Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Зажигание химическое

Явление воспламенения характерно тем, что для него существует скрытый период протекания реакции, во время которого происходит накапливание теплоты (или активных центров, если воспламенение имеет цепную природу). Это связано с конечностью скорости химической реакции при любой температуре. Период накапливания теплоты актив-ных центров) называют периодом индукции данной реакционноспособной системы для явления самовоспламенения и временем зажигания для явления зажигания.  [c.218]


Газовое топливо сжигают методом струйного ввода в топочную камеру горючей смеси его с воздухом, образованной в горелке. Зажигание осуществляют по периферии струи за счет эжектирования горячих топочных газов из окружающей среды. В потоке воспламенение происходит в тонком слое газов. От воспламенившегося слоя посредством турбулентного обмена тепло передается прилегающим слоям, вызывая их последовательное воспламенение. В каждый момент химическое реагирование протекает в тонком слое, называемом пламенем. Таким образом, горение происходит путем распространения пламени в турбулентной струе горючей смеси, поступающей в топочную камеру.  [c.65]

Изучая процессы самовоспламенения и вынужденного зажигания, мы впервые столкнулись с явным влиянием ряда физических явлений на развитие и характеристику некоторых стадий процесса горения. Больше того, поскольку химические реакции при высоких температурах протекают очень быстро, зачастую скорость процесса горения в целом определяется интенсивностью не хи-.мических, а более медленных чисто физических стадий [Л. 7].  [c.19]

Одним из наиболее важных технических вопросов эксплуатации по техническому состоянию является контроль состояния двигателя, который производится при анализе информации, поступающей с конкретного двигателя. Средства и методы получения этой информации образуют систему диагностики и прогнозирования его состояния. Наиболее простым и эффективным способом контроля является визуальный осмотр, в том числе инструментальный, деталей, элементов и узлов двигателя, а также контроль уровня вибрации роторов, физико-химического состояния масла и параметров рабочего процесса. Следует отметить, что уровень контролепригодности авиационных ГТД ранних выпусков невысок, однако при создании более современных и перспективных двигателей этим вопросам было уделено серьезное внимание. Вследствие предусмотренных мер при проведении визуального осмотра современных двигателей возможно оценить техническое состояние как наружных поверхностей и деталей (трубопроводов, агрегатов, корпусов, соединений и т. д.), так и внутренних поверхностей (элементов проточной части). Для осмотра внутренних деталей имеются специальные отверстия — окна, которые при работе двигателя заглушены, а также используются отверстия под патрубки отбора воздуха, форсунки, свечи зажигания и т. д. (рис. 41).  [c.70]

Горение — превращение химической энергии топлива в тепловую. В результате сгорания топлива значительно повышаются давление (до 2,5...2,9 МПа) и температура (до 2000...2200 °С) газов в цилиндре двигателя. В карбюраторном двигателе смесь воспламеняется от электрической искры, проскакивающей между электродами свечи зажигания.  [c.19]


Работа ЖРД (рис. 5.3). Компоненты топлива (окислитель и горючее) в определенном соотношении непрерывно поступают через форсунки в камеру сгорания. Распыленные форсунками окислитель и горючее перемешиваются, вступают в химическую реакцию, воспламеняются и сгорают. Первоначальное воспламенение при запуске может быть осуществлено от внешнего источника зажигания в дальнейшем свежая смесь воспламеняется при соприкосновении с горячими продуктами сгорания. Возможно использование в ЖРД топлива, компоненты которого самовоспламеняются при контакте. В результате сгорания выделяется большое количество тепла. При этом температура продуктов сгорания в камере достигает 2500—3500° абс, а давление до 100 атмосфер и более. С этими параметрами продукты сгорания поступают в сопло, где ускоряются до больших сверхзвуковых скоростей.  [c.220]

Графит—16—19 вода — 13—15 железный порошок — 24—27 жидкое стекло — 40—45. (Устранение примерзания электрода при зажигании дуги и получение в точках зажигания требуемого химического состава.)  [c.104]

Условия зажигания и горения дуги зависят от рода и полярности тока, химического состава электродов, состава и длины газового промежутка.  [c.86]

