Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Устойчивость первого порядка

В соответствии с видом ряда (1.1.5) аэродинамические коэффициенты определяются соответствующими производными устойчивости первого и второго порядка. К производным устойчивости первого порядка относятся значения с °°, с , а к  [c.17]

Другие производные второго порядка равны нулю. Это может быть обусловлено либо спецификой самого метода расчета таких производных, либо аэродинамическими особенностями летательных аппаратов. Вместе с тем некоторые производные принимались равными нулю в соответствии с условием, что в выражении (1.1.5), определяющем аэродинамический коэффициент в виде ряда, удерживались лишь квадратичные члены. Сказанное в одинаковой мере относится и к нахождению производных устойчивости первого порядка.  [c.181]


Рассмотрим методы расчета производных устойчивости с учетом сжимаемости (числа М ,), имея в виду, что эти методы относятся в основном к вращательным производным устойчивости первого порядка (коэффициентам демпфирования), а также к отдельным производным второго порядка (смешанным производным).  [c.183]

Приближенная устойчивость первого порядка или линейная. Вернемся к общим рассуждениям пп. 16, 18, чтобы по возможности быстрее перейти затем к рассмотрению дальнейших замечательных исследований.  [c.390]

Следовательно, если какая-нибудь система (5) обладает устойчивостью первого порядка, то необходимым условием полной устойчивости такой системы будет обратимость ее в смысле вышеприведенного определения.  [c.125]

Если для какой-нибудь системы имеет место устойчивость первого порядка, то обратимость является необходимым и достаточным условием полной устойчивости обобщенного равновесия.  [c.130]

К задаче 7.2. Условия устойчивости первого порядка  [c.265]

Комбинированные методы и алгоритмы анализа. При решении задач анализа в САПР получило достаточно широкое распространение временное комбинирование численных методов. Наиболее известны рассмотренные выше алгоритмы ФНД для численного интегрирования ОДУ, являющиеся алгоритмами комбинирования формул Гира. Другим примером временного комбинирования методов служат циклические алгоритмы неявно-явного интегрирования ОДУ. В этих алгоритмах циклически меняется формула интегрирования — следом за шагом неявного интегрирования следует шаг явного интегрирования. В базовом алгоритме неявно-явного интегрирования используют формулы первого порядка точности — формулы Эйлера. Такой комбинированный алгоритм оказывается реализацией А-устойчивого метода второго порядка точности, повышение точности объясняется взаимной компенсацией локальных методических погрешностей, допущенных на последовательных неявном и явном шагах. Следует отметить, что в качестве результатов интегрирования принимаются только результаты неявных шагов, поэтому в алгоритме комбинированного неявно-явного интегрирования устраняются ложные колебания, присущие наиболее известному методу второго порядка точности — методу трапеций.  [c.247]

Е-". П р я м о й метод исследования. Для изучения устойчивости движения системы материальных точек запишем систему дифференциальных уравнений движения в виде системы первого порядка  [c.645]


На рис. 2.2 видно, что в устойчивых состояниях равновесия производная f (Xk) <0, а в неустойчивых состояниях Г > О- Значение f (л ) = О может быть как в точках устойчивого, так и неустойчивого состояния равновесия (см., например, точки х = Х2, х = на рис. 2.2). Поскольку характер движения в системе первого порядка полностью определяется видом функции / (х), представляет интерес рассмотреть случай, когда эта функция зависит от некоторого параметра X, и изучить влияние параметра X на характер фазового портрета рассматриваемой системы. Для этого,  [c.22]

Необходимость анализа равновесия на устойчивость можно показать на примере из 11 (см. рис. 5). Как отмечалось, критерии равновесия, выраженные через вариации первого порядка энергий Гиббса и Гельмгольца, приводят к одинаковым частным условиям равновесия жидкой капли с насыщенным паром (11.49) и (11.50). Первое из них имеет ту особенность, что химические потенциалы р, и р, относятся к одинаковым температурам, но разным давлениям. Дифференцирование  [c.116]

В чем заключается физический смысл отдельных статических производных устойчивости первого и второго порядка, характеризующих движение летательного аппарата при фиксированных рулях  [c.243]

По значениям производных устойчивости первого и второго порядка могут быть определены добавочные величины соответствующих аэродинамических коэс ициентов, например  [c.181]

