Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Параметры оптические 55-60 - Методы измерения

Оптический метод измерений внутренней резьбы обеспечивает контроль трех основных параметров среднего диаметра, шага и угла профиля с номинальным диаметром d > 18 мм.  [c.525]

ОПТИЧЕСКИЕ МЕТОДЫ ИЗМЕРЕНИЯ ПАРАМЕТРОВ ВИБРАЦИИ 125  [c.125]

Во многих случаях на определение параметров отводятся малые промежутки времени — от наносекунд до миллисекунд. Распространение обычных оптических методов измерения на такие короткие времена и на чрезвычайно высокие плотности потоков требует как усовершенствования и расширения старых методов, так и развития новой измерительной техники.  [c.10]


Оптический метод, измерение основных параметров внутренней резьбы. Оптический метод может быть использован для измерений среднего диаметра, шага и угла профиля резьб с номинальным диаметром от 18 мм и выше. Применение данного метода связано с использованием резьбового микроскопа ИЗК-59, оптическая схема которого основана на схеме двойного микроскопа акад. В. П. Линника.  [c.413]

Оптические методы измерений параметров атмосферной турбулентности, которые берут свое начало с работ [17, 51], в настоящее время получили существенное развитие и уже реализованы в приборах.  [c.216]

Методы измерения параметров при испытаниях деталей машин можно разделить на механические, пневматические, оптические и электрические.  [c.475]

Поскольку основные термодинамические параметры потока могут быть выражены через плотность, определение последней через измерение показателя преломления дает возможность производить при помощи оптических методов газодинамические исследования.  [c.215]

Требования к нормальным условиям измерений, установленные в государственных стандартах и другой нормативной документации, отличаются большой пестротой. Результаты анализа стандартизованных нормальных значений и областей влияющих величин по средствам и методам измерений пространства, времени, механических величин, температур и тепловых величин, расходов, электрических и магнитных величин, физико-химических, оптических, светотехнических, акустических параметров и ионизирующих излучений показывают, что даже для температуры, влажности, давления в разных документах установлены различные номиналы. В ряде стандартов нормальные области значений влияющих величин дифференцированы по точности средств и методов измерений. В этом отношении наиболее подробными и полными документами являются ГОСТ 8.050—73, геи Нормальные условия линейных и угловых измерений , ГОСТ 12997—76, ГСП Общие технические требования , ГОСТ 22261—76, Средства измерений электрических величин .  [c.18]

К числу задач первостепенной важности относится также всестороннее изучение физических процессов и движения влаги в проточной части турбины. Эти исследования проводятся как посредством измерений основных параметров потока, так и с помощью визуальных наблюдений. Последние открывают возможность уточнять картину движения жидкой фазы. Оптические методы исследования, киносъемки и визуальные наблюдения широко применяются в современных установках.  [c.164]


Датчики крутящего момента аналогичны датчикам силы и также основаны на методе упругого уравновешивания измеряемой величины. Они содержат упругий элемент, снабженный преобразователем угла его закручивания в электрический сигнал и токосъемником для передачи сигнала с вращающегося вала (рис. 24). Угол закручивания измеряют либо по деформации кручения, либо по углу поворота двух сечений упругого элемента, находящихся на определенном расстоянии друг от друга. Первый метод широко распространен, что является следствием стремления унифицировать методы измерений и аппаратуру. Тензорезистивные преобразователи позволяют достичь этого благодаря их универсальности. Однако сигнал наиболее отработанных и прецизионных металлических тензорезисторов мал по абсолютной величине и при передаче по токосъемнику подвержен влиянию помех. Кроме тензо-резисторных, применяют магнитоупругие МЭП [40]. Второй метод осуществляют с Помощью двух растровых дисков, расположенных рядом, но опирающихся на упругий элемент возможно дальше друг от друга. Взаимное угловое перемещение растров измеряют оптическим, индуктивным или другим МЭП, чувствительным к этому Параметру  [c.231]

