Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Титановая фольга

Возможны случаи, когда композиция содержит два или три армирующих компонента различной геометрии например, пластик на основе эпоксидной или полиимидной смолы, армированный углеродными волокнами (одномерный компонент) и короткими нитевидными кристаллами карбида кремния (нуль-мерный компонент), или композиция на основе алюминия, армированного борными волокнами (одномерный компонент) и слоями титановой фольги (двухмерный компонент). Такие композиционные материалы следует называть комбинированными.  [c.51]


Композиции титан — бериллиевая проволока пробовали получать при температурах от 590 до 870° С, давлениях от 420 до 5600 кгс/см и времени выдержки от 0,5 до 10 ч. Основной трудностью изготовления этих композиций являлось то, что при технологических температурах бериллий более пластичен, чем титан, и в процессе изготовления материала из чередующихся слоев бериллиевой проволоки и титановой фольги бериллиевая проволока деформируется. Кроме того, имеет место химическое взаимодействие титановой матрицы с бериллиевым упрочнителем. Оба эти фактора приводят к снижению прочности бериллиевой проволоки, поэтому были предприняты попытки обеспечить равномерное всестороннее давление на каждую проволоку в результате укладки проволоки в канавки, полученные в титановой фольге методом травления. Однако получить канавки с идеальной геометрией не удалось, и деформация проволоки наблюдалась и в этом случае. Уменьшение величины взаимодействия достигалось в результате снижения температуры прессования и уменьшения времени выдержки. Композиционный материал с наиболее высокими свойствами был получен в результате совместной на-  [c.142]

При напылении на поверхность алюминиевой или титановой фольги последнюю подвергают обезжириванию и осветляющей химической обработке, имеющей целью полное или частичное растворение слоя окислов, неизменно присутствующих на поверхности фольги. В некоторых случаях для лучшего растворения окисной пленки целесообразно предварительно подвергнуть поверхность фольги пескоструйной обработке или механической чистке металлической щеткой такая обработка приводит к механическому разрушению окисной пленки и облегчает процесс химического растворения ее. Следует отметить, что удаление окисной пленки с поверхности фольги не только повышает прочность связи ее с напыляемым слоем, но и значительно облегчает последующий процесс диффузионной сварки.  [c.171]

Рис. 74. Изменение температуры титановой фольги толщиной 0,21 мм во времени на различных расстояниях г от центра зоны облучения Рис. 74. <a href="/info/46047">Изменение температуры</a> титановой фольги толщиной 0,21 мм во времени на различных расстояниях г от центра зоны облучения

Время разрушения титановой фольги (с) толщиной 0,21 мм при различных условиях нагревания [101]  [c.120]

Рис. 75. Зависимость температур титановой фольги в двух точках, расположенных на расстояниях 1= = 5 мм и = И мм от центра зоны облучения, от времени Рис. 75. <a href="/info/59874">Зависимость температур</a> титановой фольги в двух точках, расположенных на расстояниях 1= = 5 мм и = И мм от центра зоны облучения, от времени
Возможно образование этих припоев и в процессе пайки вследствие контактного плавления. При пайке в зазор между паяемыми изделиями из титана укладывают фольгу из медно-никелевого сплава толщиной О, I—0,3 мм или титановую фольгу, гальванически покрытую медью и никелем. При пайке в интервале температур 960—1100 С°  [c.99]

Добавка третьего компонента. При изготовлении композиционного материала возможно к бору и алюминию добавлять третий компонент, позволяющий повысить такие свойства, как поперечную прочность при высокой температуре, эрозионную стойкость и жесткость. В настоящее время наиболее часто применяют добавки титановой фольги (Ti — 6% А1—4% V или р—1П) и высокопрочной ракетной проволоки, такой, как N5-355. Благодаря тому, что условия сварки алюминиевой матрицы с этими материалами не отличаются от условий сварки алюминиевых слоев между собой, сравнительно просто вводить титановую фольгу и ракетную проволоку в заготовки и осуществлять сварку такого композиционного материала. Структура таких материалов показана на рис. 9. В предварительных заготовках возможна замена алюминиевой фольги на титановую, а борного волокна — на стальную проволоку. Типичные свойства проволоки предел прочности 380 кгс/мм при 20° С и 280 кгс/мм при 500° С, причем проволока существенно не отжигается в процессе горячего прессования при температурах 500—550° С.  [c.444]