Полученное условие устойчивости справедливо не только для линейных, но и для линеаризованных уравнений независимо от членов выше первого порядка малости. В этих случаях говорят об устойчивости движения по первому приближению (теорема Ляпунова) . Однако в случае нулевых или чисто мнимых корней линеаризованного уравнения требуется дополнительное исследование устойчивости.  [c.86]

Члены первого порядка здесь отсутствуют, так как равенства (1) должны удовлетворяться при 0 = 0, (р = 0. Коэфициенты а, h, Ь можно назвать коэфициентами устойчивости" системы.  [c.293]

В последнем случае естественно было бы ожидать устойчивости однако это не всегда так. Нетрудно привести примеры, убеждающие нас в этом. Пусть, например, движение изображающей точки в плоскости ху описывается уравнениями первого порядка  [c.171]

В теории малых колебаний мы исходили из уравнений Лагранжа, которые представляют собой уравнения второго порядка. Здесь же мы имеем уравнения первого порядка, и поэтому при определении устойчивости нужно иметь в виду, что малость г означает как малость самого отклонения, так и малость скорости динамической системы. Рассмотрим, например, простой случай, когда х представляет лагранжеву координату динамической системы с одной степенью свободы и первое из уравнений (19.3.1) имеет вид х = у. Особые точки х , 0) дают конфигурации х = Xq, при которых система может находиться в покое при этом требование малости величины г =  [c.370]

С ростом t амплитуда колебаний убывает по экспоненциальному закону. Если уравнение (20.7.1) заменить эквивалентной системой двух уравнений первого порядка, то начало координат будет устойчивым фокусом ( 19.4). Если, однако, в уравнении (20.7.1) считать к отрицательным (и > О >/с), то получим систему с отрицательным трением и колебания будут неограниченно возрастать по амплитуде. Начало координат для эквивалентной системы двух уравнений первого порядка будет неустойчивым фокусом.  [c.394]

Первая теорема. Если вещественные части всех корней характеристического уравнения первого приближения отрицательны, то невозмущенное движение асимптотически устойчиво, независимо от членов выше первого порядка малости (членов, составляющих Х] 1 = 1.....5)).  [c.74]

Поскольку при потере устойчивости М = EJx, момент М и поперечная сила Q — величины того же порядка малости, что и угол поворота касательной д. Поэтому в соответствии с основной идеей линеаризации третье слагаемое в первом уравнении равновесия следует отбросить, как содержащее произведение двух величин первого порядка малости.  [c.225]

Теперь задачу устойчивости кругового кольца, находящегося под действием гидростатической внешней нагрузки, решим энергетическим методом (см. гл. 2). Для этого необходимо вычислить изменение полной потенциальной энергии А5 при переходе системы из начального состояния равновесия в смежное отклоненное состояние. Причем значение АЭ должно быть вычислено с точностью до квадратов бифуркационных перемещений первого порядка малости.  [c.229]


Как будет показано в следующей главе, эти обобщения уравнений Гамильтона разделяют с последними то важное свойство, что для них автоматически выполняются все условия полной устойчивости, если только они удовлетворяют очевидным условиям устойчивости первого порядка. Следовательно, с этой точки зрения пфаффовы уравнения являются столь же важными для динамики, как и гамильтоновы, хотя первые принадлежат к более общему типу и, кроме того, имеют одно дополнительное преимущество, а именно они сохраняют свою пфаффову форму при любом преобразовании переменных, принадлежащем к формальной группе. В самом деле, достаточно только произвести замену переменных под знаком интеграла в формуле (12), чтобы получить преобразованные значения функций Xi и Z.  [c.100]

Другие виды устойчивости. Мы уже определили два вида устойчивости устойчивость первого порядка и полную или тригонометрическую устойчивость. В 2 было доказано, что для уравнений динамики (гамильтоновых и пфаффовых) из устойчивости первого порядка следует полная устойчивость. Некоторые другие виды устойчивости тоже представляют интерес.  [c.130]