Первый метод измерения оптических постоянных использует угловые зависимости коэффициентов отражения в области полного внешнего отражения. Параметры у и б подбираются так, чтобы экспериментальная кривая наилучшим образом описывалась формулой Френеля (1.7). Этот метод оказывается наиболее удобным при использовании упрощенной формулы Френеля (1.11), которая, как было показано на рис. 1.1, дает семейство кривых R х) при различных у х = 0/0с, у == у/б). Для мягкой рентгеновской области он использовался в ряде работ [15, 17, 46]. Считая, что погрешность экспериментальных данных не выходит за пределы 2 %, авторы работы [16] оценивают точность определения у/б таким методом 10 %. Заметим, что использование упрощенной формулы Френеля (1.11) ограничено, так как предполагает малое поглощение и малые углы падения.  [c.21]

Для создания лазеров потребовались новые, ранее не применявшиеся материалы, системы охлаждения и электропитания, принципиально новые оптические устройства для измерения параметров излучения. Лазерная техника стимулировала разработку новых радиоэлектронных устройств и методов измерений импульсных сигналов наносекундной длительности. Требовалась разработка высокочувствительных быстродействующих фотодетекторов как в видимом, так и в инфракрасном диапазонах длин волн. Высокие потенциальные точности измерения координат цели, свойственные лазерным локаторам, определили необходимость создания сверхточных оптико-механических узлов для наведения лазерного излучения. Одновременно с развитием элементной базы совершенствовались и отрабатывались схемные решения лазерных локаторов, проверялись на практике основные положения теории.  [c.6]

Наряду со способом преобразования светового сигнала в электрический для измерения параметров коротких световых импульсов применяется способ частотного преобразования сигнала, основанный на нелинейных оптических методах (см. гл. 8).  [c.106]

При создании первых лазеров готовых методов измерения лазерных параметров, разумеется, не было, хотя существовали хорошо освоенные методы, развитые в оптике, спектроскопии, радиотехнике и в технике СВЧ. Среди них можно отметить интерференционные методы измерения длины волны, гетеродинный метод измерения частоты и др. Поэтому многие методы измерения лазерных параметров были разработаны самими исследователями в процессе изучения оптических квантовых генераторов. Так, например, были разработаны тонкие радиотехнические методы исследования спектра частот оптического квантового генератора и форумы спектральной линии с чрезвычайно высокой разрешающей способностью, недоступной для методов оптической интерферометрии.  [c.6]

Параметры эллипса поляризации зависят от оптических свойств поверхности, и измерение этих параметров (эллипсометрия) в последние 204-30 лет стало одним из распространенных и наиболее эффективных оптических методов исследования поверхности твердых тел [2.12]. Вследствие высокой чувствительности к малым изменениям оптических параметров эллипсометрию стали применять и для термометрии поверхности.  [c.48]


Под названием измерительная аппаратура здесь понимается весь комплекс приборов, позволяющий представить тот или иной параметр поля либо в виде осциллограммы, либо в виде численного значения, отсчитанного по шкале индикатора. Основным элементом такого комплекса приборов является чувствительный элемент, непосредственно реагирующий на параметр поля, подлежащий измерению. В зависимости от метода измерений это может быть, например, световой луч (в оптическом методе), объем жидкости или твердого тела, нагреваемый в результате поглощения энергии ультразвуковых колебаний (в калориметрическом и термоэлектрическом методах), пьезоэлектрик и магнитострикционный элемент, отражающая (поглощающая) пластинка или сфера (в радиометрическом методе) и т. д.  [c.329]

Установка была снабжена координатниками для измерения насадками полей параметров потока на входе в решетку и на выходе из нее. Для исследования решеток оптическим методом в одну из обойм вставлялось металлическое зеркало, на котором крепились лопатки. Зеркальный оптический прибор позволял фотографировать оптические картины течения по методу полос одновременно с измерением распределения давления по контуру центрального профиля и на стенке межлопаточного канала.  [c.6]