Добавка титановой фольги вместо алюминиевой фольги к лентам, полученным плазменным напылением, в композиционных материалах борсик — алюминий также оказалась весьма полезной [65, 50]. В табл. 5 показаны высокие значения достигаемого прироста прочности в поперечном направлении, также умеренное увеличение плотности материала в результате добавки титановой фольги. Прочность в поперечном направлении композиционного материала, содержащего 17 об.% титана даже при 400° С, была равна 1,36-10 Н/м (- 1,4 кгс/мм ). Титановая фольга, как и стальная проволока, улучшает условия обращения с композиционным материалом борсик-алюминием и повышает сопротивление удару. Было показано также, что титановая фольга увеличивает сдвиговую прочность на (2—3,2) 10 Н/м (2,04—3,3 кгс/мм ) по сравнению с композициями борсик — алюминий или борсик — сталь — алюминий.  [c.491]

Титановой фольги добавка 444 Титановые композиционные материалы будущее 333  [c.501]

Одновременно с повышением трансверсальной прочности наличие титановой фольги на внешней поверхности композиционного материала увеличивает эрозионную стойкость и улучшает условия для создания надежных соединений.  [c.597]

Датчики из титановой фольги, пригодны для измерения деформации до 12%. Коэффициент тензочувствительности К=0,2.  [c.177]

Сварка давлением. Для тонколистового молибдена применяется контактная точечная сварка (табл. 12.14). Большая прочность и твердость металла при повышенной температуре, а также сравнительно высокая электропроводность создают затруднения при сварке быстро изнашиваются электроды, вследствие чего возможно загрязнение точек электродным металлом. Для предохранения шва от загрязнения применяемые электрод и прокладку между электродом и изделием, например из титановой фольги, интенсивно охлаждают. Сварку рекомендуется выполнять короткими импульсами, чтобы избежать чрезмерного роста зерен. Перед сваркой необходимо тщательно очистить поверхность детали и протравить ее. Механические свойства точечных соединений улучшаются при использовании тонких прокладок, помещаемых между свариваемыми листами (из никеля, циркония или титана).  [c.160]


Титановые сплавы находят применение в композиционных материалах с комбинированной матрицей. Так, например, фольгу  [c.215]

Титан и его сплавы используют в возрастающем масштабе в промышленности благодаря преимуществу их специальных характеристик. Такие свойства, как относительно высокая прочность, превосходная общая коррозионная стойкость и плотность, промежуточная между алюминием и сталью, делают титан перспективным конструкционным материалом. Прогресс в производстве титана способствовал получению различных полуфабрикатов из титановых сплавов от проволоки и фольги до крупногабаритных заготовок. Возможно также производство деталей методами литья и порошковой металлургии. Большинство технологических операций на титане совершаются при высоких температурах. Вследствие большой реактивности сплавов титана и тенденции к загрязнению поверхности необходимо соблюдение мер предосторожности при его производстве. Однако реактивность, особенно способность титана растворять собственные окислы, может быть использована в производстве сложных деталей методами диффузионной сварки.  [c.413]

Первый способ включает в себя пайку припоями, обеспечивающими возможность получения в шве структуры твердых растворов, оптимальной при работе изделий в условиях воздействия агрессивных сред, циклических нагрузок и сверхнизких температур. В этом случае композиционные припои используются в виде многослойных фольг, покрытий, послойного нанесения порошков, сеток в сочетании с ленточным или порошковым припоями. Для снижения температуры пайки компоненты слоев подбирают таким образом, чтобы в процессе контактного плавления происходило образование жидкой фазы, обеспечивающей смачивание и растворение паяемых материалов, покрытий, буферных прослоек и легирование шва, что придает соединению высокие механические и коррозионные свойства. Так, для получения прочных паяных соединении из титановых сплавов применяют покрытия систем Си—Zr (0в 540- -640 МПа), сложные покрытия Си - (Со—Ni)-Си (0в Я  [c.56]