Вторым условием горения и зажигания дуги является ионизация столба дуги за счет введения химических элементов с низким потенциалом ионизации.  [c.17]

На рис. 6.8 показана интерферограмма, полученная при нагревании монокристалла 81 в химически активной плазме ВЧ-разряда в 8Еб [6.25]. Кристалл толщиной 0,47 мм и диаметром 100 мм находится на заземленном ВЧ-электроде. Скорость изменения фазы быстро уменьшается после зажигания разряда, и при i К 63 с происходит обращение фазы, хотя температура кристалла в разряде монотонно  [c.141]

Перспективы развития двигателей внутреннего сгорания и вопросы советской науки. Тенденция развития отечественного двигателестроения. Физико-химические проблемы двигателей с принудительным зажиганием. Физико-химические проблемы двигателей с воспламенением от сжатия (дизелей). Физико-химические проблемы газотурбинных двигателей. Проблемы общей теории горения применительно к двигателям Проблемы термодинамики и теплообмена применительно к двигателям. Проблемы рациональной организации рабочих процессов. Методика исследований процессов в двигателях внутреннего сгорания.  [c.352]

Физико-химические проблемы двигателей с принудительным зажиганием  [c.375]

Основные тенденции развития двигателей с принудительным зажиганием повышение экономичности, увеличение удельной мош но-сти и др. — связаны с решением ряда научных проблем, раскрыва-юш их физико-химическую природу смесеобразования, воспламенения, горения.  [c.375]

Указанная концепция в значительной мере умозрительна, однако на основе ее положений хорошо объясняются экспериментальные факты, относящиеся к сгоранию в поршневых двигателях. Важнейшим следствием этой концепции является разделение процесса сгорания в двигателе с искровым зажиганием на фазы, различающиеся по механизму воздействия турбулентности. На первой стадии, когда очаг сгорания мал, крупномасштабная турбулентность не может воздействовать на скорость сгорания, так как она переносит очаг пламени целиком. Скорость сгорания в этой фазе определяется фундаментальной, или нормальной, скоростью сгорания, зависящей от химических свойств заряда, его давления и температуры на величину скорости сгорания в этой фазе оказывает также влияние мелкомасштабная турбулентность.  [c.39]

Физико-химическая картина сгорания в двигателях с воспламенением от сжатия (дизелях) значительно сложнее, чем в двигателях с принудительным зажиганием. И если для последних мы вынуждены ограничиться лишь в значительной мере умозрительными качественными представлениями, то для дизелей и такие возможности весьма ограничены.  [c.46]

Для зажигания электрической дуги необходима сравнительно небольшая разность потенциалов на электродах обычно для металлических электродов она составляет около 40—60 В при постоянном токе и около 50—70 В при переменном. После возбуждения дуги напряжение уменьшается. Дуга между металлическим электродом и свариваемым металлом устойчиво горит при напряжении 15—30 В, а между угольным или графитовым электродами и металлом — при напряжении 30—35 В. Напряжение, необходимое для поддержания горения дуги, зависит от длины дуги, химического состава электродного стержня, его покрытия, давления газов в окружающей среде, величины и рода тока.  [c.305]


В двигателях с зажиганием от электрической искры, т. е. в основном в карбюраторных и газовых двигателях, можно выделить три фазы сгорания топлива. Первая фаза — от момента проскакивания электрической искры до момента образования очага сгорания. Этот период физико-химической подготовки топлива к сгоранию представляет собой период задержки воспламенения. В течение этого периода, включая и образование небольших очагов сгорания около свечи зажигания, давление в цилиндре почти не изменяется. Вторая фаза — распределение пламени по основной части камеры сгорания. В этот период сгорает наибольшая масса топлива и давление в цилиндре достигает максимального значения. Третья фаза — догорание несгоревшего топлива в процессе расширения газов. В период догорания выделяется от 5 до 25% тепла, получаемого при сгорании топлива в цилиндре двигателя. Учитывая наличие задержки воспламенения, для получения максимума давления непосредственно после прохождения поршнем в. м. т. зажигание следует производить до прихода поршня в в. м. т. Это опережение зажигания составляет в большинстве случаев 25—35° п. к. в.  [c.234]