В области умеренно высоких температур выше точки затвердевания золота (— 10 ° К) для установления температурной шкалы возможно применение газового термометра (см. гл. 4). Для измерения более высоких температур, начиная от нескольких тысяч градусов и выше, практически пригодны только оптические методы, опирающиеся на ту или иную теоретическую зависимость между выбранным параметром, непосредственно измеряемым на опыте, и температурой (формула излучения Планка, закон Вина, закон Стефана — Больцмана, эффект Допплера и т. д.). В зависимости от избранного метода при этом измеряют различные температуры— эффективную , цветовую , яркостную и т. д.  [c.7]

После рассмотрения некоторых трудностей, связанных с применением оптических методов, небезынтересно выяснить существование других, неоптических, методов для определения высоких температур. В частности, степень ионизации газа, являющаяся отчетливо выраженной функцией температуры, может быть в принципе использована для ее измерения. К сожалению, однако, ионизационное равновесие зависит также от ряда других параметров.  [c.300]

Для измерения малых абсолютных давлений газов могут быть использованы разнообразные явления. Известны вакуумметры, действие которых основано на изменении вязкости, теплопроводности, степени ионизации и других свойств газа в связи с изменением его давления. В вязкостных датчиках регистрируются параметры движения твердого тела, подверженного вязкому взаимодействию с газом, давление которого измеряется. Например, оценка декремента затухания колебаний кварцевой нити или упругой пластины оптическими методами позволяет измерять разрежения порядка 10" —10" мм рт. ст. При снижении давления газа увеличивается длина свободного пробега молекул. При соизмеримости длины сво-278  [c.278]

В бесконтактных измерителях реализуют кинематический метод измерения параметров относительной вибрации, используя оптические, радиоволновые и др. электромагнитные поля. Среди них наибольшее применение в вибродиагностике нашли оптические методы и средства измерения параметров вибрации, которые по способу выделения информации об измеряемом параметре делят на амплитудные и частотные. К амплитудным методам измерений относят фотоэлектронные, дифракционные и интерференционные методы измерения, а также методы с использованием пространственной модуляции светового потока.  [c.605]

Необходимо отметить, что для современного этапа развития механики многофазных сред характерны экспериментальные исследования, интенсивно проводимые с целью изучения физических особенностей процессов движения и накопления их количественных характеристик. Однако опытное изучение таких течений связано со значительными трудностями, так как необходимо разрабатывать п применять новые методы измерений, позволяющие фиксировать дисперсность и скорости дискретной фазы, а также параметры течения газовой фазы. До сих пор такие методы окончательно не разработаны, но уже достигнуты результаты, показывающие, что напбо.тее перспектпвны.ми следует считать оптические, оптико-электронные и оптико-радиометрические методы измерений.  [c.6]

Оценки основных термодинамических характеристик плазмы искрового канала температуры, коэффициентов и показателей поглощения, потерь энергии с излучением и других - основаны на измерениях спектральной плотности лучистого потока (или яркости Ья). Результаты измерений спектральной плотности яркости искрового канала в оптически прозрачных твердых диэлектриках (ЩГК, органическом стекле, полевом шпате) по методу сравнения, несмотря на тщательный контроль за сохранением условий эксперимента (параметров разрядной цепи, длины межэлектродного промежутка, параметров оптической системы, геометрии образца и т.д.), подвержены значительным статистическим флуктуациям. Природа этих разбросов обусловлена малыми радиальными размерами искрового канала, особенно в начальной стадии его расширения, искривлениями и нестабильностью положения канала относительно оси электродов, вариациями кинетики трещин вокруг канала и т.п. Изучение влияния типа ЩГК, режимов энерговклада и других факторов возможно только с применением статистических методов, в частности, дисперсионного анализа. Результаты проверки закона распределения отдельных измерений максимального значения спектральной плотности  [c.45]


Стенды XII и XIII (рис. 2.1) предназначены для измерения критических параметров и скорости звука в двухфазных средах (временным методом и методом акустического интерферометра). В схему лаборатории включена радиальная экспериментальная турбина XIV, смонтированная в поле оптического прибора. Сегмент соплового аппарата и часть каналов рабочей решетки выполнены прозрачными с целью изучения процесса движения влажного пара оптическими методами в реальных условиях взаимодействия решеток. В схему газодинамической лаборатории МЭИ на рис. 2,1 и в описание не включены сгекды, работаю- щие на воздухе.  [c.32]