Титан выпускается в виде ленты и фольги из йодного титана из титановых сплавов изготавливается проволока диаметрами 1,2 1,4 1,5 1,6 2,0 мм с допуском — 0,18 мм, диаметрами 2,5 3,0 3,5 4,0 5,0 6,0 — 0,24 мм и 7,0—0,3 мм.  [c.49]

Титановые сплавы имеют малую плотность, а по прочностным характеристикам превосходят алюминиевые и магниевые сплавы. Они имеют достаточно хорошие литейные свойства и могут обрабатываться пластическим деформированием в широком интервале температур (600. .. 1200 °С). Для армирования КМ промышленностью налажен выпуск фольги из титановых сплавов толщиной 3. .. 200 мкм.  [c.464]

Экономические и технологические трудности являются основными препятствиями на пути применения композиционных материалов с титановой матрицей. Высокая стоимость этих материалов обусловлена дорогой ценой волокон, а такн е матрицы, которая обычно используется в виде фольги. Процесс изготовления  [c.333]

Встречаются композиты, в которых слоистым связующим являются алюминиевые, титановые, медные, никелевые и кобальтовые листы и фольга, а слоями, определяющими специальные свойства и применение, — керамика, интерметаллидные соединения или другие металлы.  [c.876]

В работе [81 приведены сведения о влиянии излучения на термоионные интегрирующие микромодули. В модулях использовали микроминиатюрные лампы с холодным катодом. Диоды состояли из титанового анода, оксидного катода и керамического изолятора. В триодах использовали дополнительную изоляцию, а в качестве сетки — перфорированную титановую фольгу, прикрепленную к титановому кольцу. Сообщается, что необлученные диоды и триоды успешно работали при температурах выше 600° С в течение нескольких тысяч часов. В течение 1000 ч они успешно работали и при облучении смешанным потоком тепловых нейтронов [9-10 нейтрон/(см -сек)], быстрых нейтронов [9-10 нейтронI см сек)] и Y-излучения [2-10 эрг/(г-сек) 1.  [c.327]

Подтверждением важного вклада экзотермической реакции горения титана в процессе его разрушения послужили опыты с поддувом струи гелия вместо кислорода, результаты которых отражены в табл. 14. Из таблицы видно, что при поддуве гелия время разрушения титановой фольги возрастает, т. е. струя инертного газа охлаждает зону облучения, обеспечивая заметный конвективный теплообмен. Следует отметить, что на стадии, пред-шествуюш ей разрушению металла, аналогичное действие производит и кислородная струя, т.е. время разрушения металла  [c.119]

Основным элементом горячей ловушки служат пакеты, навитые из циркониевой (титановой) фоЛьги. Пакет навивается из двух листов один гладкий, второй гофриррв анный или с двухсторонней перфорацией, которая обеспечивает зазор между листами порядка 1,0 мм. Высота пакета 100—150 мм, пакетов может быть несколько. На рис. 9.10 приведена конструкция ловушки с двумя пакетами. Пакеты стянуты шпилькой и с двух сторон закрыты механическими фильтрами из сетки и. нержавеющей проволоки. Фильтры предотвращают вынос сколов пленки окислов и осколков фольги в контур. Скорость очистки мало зависит от расхода натрия. Последний желательно обеспечить таким, чтобы осуществлялся турбулентный режим течения.  [c.146]

Композиты, которые содержат два или более различных по составу или природе типа армирующих элементов, называются полиармирован-ными или гибридными. Гибридные композиты могут быть простыми, если армирующие элементы имеют различную природу, но одинаковую геометрию (например, стеклоуглепластик - полимер, армированный стеклянными и углеродными волокнами), и комбинированными, если армирующие элементы имеют и различную природу, и различную геометрию (например, бороалюминий с прослойками из титановой фольги).  [c.11]