Из композиционных термореактивных пластмасс изготавливают корпуса приборов, панели, рукоятки, детали зажигания автотракторного электрооборудования, платы печатных схем, электроизоляционные детали, резьбовые соединения, технические детали с повышенными водостойкостью и химической стойкостью, подшипники скольжения, тормозные колодки и диски, аппаратуру теплообменников, детали насосов, краны, трубы, зубчатые колеса, изделия бытового назначения и т. д.  [c.604]

Возникновение и интенсивность проявления детонации в двигателе зависит от многих причин, как-то физико-химических свойств применяемого топлива, состава рабочей смеси, момента ее зажигания, теплового состояния двигателя, числа оборотов двигателя, конструктивных особенностей двигателя (степень сжатия, размеры цилиндров, форма камеры сгорания, расположение свечи) и т. д.  [c.190]

При локализованном вводе в камеру сгорания топлива и окисляющей среды с помощью горелок зона сгорания топлива в камере находится в зависимости от условий предварительного смешения реагирующих масс, их физико-химических свойств, условий зажигания и аэродинамических условий вдувания струй. Для заданного состава горючей смеси известной начальной температуры, одинаковых условий предварительного смешения и подобных условий ввода и зажигания горючей смеси зона сгорания топлива локализуется в определенном месте объема камеры сгорания, вблизи горелок. При этом площадь образуемого турбулентного фронта воспламенения горючей смеси заданного состава,  [c.479]

Бензины в силу своих физико-химических свойств применяются в двигателях с принудительным зажиганием (от искры). Более тяжелые дизельные топлива вследствие лучшей самовоспламеняемости применяются в двигателях с воспламенением от сжатия, т. е. в дизелях.  [c.10]

Температура самовоспламенения топлива — температура, при которой-возникает быстрое нарастание скорости химической реакции, приводящее к воспламенению топлива без постороннего источника зажигания. Этот показатель характеризует взрывоопасность смеси паров топлива в воздухе и воспламеняемость топлива в дизельном двигателе.  [c.12]

Цетановое число является наиболее важным физико-химическим показателем качества дизельных топлив. Этот показатель определяет самовоспламеняемость дизельных топлив, т. е. способность их паров воспламеняться без источника зажигания (в определенных условиях). Цетановое число оказывает решающее влияние на легкость пуска и характер работы двигателя. Чем выше цетановое число топлива, тем легче пуск двигателя и мягче его работа. Цетановое число зависит от количества и группового состава углеводородов, входящих в дизельное топливо.  [c.14]

Известно, что химическая реакция может протекать как в кинетическом, так и в диффузионном квазиравновесном] режимах. Если газ не воспламеняется, то реализуется кинетический, а при горении газа — квазиравновесный режим. В связи с этим для определения критического числа Дамкел-лера разделяющего эти два режима, применим известное условие зажигания Зельдовича (см. 6.8), которое в нашем случае имеет вид  [c.403]

Физический смысл этого условия состоит в том, что на пределе зажигания тело не отдает теплоту реагирующему газу, так как его температура вследствие тепловыделения от химической реакции в окрестности тела достаточно высока. Выберем в качестве характерной температуры величину Тц,, тогда 0ц, = о и из уравнения (7.7.14) с учетом граничны условий (7.7.16), (7.7.17) и условия (7.7.18) получим следующее выражение для критического числа Дамкеллера  [c.403]

Керамика на основе АЬОз (корундовая) обладает высокой прочностью, которая сохраняется при высоких температурах, химически стойка, отличный диэлектрик. Применяется для изготовления деталей высокотемпературных печей, нодшипников печных конвейеров, свечей зажигания, резцов, калибров, фильер для протяжки проволоки. Пористую керамику применяют как термоизоляционный материал. Корундовый материал микролит (1(1у1-332) превосходит другие инструментальные материалы (красностойкость до 1200 С). Из микролита изготавливают резцовые пластинки, фильеры, насадки, сопла н др. В загрязненном состоянии в виде крошки корунд применяется как абразивный материал.  [c.137]