Оптические и акустические (см. раздел 6) методы измерения параметров абсо 1ЮТН0Й и относительной вибрации являются бесконтактными волновыми, поскольку основаны на использовании явлений отражения, преломления, дифракции и интерференции волн.  [c.125]

В зависимости от особенностей и специфики проводимых вибрационных испытаний Moiyr- быть использованы и другие методы измерения параметров вибрации (например, оптический), требующие соответствующих измерительных систем, однако они имеют узкую область применения.  [c.353]

Перейдем к рассмотрению наиболее важного вопроса, связанного с качеством рентгеновских зеркал — методам и аппаратуре для определения параметров шероховатости отражающих поверхностей. Как следует из анализа требований к качеству поверхности, для рентгеновских зеркал значение среднеквадратической шероховатости о, а следовательно, и чувствительность методов измерений должны лежать в интервале от нескольких нанометров до долей нанометра. Это существенно выше требований, обычно предъявляемых к оптическим элементам видимого диапазона (минимальное значение параметра в существующем стандарте составляет 25 нм) и приводит к необходимости использования аппаратуры, основанной на иных физических принципах (или к существенной модернизации этой аппаратуры). Среди наиболее часто используемых методов — контактные (щуповые) и бесконтактные (оптические), основанные на зависимости сигнала от высоты профиля локальных участков поверхности, а также методы рассеяния, дающие информацию о статистических свойствах поверхности.  [c.230]

В схеме прибора предусмотрен ряд устройств для юстировки. Так, правильная установка образца, обеспечивающая выход и попадание зеркально отраженного пучка на приемник 10, достигается с помощью системы зеркал 11 и приемника 1, а установка приемника 8 в точку, где собираются отраженные от зеркала 7 лучи, осуществляется визуально с помощью оптического устройства 4, снабженного волоконной оптикой. В ряду приборов отметим установку [42], где реализован относительный метод измерения TIS, и измерение а проводится сравнением с эталонным образцом, среднеквадратичная шероховатость поверхности которого измерена с максимальной точностью. Установка для измерения TIS с фотометрическим шаром фирмы Балзерс схематично изображена на рис. 6.6, где излучение от Не—Ne-лазера 1, проходя прерыватель 2, ослабитель 3 и апертуру 4, падает на поверхность исследуемого образца 5. Зеркально отраженный поток выводится из фотометрического шара через отверстие 9. Интегральное значение рассеянного потока с детектора 8 поступает на синхронный усилитель 6, куда одновременно поступает опорный сигнал падающей интенсивности. Сигнал с синхронного усилителя пропорционален отношению /о//д, входящему в формулу (6.11). Измеренное значение а индицируется на цифровом вольтметре 7. Значения а порядка 0,5 нм были измерены с помощью описанной установки фирмы Балзерс в работе [37]. Как было показано в работе [30 ], метод позволяет проводить измерения а и не дает возможности определения параметров поверхности в плоскости (X, У). Это ограничение метода TIS было преодолено в приборе, в котором была обеспечена возможность измерения углового  [c.237]

Измерение методом сравнения (жидкость сравнения — дистиллированная вода, Г=7,1+0,2). ТемпературагСС. Частота 1,5 Мгч [31]. 2) Измерения искажения оптическим методом. Температура комнатная. Частота 570 кгц [28]. 3) Измерение искажения с акустическим фильтром. Оптическое определение параметров второй гармоники [40]. Частота 3 Мгц. 4) По взаимодействию двух волн [23]. 5) Измерение методом сравнения (жидкость сравнения — ацетон, Г=10,0). Температура —195°С. Частота Ь Мгц [41]. Эти данные исправлены с учетом измерений скорости в кипящем жидком азоте. 6) Данные, использованные для сравнения экспериментального поглощения с теоретическим [42]. 7) Термодинамический расчет по экспериментальной зависимости скорости звука от температуры и давления [43]. 8) Расчет по Г=р со7Р, из статических измерений [38]. 9) Термодинамический расчет по экспериментальной зависимости скорости звука от температувы и давления [39]. 10) Данные статических измерений [38]. И) Измерение методом сравнения (жидкость сравнения—бутиловый спирт, Г=9,6). Частота 2 Мгц.  [c.166]