Тут возникает очень интересный вопрос, а именно заполняют ли движения, для которых ИтД = оо в одном или в обоих направлениях, многообразие Му всюду плотно или нет Весьма существенно понять, в чем состоит трудность, присущая этому вопросу. Прямым вычислением, без сомнения, можно всегда установить, принадлежит ли данное движение к одному из этих связных множеств или нет. Разумеется, для К малых почти все должно быть заполнено этими множествами, вследствие результатов, полученных нами для случая К 0. Тем не менее, если в Му имеется хотя бы одно периодическое движение устойчивого типа, невозможно определить, будут ли соседние движения принадлежать к этим множествам, не решая для этого частного случая основной проблемы устойчивости. Мы уже указывали (глава VIII) на чрезвычайную трудность проблемы устойчивости, возникающую как раз вследствие того, что в динамической проблеме, подобной проблеме трех тел, формальная устойчивость первого порядка обеспечивает удовлетворение бесконечного множества других, более тонких условий полной формальной устойчивости. Предыдущий вопрос, однако, может быть поставлен в другой, более наглядной форме, которая, по моему мнению делает весьма вероятным, что движения, для которых lim/ , = сю при limi = -Ьос, всюду плотны в Му. То же будет в таком случае справедливо и относительно движений, для которых lim Ti = 00 при lim t = -ос, так как, вследствие обратимости системы дифференциальных уравнений, оба предположения должны быть одновременно справедливы или одновременно ложны.  [c.286]

Критерием равновесия является, таким образом, условный максимум энтропии для равновесия изолированной системы необходимо и достаточно, чтобы при всех возможных (не нарушающих постоянства энергии и внешних свойств) изменениях ее состояния вариация энтропии системы не была положительной. Под вариацией в этой формулировке -понимается, вообще говоря, полная вариация, V5, которая ооглаоно правилам дифференциального исчисления связана с вариациями различных -порядков малости бесконечным рядом VS = 65 + + 625/2 + 6 5/6-1-.... Это уточнение существенно для анализа устойчивости равновесного состояния и будет использовано в дальнейшем. Пока же можно ограничиться выражением критериев равновесия через вариации первого порядка малости. Тогда для изолированной системы  [c.103]

В сформулированных в предшествующем разделе критериях равновесия термодинамических систем также не в полной мере использованы следствия второго закона о максимальности энтропии изолированной системы или о минимальности термодинамических потенциалов при тех или иных условиях равновесия. Действительно, знаки неравенств для вариаций первого порядка в (11.1), (11.13) и других критериях соответствуют виду экстремума энтропии, внутренней энергии и т. д., но эти знаки, как отмечалось, относятся к особому случаю граничного экстремума характеристической функции. Если же последняя имеет в равновесии стационарное значение, то вопрос о виде экстремума (минимума, максимума или точки пЬрегиба) при использовании (11.1), (11.13), (11.31) и других остается открытым и для ответа на него надо дополнить указанные критерии соответствующими условиями устойчивости равновесия  [c.115]

Д положительны, то невозмущенное движение асимптотически устойчиво, не.швисимо от членов выше первого порядка малости.  [c.107]

Пример 2.4.1. Вычислим производные устойчивости первого и второго порядков от коэффициента момента тангажа по методу присоединенных масс для тонкой трехконсольной комбинации (рис. 2.2.3), движущейся равномерно ( = о).  [c.181]

В выражение для полной потенциальной энергии, представленное с учетом приведенных выше постулатов 1) и 2) членами в скобках в (137 ), не входят приращения второго порядка от массовых н поверхностных сил. Приращения первого порядка обращаются в нуль, так как действительные перемещения а, v, W в этом виде возмущения можно принять за виртуальные. Поскольку приращение второго порядка должно быть положительным, состояние является устойчивым в определенном здесь смысле. Мы увидим, что этот вывод связан с использовг.нием закона Гука, а также постулатов 1) и 2) ). Для нелинейных зависимостей между напряжениями и деформациями возможны приращения порядка выше двух.  [c.263]

Для реальных пламен фронт пламени имеет конечную толщину, а сам процесс распространения фронта пламени определяется нелинейными уравнениями в частных гроиз-водных. Поэтому представляют интерес результаты числового анализа нестационарного распространения пламени, которые позволяют оценить степень достоверности результатов, полученных методом малых возмущений, и выяснить характер поведения возмущений с ростом времени. С этой целью рассмотрим распространение фронта пламени в по-лубесконечном цилиндре радиуса г . Так же как и в 6.8, предполагается, что начальная температура горючей смеси равна Тц, а некаталитический торец циллиндра в момент времени = 0 мгновенно нагревается до температуры То Тр, которая при о делается постоянной. Будем предполагать, что имеет место реакция первого порядка и справедливы четвертое и пятое допущения, сформулированные в начале этого параграфа. Определим условия, при которых возможно устойчивое и неустойчивое распространение фронта пламени.  [c.340]