Проведем другой опыт. Будем смешивать струю горючего газа си струей воздуха, подогревая раздельно эти струи. Постёпенно повышая температуру подогрева,, мы увидим, что при некоторой температуре произойдет воспламенение смеси, а затем смесь будет гореть. Минимальную температуру, при которой смесь воспламеняется, называют температурой воспламенения. Она не является физико-химической постоянной величиной, Так как зависит от условий опыта (от пропорции между газом и окислителем и от потерь в окружающую среду). Значения температуры воспламенения для некоторых газов приведены в табл. 17-1. Из таблицы видно, что наиболее высокой она является для метана. Не обязательно подогревать весь объем смеси можно нагреть от постороннего высокотемпературного источника (от небольшого факела или от искры) небольшой объем смеси. Произойдет вынужденное зажигание смеси, д ре> зультате чего реакциями будет охвачен весь объем благодаря распрост." ранению пламени, но не мгновенно, а с некоторой объемной скоростью.  [c.229]


Дизельное топливо в основном состоит из средней фракции продуктов перегонки нефти, из которой удалены как летучие, так и более тяжелые фракции. Это топливо должно быть более тяжелым, чем бензин, в связи с тем, что оно впрыскивается в цилиндры под высоким давлением (более 3,5 МПа), образуя мелкодисперсные частицы, процесс горения которых оптимизируется. Дизельное топливо характеризуется цетановым числом, которое служит показателем воспламеняемости. Как и октановое число для бензина, цетановое число определяется сравнением работы эталонного двигателя на аттестуемом и на эталонном топливе, представляющем собой смесь цетана с плохо воспламеняемым а-метилнафталином.. В табл. 4.2 приведены параметры разных видов топлива, в том числе дизельного. Различия в свойствах топлива и работе двигателей с искровым зажиганием и зажиганием при сжатии приводят к тому, что в дизельном двигателе проблемы эмиссии носят существенно иной характер. Вы.хлопные газы его содержат в десять раз меньше СО, чем бензинового двигателя, примерно одинаковое количество НС и, видимо, несколько большее количество NO . Эти выбросы можно существенно снизить с помощью РВГ. Остается проблема дыма и запаха выхлопных газов, характерных для дизельного двигателя. Согласно постановлению правительства США от 1970 г. статические выбросы дыма из дизельного двигателя не должны снижать прозрачность воздуха более чем на 20 %. Добавка в топливо менее 0,25 % бария позволяет снизить задымленность на 50 %. Соответствующие химические реакции недостаточно изучены, выяснено однако, что барий присутствует в выхлопных газах в виде BaS04.  [c.68]

Консервация раствором гидразина и аммиака применима при длительных простоях оборудования в резерве (до 3 мес), а также в случае капитального ремонта. Для консервации первичный тракт котла заполняют конденсатом и производят его деаэрацию при циркуляции по контуру деаэратор — питательный насос (насос химической очистки) —питательный тракт с п. в. д. — поверхности нагрева по первичному пару — деаэратор. Раствор гидразина п аммиака с блочной гидразинно-аммиачной установки подают во всасывающий коллектор питательного насоса (насоса химической очистки) до получения величины pH раствора, равной 10,5—il l, а концентрации гидразина — 300—500 мкг/кг. С момента начала дозировки гидразина н аммиака раствор в контуре подогревают до 150—200° С паром в деаэраторе или поочередным зажиганием мазутных форсунок. Режим огневого подогрева ведут таким образом, чтобы температура металла поверхностей промежуточного пароперегревателя не ире-выщала 450° С. Гидразинную обработку поверхностей нагрева при 150—200° С проводят в течение 20—24 ч.  [c.119]

Газгольдеры F 17 ( переменной В 1/00-1/26 постоянной С) вместимости Газобалластные насосы F 04 В 37/00-37/20 Газовая В 23 К резка 7/00-7/10 сварка 5/00-5/24) Газовые [горелки, использование в устройствах для зажигания F 23 Q 13/02 гранаты F 42 В 12/46 ДВС F 02 В 43/00-43/12 потоки (для разделения твердых материалов В 07 В 4/00-11/00 реакции в физических и химических процессах В 01 J 12/00-12/02) использование термометры G 01 К 5/28-5/30 турбины (F 01 D, F 02 С камеры сгорания для них F23R)] Газогенераторные [ДВС F 02 В 43/08 установки (С 10 J 3/(20-44, 48-52, 56, 72-86) размещение на транспортных средствах В 60 К 15/10)] Газогенераторы (В 01 J 7/00-7/02 ацетиленовые СЮН 1/00-21/16 использование в газотурбинных установках F 02 С 3/28 колосниковые решетки F 23 Н 13/08) Газожидкостные двигатели F 02 В  [c.62]