Представляет собой область, где экономии затрат можно достичь наиболее легко, поскольку они во много раз превышают стоимость сырья для большинства композиционных материалов с металлической матрицей. Некоторые направления исследования титан-бериллиевых композиционных материалов были подробно рассмотрены в разделе III, В. Можно предсказать, что работа в этих направлениях будет продолжаться. Проблемы, связанные с композиционными материалами, в которых используются покрытые и непокрытые борные волокна, являются более острыии, и для их решения требуются новые подходы. Один из исследуемых подхо-дов — создание монослойной ленты, которую можно использовать как полуфабрикат в производстве готовых изделий. Однако для такой ленты необходимы более тонкие фольги, чем для многослойных лент с тем н е объемным содержанием волокна. Стоимость же титановых фольг быстро возрастает с уменьшением толщины, достигая нескольких сот долларов за фунт в случае такого сплава как Ti — 6% А1—4% V, когда толщ,ина его приближается к  [c.334]


Одно из решений проблемы производственных затрат могло бы заключаться в разработке метода покрытия волокон однородным слоем желательного матричного сплава. Это позволило бы заменить дорогостояш ие титановые фольги и в то же время создать эффективный метод пространственного расположения волокон (последнее представляется более важным для композиционных материалов с титановой матрицей, чем для материалов с менее прочными матрицами). До настояш,его времени попытки контролировать пространственное расположение волокон с помощью плазменного напыления матрицы оказывались неудачными вследствие чрезмерного увеличения содержания кислорода. Кроме того, реакция между расплавленным напыляемым материалом и волокнами была очень интенсивной. Необходима разработка высокоскоростных методов покрытия отдельных волокон как составного этапа производственного цикла изготовления волокна. Одним из таких методов могло бы стать элеи тронно-лучевое испарение из нескольких источников.  [c.334]

Одним из эффективных способов повышения прочности изделий из ПКМ, собранных с применением механического крепления их деталей, является армирование соединяемых участков высокопрочной (например, стальной или титановой) фольгой толщиной 0,03-0,1 мм [15, с. 30 103, 105, 122] или борной пленкой [123], укладываемыми между основными слоями материалов. Для краткости этот способ назвали фольгированием.  [c.235]

Эта система была успешно использована при определении теп-лот сгорания различных двуокисей титана (рутил, анатаз, брусит) в атмосфере фтора. В этих опытах резервуар закрывали титановой фольгой толщиной 0,5 мм. В процессе заполнения обоих отсеков газами в них поддерживали одинаковое давление. Однако испытания показали, что резервуар также остается герметичным, не пропуская фтора, вплоть до разности давлений 2 атм. Если давление инертного газа равно давлению фтора, то зажигание образца осуществляется легко и горение проходит спокойно. Заметного химического взаимодействия между никелевым резервуаром и фтором не наблюдается.  [c.120]

Усиливающие металлические и флуоресцентные экраны. Их применяют для сокращения времени просвечивания. Усиливающее действие металлических экранов основано на освобождении из них вторичных электронов под действием ионизирующего излучения. Освобожденные вторичные электроны действуют на эмульсию пленки и вызывают дополнительную фотохимическую реакцию, усиливающую действие первичного излучения. Для каждого источника ионизирующего излучения материал экрана следует выбирать в зависимости от энергии излучения, в частности для рентгеновского излучения целесообразно использовать медь, титан, олово, свинец, вольфрам, для у-излучения - вольфрам, свинец, медь. Практика показывает, что наибольщ)то эффективность обеспечивают металлические экраны из медной и титановой фольги. В этом случае получается гораздо лучшая контрастность снимков. Толщина фольги должна быть равна максимальной длине пробега вторичных электронов в экране. На практике толщина экрана  [c.263]