Адиабатические модули третьего порядка принципиально могут быть измерены танже по искажению и взаимодействию упругих волн в твердых телах. Величины этих акустических нелинейных эффектов (см. 3 этой главы) зависят от различных комбинаций А, В С. Однако этот Метод имеет свои весьма существенные трудности. Как и при определении нелинейного параметра жидкости (см. гл. 4, 2), нужны абсолютные измерения звукового поля. В прозрачных твердых телах их можно сделать оптическими методами в непрозрачных же  [c.304]

В других областях, где отсутствовали возможности применить термопары и радиационные пирометры, разработка и применение лазерных методов проводилась давно. При исследованиях горячей плазмы активные бесконтактные методы измерения температуры также начали применяться на 20-25 лет раньше [1.10], поскольку в этой области не было никакой возможности адаптировать традиционные методы из-за высокой тепловой нагрузки на термозонд, влияния распыляемого зонда на параметры плазмы, а также малой оптической толщины плазмы (при этом спектр излучения существенно отличается от равновесного). Десятки лет проводится термометрия газовых и плазменных потоков с высоким временным разрешением (нано- и микросекундный диапазоны) методами лазерной интерферометрии, спектроскопии когерентного антистоксова рассеяния света (КАРС), лазерно-индуцированной флуоресценции, поскольку традиционные методы не обеспечивают такого быстродействия, какое достигается с помощью импульсных лазеров  [c.10]

При взаимодействии светового пучка с твердым телом изменяются параметры пучка (интенсивность, поляризация, частотный и угловой спектры и т. д.). Степень изменения каждого из этих параметров определяется свойствами как твердого тела, так и пучка, а также условиями взаимодействия. Изменение температуры твердого тела сопровождается изменением амплитуды колебаний атомов в узлах решетки и, вследствие этого, изменением межатомных расстояний, что приводит к температурной зависимости оптических параметров. Известны температурные зависимости ширины запреш енной зоны полупроводниковых и диэлектрических кристаллов, действительной и мнимой частей комплексного показателя преломления, концентрации и подвижности свободных носителей заряда, плотности фононов для каждой разрешенной моды колебаний решетки [1.41, 1.42]. Выбор характеристик пучка, условий взаимодействия пучка с объектом, а также условий регистрации сигнала позволяет проводить измерение многих температурно-зависимых параметров твердого тела. Оптическая термометрия включает последовательность преобразований в соответствии с температурой устанавливается значение физического параметра, проводится его измерение оптическим методом, затем на основе известных соотношений между температурой, физическим параметром и регистрируемым оптическим сигналом определяется температура. Эта последовательность предполагает использование внешнего зондируюш его излучения, т. е. диагностика является активной.  [c.19]


Ударные волны в прозрачных телах и оптические явления. Интересные возможности открывает изучение ударных волн в прозрачных твердых и жидких средах, так как прозрачность тела позволяет применять оптические методы исследований. Экспериментальные методы, изложенные в п. 6.2, позволяют измерять механические параметры в ударной волне, но для определения температуры (или, скажем, энтропии) необходимо привлекать теоретические представления, В случае прозрачных тел температуру за фронтом волны можно измерить оптическим путем. Такие измерения в плексигласе были сделаны в работе Я. Б. Зельдовича, С. Б. Кормера, М. В. Синицына и А. И. Курянина (1958), в которой измерялась яркость поверхности фронта ударной волны с давлением 2 X 10 атм и сжатием 2,7. Температура Ъказалась равной примерно 10 000—11 000° К, причем эта величина согласуется с теоретической оценкой  [c.259]