F 22 В 37/48-37/56 летательных аппаратов В 64 F 5/00 литейных форм В 22 D 13/10 металлических изделий при волочении В 21 С 43/00-43/04 металлов (С 22 В 9/00 механическая при литье В 22 D 43/00 химическая С 23 С) набивочных материалов В 68 G 3/02 В 24 (натчлышков и других режущих инструментов С 1/02 свечей зажигания пескоструйной обработкой С 3/34 шлифовальных дисков В 53/007) В 04 (насосов и компрессоров иеобъемпого вытеснения F04 D 29/70 центрифуг В 15/06 в циклонах С 5/22-5/23) при отделении дисперсных частиц от газа или пара В 01 D 45/18 переносных инструментов ударного действия В 25 D 17/20-17/22 немей или плит F 24 С 14/00 поверхностей (перед нанесением покрытий В 05 D 3/00 для производства обойных работ В 44 С 7/08) распылительных насадок В 05 В 15/02 В 08 В (резервуаров труб 9/02-9/06 электростатические способы 6/00) слитков фрезерованием В 23 С 3/14 смазочных устройств F 16 N 33/00 сопел (для впрыска горючего в две F 02 М 61/16 горелок для газообразного топлива F 23 D 14/50) тросов, канатов и направляющих элементов подъемников В 66 В 7/12 электродов в устройствах для электростатического разделения материалов В 03 С 3/74-3/80]  [c.130]

Регулирование [ [двигателей объемного вытеснения В 25/(00-14) (паросиловых К 7/(04, 08, 14, 20, 28) паротурбинных К 7/(20, 24, 28)> установок-, распределителышх клапанов двигателей с изменяемым распределением L 31/(20, 24) турбин путем изменения расхода рабочего тела D 17/(00-26)] F 01 движения изделий на металлорежущих станках, устройства В 23 Q 16/(00-12) F 04 [диффузионных насосов F 9/08 компрессоров и вентиляторов D 27/(00-02) насосов <В 49/(00-10) необъемного вытеснения D 15/(00-02)) и насосных установок (поршневых В 1/(06, 26) струйных F 5/48-5/52) насосов] F 02 [забора воздуха в газотурбинных установках С 7/057 зажигания ДВС Р 5/00-9/00 подогрева рабочего тела в турбореактивных двигателях К 3/08 реверсивных двигателей D 27/(00-02) (теплового расширения поршней F 3/02-3/08 топливных насосов М 59/(20-36), D 1/00) ДВС] зазоров [в зубчатых передачах Н 55/(18-20, 24, 28) в муфтах сцепления D 13/75 в опорных устройствах С 29/12 в подшипниках <С 25/(00-08) коленчатых валов и шатунов С 9/(03, 06))] F 16 (клепальных машин 15/28 ковочных (молотов 7/46 прессов 9/20)) В 21 J количества (отпускаемой жидкости при ее переливании из складских резервуаров в переносные сосуды В 67 D 5/08-5/30 подаваемого материала в тару при упаковке В 65 В 3/26-3/36) конденсаторов F 28 В 11/00 G 05 D [.Mex t-нических (колебаний 19/(00-02) усилий 15/00) температуры 23/(00-32) химических н физико-химических переменных величин 21/(00-02)] нагрузки на колеса или рессоры ж.-д. транспортных средств В 61 F 5/36 параметров осушающего воздуха и газов в устройствах для сушки F 26 В 21/(00-14) парогенераторов F 22 В 35/(00-18) подачи <воздуха и газа в горелках для газообразного топлива F 23 D 14/60 изделий к машинам или станкам В 65 Н 7/00-7/20 питательной воды в паровых котлах F 22 D 5/00-5/36 текучих веществ в разбрызгивающих системах В 05 В 12/(00-14))  [c.162]