При разработке совместимых с бором матриц должны быть учтены также следующие соображения. -Сплав должен быть стабильным, легко прокатываться в фольгу ужной для изготовления композита толщины (при использовании диффузионной сварки в твердой фазе), должен иметь изкую плотность и высокую прочность в условиях службы, а также обладать хорошей обрабатываемостью, необходимой для промышленного производства композита. Кляйн и др. [20] отметили, что легирование титановых сплавов теми элементами, которые снижают скорость реакции с борным волокном, вызывает переход титанового сплава в р-мо-дификацию, которая предпочтительна и при прокатке фольги. Максимальное содержание алюминия в р-сплаве ограничивается образованием а-фазы или фазы T13AI. На основе диаграммы состояния тройной системы Ti—V—А1 [10] за вероятный предел растворимости принято содержание алюминия 2,6%. Молибден, как и алюминий, оттесняется растущим диборидом. Влияние этого элемента было изучено более тодроб-но. В указанной выше работе [i20] отмечается, что при высоком содержании молибдена в дибо-ридной фазе образуется двуслойная структура (рис. 17). Для выяснения влияния содержания молибдена был исследован ряд р-сплавов. Полученные в этой работе константы скорости реакции k при 1033 К приведены в табл. 6. Чтобы определить вклад молибдена в k, была использована величина удельной скорости ре-  [c.133]

Титан и титановые сплавы находят применение в качестве второй составляющей матрицы в композиционных материалах алюминий — борное волокно. В этих материалах титан, добавленный в виде слоев фольги в алюминиевую матрицу, значительно повышает прочность в поперечном направлении и сдвиговые характеристики боралюминиевого материала. При этом слои титана вводят таким образом, чтобы они были изолированы от борного волокна слоями алюминия. Это позволяет снизить температуру диффузионной сварки и предохранить борные волокна от взаимодействия с титаном, а значит и от разупрочнения.  [c.140]

Титан — волокна окиси алюминия. Получение композиционного материала на основе титановой матрицы, упрочненной волокнами из окиси алюминия, описано в работе [215]. В качестве матрицы в этом материале применяли фольгу титанового сплава Ti—6% А1—4% V толщиной 0,20—0,25 мм, а унрочнителем служило волокно из окиси алюминия диаметром 0,25—0,27 мм со средней прочностью 210 кгс/мм . Материал получали методом диффузионной сварки под давлением в вакууме 1 10 мм рт. ст. по следующему режиму температура 815° С, давление 980 кгс/см , время выдержки 15 мин. Полученный по этому режиму материал имел предел прочности в направлении, параллельном укладке волокна, 70—88 кгс/мм , в поперечном направлении — 40 кгс/мм . Модуль его упругости в соответствующих направлениях был равен 14 800—19 ООО и 12 ООО кгс/мм .  [c.141]

Чистый ковкий ванадий лишь сравнительно недавно стали получать в количествах нескольких сот килограммов в сутки, и возможности его применения в различных областях ен ,е недостаточно изучены. Ванадий представляет интерес как материал для ядерных реакторов на быстрых нейтронах, так как он обладает малым поперечным сечением захвата нейтронов, малым поперечным сечением неупругого рассеяния нейтронов, большой прочностью при повышенных температурах и высокой теплопроводностью. Ванадиевая фольга применяется в качестве подслоя между стальными и титановыми листами при упаковке чистого титана в стальную обаючку. Применение ванадия благодаря его уникальным свойствам в специальных областях вместо других металлов ограничивается его высокой стоимостью, и он применяется лишь в тех случаях, когда его нечем  [c.120]