Близкие к ТАСИ-2 характеристики имеют ряд других установок, например измерители геометрических параметров изображения ИГПИ-2, ИГПИ-3, ИРИС-Т и измерительный комплекс для изучения процессов развития микроорганизмов при воздействии внешних факторов КИПРАМ, разработанные в Ленинградском электротехническом институте им. В. И. Ульянова (Ленина) [59, 74]. Эти устройства различаются методами обработки видеоинформации. В двух последних из упомянутых систем реализован интерактивный метод измерения геометрических параметров, когда сам оператор с помощью специального электромеханического устройства обводит на изображении препарата исследуемый участок при наблюдении всего изображения на экране телевизионного кинескопа [74]. В системе КИПРАМ использован микроскоп сравнения МС-51, который позволяет проводить одновременное наблюдение и измерение параметров в двух препаратах для текущего сопоставительного анализа. Предусмотрена также возможность измерения параметров перемещения частиц дисперсных фаз и их подвижности, координат траектории, продолжительности пути, скорости перемещения и других параметров. Метод анализа видеосигнала, использованный в устройстве, позволяет разрабатывать измерительные системы для оценки таких, например, параметров, как оптическая плотность движущейся частицы, изменения площади и оптической плотности, связанные с функционированием микроорганизмов, и т. д.  [c.265]

Результаты эксперимента. На рис. 10.5 приведены результаты измерения тепловых потоков, возникающих при разложении образцов твердого БАДЕ при различных скоростях нагревания (масса образца m яв 0,5 мг). На каждой кривой наблюдаются четыре пика. Два из них отражают эндотермический тепловой эффект и не меняют своего температурного положения (111 и 120 °С) с изменением скорости нагревания образца, т.е. обусловлены фазовыми переходами. Два других гораздо больших пика соответствуют экзотермическому тепловому эффекту. Площадь под пиками (теплота) и температура максимума существенно зависят от скорости нагревания. Это свидетельствует о том, что происхождение наблюдаемых пиков связано с процессом термоактивированного разложения. На первый взгляд может показаться, что разложение исследуемого вещества протекает в две стадии, различающиеся кинетическими параметрами (энергией активации и частотным фактором). Но в этом случае невозможно интерпретировать площади двух пиков (т.е. теплоту), высота которых меняется при изменении скорости нагревания. Следует также учесть тот факт, что оптические методы исследования дают только один пик излучения света. Удовлетворительное объяснение наблюдаемого эффекта бьшо дано на основе определения температуры плавления вещества (164°С). Двойной пик возникает в результате изменения теплопроводности и коэффициента теплопередачи между образцом и чашкой для образца в результате образования расплава исследуемого вещества. Улучшение теплового контакта исследуемого вещества с калориметром уменьшает возможность перегревания образца. В результате снижается скорость реакции и, соответственно, тепловой поток. Из рис.  [c.160]

Качество поверхности отливок без пригара и окислов или после их удаления оценивается по высоте выступов и впадин профиля, которые измеряются и выражаются в линейных единицах. Методы измерения неровностей литой поверхности могут быть подразделены на три группы а) непосредственные измерения (оптическими приборами, приборами, основанными на методе ощупывания, методами стереоснимков с последующим планиметрированием, микрофотографированием) б) косвенные методы измерения (по воздухопроницаемости, по емкости) в) методы сравнения с эталонами или со стереоснимками. Первая группа измерений наиболее точная, но трудоемкая, вторая — менее трудоемка, но требует доработки для увеличения точности, третья — позволяет быстро оценить качество поверхности и, несмотря на приближенную.лценку, может быть рекомендована для заводской практики. Для чугунного литья параметры шероховатости эталонов мотут изменяться от 10 (заливка в металлические формы мелких деталей) до 600 мкм (крупные детали, отливаемые в песчано-глинистые формы).  [c.283]


Смотреть страницы где упоминается термин Параметры оптические 55-60 - Методы измерения : [c.99]    [c.14]    [c.354]    [c.242]    [c.325]    [c.322]    [c.172]    [c.54]    [c.58]    [c.283]   
Машиностроение энциклопедия ТомIII-7 Измерения контроль испытания и диагностика РазделIII Технология производства машин (2001) -- [ c.62 , c.63 , c.64 , c.65 , c.66 , c.67 , c.68 , c.69 , c.70 ]



ПОИСК



Измерение методы

Методы оптических измерений



© 2025 Mash-xxl.info Реклама на сайте