпфирующие устройства для рассеяния энергии колебаний. Динамические характеристики амортизатора существенно зависят от его статических характеристик, причем и те и другие являются нелинейными. Нелинейность характеристик амортизатора определяется рядом причин нелинейными свойствами упругого элемента (например, резины), внутренним трением в упругом элементе, наличием конструктивных особенностей амортизатора типа ограничительных упоров, демпферов сухого трения, нелинейных пружин и т. д. На  [c.275]

Пружина 7 отл<имает плунжер 3 в его крайнее нижнее положение, разъединяя камеру а, связанную с насосом, и камеру в, которая соединяется со сливной линией. Одновременно через калиброванное отверстие 8 давление передается на нижний торец плунжера 3. Когда давление в системе возрастает настолько, что преодолевает усилие пружины 7, плунжер 3 перемещается вверх. Камеры а и б соединяются, и жидкость перепускается на слив. Для стабилизации работы клапана, т. е. для демпфирования колебаний плунжера, предназначено калиброванное  [c.359]

Эффект возрастания амплитуд при падающей характеристике сил трения, т. е. раскачка колебаний, показывает, что не все гда наличие трения способствует демпфированию колебаний. Иногда даже употребляют в этих случаях термин сила отрицательного трения , который нельзя признать удачным. Сила трения, как было показано в 23, может совпадать по направ лению с направлением вектора скорости в абсолютном движе-нни и, следовательно, быть силой движущей. Но в относнтель-пом движении трущихся поверхностей она всегда (по определению) направлена против относительной скорости. Эффект возрастания амплитуд при падающей характеристике силы трения объясняется не особым направлением этой силы, а тем, что при увеличении относительной скорости величина силы трения уменьшается. Другими словами, сила трения получает отрицательное приращение, которое и входит в уравнение движения сО знаком минус.  [c.230]

Установление геометрокинематических параметров механизма дает возможность перейти к следующей стадии решения задачи синтеза механизмов — динамическому синтезу, при котором движение механизма рассматривается под действием сил, заданных и возникающих в процессе движения механизмов и машин. В этой стадии завершается определение размеров звеньев, их масс и моментов инерции, решаются задачи уравновешивания сил инерции, регулирования плавности хода, уровней колебаний, демпфирования колебаний и снижения уровней шумов, обеспечения устойчивости движения и др.  [c.75]

НИИ резонансной частоты на 50 %. В прижатом положении узел стоячей волны смещается в точку Л/д. Смещение узла на кривых 2 и 3 (см. рис. 9.13, а) приводит к повышению амплитуды иолебаний на фланце, т. е. в месте опоры чувствительного стержня. Таким образом, суш,ествует дополнительное демпфирование колебаний, отрицательно влияющее на точность, с которой измеренное изменение резонансной частоты отражает твердость испытуемой поверхности.  [c.432]

При поБЫшении давления в канале I жидкость смещает поршень 2 вправо и свободно поступает в канал 3. С падением давления прум<и-на 5, натяжеиие которой регулируется винтом 6, возвращает поршень 2 в исходное положение, Осевой канал 4 служит для демпфирования колебаний.  [c.242]

Заглушение колебаний весов, присоединенных к цилиндру 2, ироисхо-дит при перемещении поршня /, имеющего ряд отверстий а для перетекания вязкой жидкости из одной полости цилиндра в другую. Устанавливая поршень 1 с помощью гайки 5 на различных расстояниях от диска 3, наглухо соединенного со штоком 4, можно изменять степень демпфирования колебаний весов.  [c.270]

Лопасть 2, качающаяся вокруг неподвижной оси А, находится в жидкости, заиолияющей полость 1. Демпфирование колебаний лоиасти достигается наличием отверстия а в лопасти 2 или наличием зазора Ь между лопастью 2 и корпусом 3.  [c.270]

Колебания упругих звеньев в общем случае значительно отличаются от моногармонических. В частности, при указанных выше параметрах нагружения и при реальном демпфировании колебания практически полностью затухают в пределах одного цикла, особенно при малых отношениях постоянных времени Силы внутреннего сопротивления оказывают значительное влияние на неравномерность хода и коэффициент динамичности машинного агрегата, причем тем большее, чем больше отношение TglT .  [c.204]

Динамическая жесткость и демпфирование амортизатора зависят от частоты вследствие изменения динамического модуля упругости резины и отношения длины волны к толш ине резинового массива. Если колебания резинового массива описывать зависимостями, аналогичными продольным и сдвиговым колебаниям стержня, то переходная жесткость оказывается пропорциональной произведению 2л/у/Ер/зш (2эт//г/а), где f — частота возбуждения Е — модуль упругости р — плотность резины alf — длина волны в резине к — толгцина резинового слоя. При / - 0 это произведение стремится к Е к, а при f =an 2h, где п — целое число, достигает максимальных значений. На этих же частотах амортизатор обеспечивает максимальное демпфирование колебаний. Следовательно, жесткость и потери в амортизаторе можно считать не зависящими от частоты только на частотах, значительно меньших а 2к. Так, для резины с модулем упругости 50 кгс/см скорость продольной волны а 7 10 см/с и при толщине резинового слоя 4 см повышение жесткости наблюдается уже на частотах 400—500 Гц. На рис. 40 приведена частотная зависимость потерь энергии А ТЕ, отнесенных к квадрату вертикальных или.  [c.90]


Вишневский В. С. Исследование демпфирования колебаний при неполном проскальзывании в соединении стальных деталей. — В кн. Методы создания машин в мапошумном исполнении. М. Наука, 1978.  [c.162]


Смотреть страницы где упоминается термин Демпфированные колебания : [c.430]    [c.484]    [c.279]    [c.181]    [c.236]    [c.123]    [c.145]    [c.162]    [c.365]    [c.162]    [c.162]    [c.162]    [c.460]    [c.460]    [c.279]    [c.460]   
Колебания Введение в исследование колебательных систем (1982) -- [ c.14 , c.22 ]



ПОИСК



Влияние исходной демпфирующей способности конструкВлияние частоты колебаний и длины полуволны колебаний

Влияние напряженного состояния и амплитуды колебаний на демпфирующую способность материалов

Демпфированные собственные колебания

Колебания в спарнике демпфированные

Колебания демпфированных систем с распределенными параметрами

Колебания крутильные Гашение упруго-демпфирующие с цилиндроконическим элементом

Период колебаний демпфированных

Период колебаний демпфированных свободных

Применение демпфирующих покрытий с подкрепляющими слоями для уменьшения колебаний в боевых контейнерах самолетов

Разработка демпфирующей обмотки для уменьшения колебаний входных направляющих лопаток реактивных двигателей

Формы колебаний демпфированные

Частота колебаний демпфированных



© 2025 Mash-xxl.info Реклама на сайте