Эластичные [<леиты С 9/34 резервуары D 88/(16-24) сосуды, наполнение В 3/00) В 65 материалы для изготовления гибких печатных форм В 41 D 7/00-7/04 подшипники F 16 С 21 j (00-08) свойства, измерение G 01 (М 5/00, N 3/00)] Элеваторы в устройствах для загрузки транспортных средств мусором В 65 F 3/18 Электрическая [дуга, использование <(для нагрева материалов при их распылении 1122 в устройствах для распыления материалов 7/22 в электростатических распылителях 5/06) В 05 В для переплавки металлов С 22 В 9/20) обработка жидкого металла в литейных формах В 22 D 27/02 энергия <использование (для получения механических колебаний В 06 В 1/02-1/08 в химических или физических процессах В 01 J 1/08) осветительные устройства со встроенным источником электроэнергии F 21 S 9/00-9/04)] Электрические [F 02 генераторы (использование в системах зажигания двигателей Р 1/02-1/06 привод с использованием ДВС В 63/(00-04)) цепи, использование для запуска двигателей N 11/08) ж.-д. В 60 (L, М) заряды (использование для изготовления металлических порошков В 22 F 9/14 средства для снятия с шин транспортных средств В 60 С 19/08) изоляторы в линиях энергоснабжения В 60 М 1/16-1/18 конвейеры В 65 G 54/02 контактные сети для электрического транспорта В 60 М опоры F 16 С 32/04 отопительные системы для жилых и других зданий F 24 D 13/(00-04) предельные вьпслючатели и цепи в подъемных кранах В 66 С 13/50 разряды, использование (для зарядки или ионизации частиц В 03 С 3/38 для нагрева печей F 27 D 11/(08-10)) ракеты В 64 G, F 02 К 11/00, В 64 С 39/00 сервоусилители (в  [c.218]


К стадии зажигания относятся процессы начального подогрева топлива, его подсушки и выделения летучих веществ. Воспламенение топлива завершает эту стадию и начинает следующую — стадию горения летучих веществ и кокса. К стадии дожигания относится процесс выделения золы из топлива и образование шлака, выжиг кокса из золы и шлака и дожигания иродуктов химически неполного горения.  [c.44]

Г о1 р е н и е выделившихся летучих веществ при хорошем перемешивании с воздухо1М идет сравнительно быстро. Параллельно с горением уже выделившихся летучих веществ происходит дальнейший разогрев топлива, дальнейшее выделение летучих веществ, их зажигание и горение и, наконец, зажигание и горение кокса. Параллельно происходит разложение тяжелых углеводородов, содержащихся в летучих веществах, на структурно менее сложные газы, и их горение, а также горение окиси углерода, образующейся в известном ко. личестве при сжигании углерода кокса. Кроме того, в некоторых зонах топки протекают восстановительные реакции типа G02+6=2 0. Процесс горения является, таким образом, весьма сложным химическим процессом.  [c.45]

Для интенсификации сжигания газового топлива необходимо ускорить смешение его с воздухом и создать условия для увеличения скорости турбулентного распространения пламени и поверхности фронта пламени. Поверхность фронта пламени может быть увеличена организацией развитого зажигания по сечению горелки. Скорость турбулентного распространения пламени определяется скоростью химического реагирования, которая увеличивается с ростом температуры и концентрации реагирующих веществ. С целью повышения температуры смеси применяют предварительный подогрев воздуха, используемого для горения. Однако основной нагрев горючей смеси до ее воспламенения происходит в топочной камере за счет диффузии в нее высоконагретых продуктов сгорания. Для ускорения тепло-и массообмена сжигание должно быть организовано в высокотурбулизированном потоке и, следовательно, в потоке с повышенной скоростью. При этом должно быть организовано устойчивое зажигание, обеспечивающее воспламенение у устья горелки при высокой скорости истечения смеси из горелок.  [c.65]

Рассмотрим вопрос о том, как зав1исит температура вынужденного зажигаиия от диаметра источника зажигания и скорости химической реакции в смеси.  [c.16]