В заметной мере влияет состав последней. Увеличение степени легирования, характерного для бета-сплавов, приводит к снижению скорости реакции с волокнами. Выбор матриц с низкой реакционной способностью среди существуюш,их сплавов явился первым шагом при использовании этого подхода. Последующим шагом (более долговременной задачей) была разработка матрицы, специально предназначенной для композиционных материалов. Немедленное использование этого подхода ограничивалось отсутствием титановых сплавов в виде фольги, пригодной для горячего прессования. Тем не менее два сплава привлеклпг значительное внимание альфа-бета-сплав Ti — 6% А1 — 4% V и бета-снлав (Бета-111) состава Ti — 11% Мо — 5% Zr — 5% Sn. Ван<ное преимущество бета-сплавов заключается в том, что их мо кно прокатывать на фольгу с небольшим числом промежуточных отжигов. Таким образом, производство фольги из них является более экономичным, чем из альфа-бета-сплавов.  [c.294]

Стевепс и Хэнинк [30] выбрали материал Ti — 6% А1—4% V с 50 об. % борсика для разработки технологии производства вентиляторных лопастей. Композиционный материал изготовляли из предварительно намотанных матов из волокон борсика диаметром 4,2 мил (0,11 мм), покрытых смесью полистирола и порошка сплава Ti — 6% А1—4% V. Перед укладкой с матами фольгу из титанового сплава толщиной 2,5 мил (0,06 мм) формовали, используя процесс ползучести, до необходимой конфигурации. Слоистую заготовку лопасти заключали в тонкую оболочку из коррозионно-стойкой стали, сконструированную таким образом, чтобы можно было поддерживать динамический вакуум в процессе диффузионной сварки горячим прессованием. Типичные технологические условия горячего прессования отвечали температуре 1600° F (871° С), выдержке 30 мин и давлению 12 ООО фунт/кв. дюйм (844 кгс/см ). Образцы, необходимые для характеристики материала, были приготовлены с соблюдением тех же технологических условий, которые применялись в производстве лопастей вентилятора. Свойства этих композиционных материалов представлены в табл. 7.  [c.317]


Гудвин и Герман [101 показали, что для исключения расплющивания и коалесценции отдельных бериллиевых проволок совместно свитые проволоки из титанового сплава и бериллия можно подвергать горячему прессованию между разделительными фольгами из титанового сплава. Выбранная температура горячего прессования была самой низкой из возможных для достижения соединения, одпако она находилась в области, где бериллий быстро терял свою прочность. Например, бериллиевая проволока с прочностью при комнатной температуре 153 ООО фунт/кв. дюйм (107,6 кгс/мм ) разупрочняется до 121 ООО фунт/кв. дюйм (85,1 кгс/мм2) при 1250° F (673° С) и до 98 ООО фунт/кв. дюйм (68,9 itr /MM ) при 1325° F (718 С). Композиционные материалы с 33.об. % бериллия имели прочность в продольном направлении 147 ООО фунт/кв. дюйм (103,3 кгс/мм ) после прессования при 1350° F (732° С). Прочность в поперечном направлении была равна 84 ООО фунт/кв. дюйм (59 кгс/мм ), а модули упругости в обоих направлениях 24-10 фукт/кв.дюйм (16 874 кгс/мм ). Эти результаты находятся в превосходном согласии с теоретическими предсказаниями. Впоследствии усовершенствованная технология поверхностей очистки позволила осуществлять соединение горячим прессованием при 1275—1325° F (688—718° G) с дальнейшим улучшением свойств материала. Усталостные испытания показали, что предел выносливости определяется напряжениями матрицы у поверхности и что он одинаков для всех ориентаций.  [c.324]

ФОЛЬГА ТИТАНОВАЯ — изготовляется также, как и лента, из иодндного или технич. титана различных групп.  [c.404]


Смотреть страницы где упоминается термин Титановая фольга : [c.56]    [c.143]    [c.445]    [c.445]    [c.443]    [c.475]    [c.522]    [c.27]    [c.134]    [c.334]    [c.146]    [c.343]    [c.309]    [c.404]   
Конструкционные материалы Энциклопедия (1965) -- [ c.3 , c.404 ]



ПОИСК



486 титановых

Титановой фольги добавка

Фольга

Фольга алюминиевая титановая

Фольга из порошков алюминиевых из сплавов титановых



© 2025 Mash-xxl.info Реклама на сайте