При практической реализации численных методов. существенным является анализ порядка аппроксимации и устойчивости расчетной схемы. Понятие аппроксимации определяет, переходят ли в пределе (при т- -0 и Л- -0) конечно-разностные соотношения в точные исходные диф-, ференциальные уравнения и какова точность такого приближенного представления. Приведенные выше конечно-разностные формулы имеют второй порядок аппроксимации по пространственным переменным. Это означает, что допускаемая погрешность — величина порядк/ № и быстро (по квадратичному закону) убывает с уменьшением шага сетки. Аппроксимация по времени для явной схемы (1.1)—первого порядка, для схемы переменных направлений (1.4), (1.5) —второго порядка.  [c.36]

Если исследуется устойчивость положения равновесия (не условная ), то в качестве Xi,. .., можно взять величины 9,.....Ч , Яп или 1,., ., /> . В первом случае уравнения (2) представляют собой уравнения Ла-граяжа, записанные в виде системы 2п дифференциальных урав-нений первого порядка с неизвестными функциями qi,, q . Во втором случае уравнениями (2) являются канонические уравнения Гамильтона  [c.207]

В случае если конструкция является двух- или трехмерной и к ней приложена система нагрузок, понятие устойчивости не является столь ясным, как при простом растяжении и сжатии. Строгое определение поведения, не зависящего от времени, дается в [9, 10]. Оно гласит, что в любой квазиста-тической системе перемещений от равновесной конфигурации работа, проделанная системой сил, поддерживающей равновесие, должна быть положительной. Следует заметить, что речь идет о работе второго порядка, т. е. работе, выполняемой системой дополнительных сил на дополнительных перемещениях, в которую не включается работа первого порядка, выполненная ранее приложенной системой сил. Другими словами, нагруженная равновесная конфигурация устойчива, если приложенная к конструкции система сил не производит работу.  [c.19]

IV.2. Вращение волчка вокруг своих главных осей. В случае несимметричного волчка (см. рис. 46а, б) вращение вокруг главных осей, соответствующих наибольшему или наименьшему моментам инерции, является устойчивым, а вращение вокруг оси, соответствующей среднему главному моменту, — неустойчивым. Для аналитического доказательства этого предложения нужно исходить из уравнений Эйлера и принять угловую скорость вращения вокруг оси, равной р = onst = ро- Угловые скорости вращения q и г вокруг остальных двух главных осей инерции, которые вначале равны нулю, под влиянием внешнего возмущения принимают отличные от нуля значения. Если предположить, что возмущение мало, то из первого уравнения Эйлера следует, что р в первом приближении остается неизменным и равным р + 0. Из остальных двух уравнений получаем для q и г систему двух линейных дифференциальных уравнений первого порядка. Полагая q = и г = где а иЬ произвольные константы, получаем квадратное уравнение для Л, из рассмотрения которого и вытекает высказанное нами выше утверждение.  [c.326]

Ес.пи бы все коэффициенты /, g, h,. . . оказались )авнымн нулю, то, как это нам известно из теории максимумов и минимумов, для существования максимума или минимума требуется, чтобы члены третьего измерения были равны нулю, а ч.чены четвертого пимерении были все время положительными или отрицательными [i ]. Пользуясь этим приемом и можно судить об устойчивости равновесия, которое имеет место при обращении в нуль членов первого порядка, сс.пи одновременно с ними исчезают и члены второго порядг. а.  [c.101]


Смотреть страницы где упоминается термин Устойчивость первого порядка : [c.125]    [c.125]    [c.229]    [c.229]    [c.101]    [c.180]    [c.317]    [c.317]    [c.100]    [c.193]    [c.436]    [c.301]    [c.113]    [c.125]    [c.171]   
Динамические системы (1999) -- [ c.130 ]



ПОИСК



Устойчивости, лиды первого порядка

Устойчивость схем для системы двух уравнений первого порядка



© 2025 Mash-xxl.info Реклама на сайте