Керамика на основе А1зОз (корундовая) обладает высокой прочностью, которая сохраняется при высоких температурах, химически стойка, отличный диэлектрик. Термическая стойкость корунда невысокая. Изделия из него широко применяют во многих областях техники резцы, используемые при больших скоростях резания, калибры, фильеры для протяжки стальной проволоки, детали высокотемпературных печей, подшипники печных конвейеров, детали насосов, свечи зажигания в двигателях внутреннего сгорания. Керамику с плотной структурой используют в качестве вакуумной, пористую — как термоизоляционный материал. В корундовых тиглях проводят плавление различных металлов, оксидов, шлаков. Корундовый материал микролит (ЦМ-332) по свойствам превосходит другие инструментальные материалы, его плотность до 3960 кг/м , Осда до 5000 МПа, твердость 92—93 НКА и красностойкость до 1200 °С. Из микролита изготовляют резцовые пластинки, фильеры, насадки, сопла, матрицы и др.  [c.515]

В цилиндрах двигателя совершается сложный процесс преобразования химической энергии топлива в механическую. Износ по движных деталей кривошипно-шатунного и распределительного механизмов, а также неисправность какой-либо системы двигателя (питания, зажигания и др.) ухудшают качественные показатели этого процесса. Особенно отрицательно на экономичность, мощность и надежность двигателя влияет износ цИлиндро-поршне-вой группы и подшипниковых пар коленчатого вала. Необходи мость капитального ремонта двигателя в основном определяется износом этих рабочих пар. Неисправность других, так называв мых навесных агрегатов двигателя устраняется в процессе эрсс плуатации проведением текущего ремонта.  [c.20]

Эта система была успешно использована при определении теп-лот сгорания различных двуокисей титана (рутил, анатаз, брусит) в атмосфере фтора. В этих опытах резервуар закрывали титановой фольгой толщиной 0,5 мм. В процессе заполнения обоих отсеков газами в них поддерживали одинаковое давление. Однако испытания показали, что резервуар также остается герметичным, не пропуская фтора, вплоть до разности давлений 2 атм. Если давление инертного газа равно давлению фтора, то зажигание образца осуществляется легко и горение проходит спокойно. Заметного химического взаимодействия между никелевым резервуаром и фтором не наблюдается.  [c.120]

После снятия окалины образец высушивали и взвешивали, а затем определяли количество металла, перешедшего в окалину. Указанному методу присущи следующие основные недостатки он трудоемок п не позволяет следить за ходом образования окалины на образце, а полное отделение окалины без повреждения нижележащего металла почти невозможно. Полнота отделения окалины от металла, обеспечивающая получение количественных результатов, зависит от природы сплава. Если образуется промежуточный слой, окалины, срощенный с металлом, то результаты, полученные определением разности весов, сомнительны. Этот метод можно считать оправданным, если окалину после отделения подвергают химическому анализу. Кроме того, бывают и такие случаи, когда трудно воспользоваться каким-либо иным методом, например окисление в среде расплавленных окислов, воздействие окиси свинца, скажем, при изготовлении сплавов для свечей зажигания.  [c.237]

Начиная с 1954 г. этот метод широко используется в работах термохимической лаборатории МГУ для измерения энтальпий образования большого числа хлор-, фтор и перфторпроизводных органических соединений. В качестве щелочного металла в этих работах используют натрий. Его преимущество перед калием — меньшая склонность к образованию перекиси и меньшая химическая активность. Реакция проводится в калориметрической бомбе и инициируется электрической дугой. Энергию дуги измеряют специально сконструированным электродинамическим счетчиком. В этих работах используют герметичный калориметр с магнитными мешалкой и управлением движения электрода (для зажигания дуги) (см. I, стр. 196, рис. 37). Подробно калориметр описан в работе [42].  [c.100]


Смотреть страницы где упоминается термин Зажигание химическое : [c.59]    [c.289]    [c.89]    [c.262]    [c.11]    [c.149]    [c.60]   
Конструкция и проектирование жидкостных ракетных двигателей (1989) -- [ c.75 ]



ПОИСК



Зажигание



© 2025 Mash-xxl.info Реклама на сайте