Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Показатель преломления измерение

Найденная молекулярная рефракция (Л1/ д найд.) — величина, полученная по формуле Лоренца-Лорентца вычисленная молекулярная рефракция /ARq вычисл.) — величина, полученная из атомных рефракций индекс D в обозначении MRp указывает, что показатель преломления измерен для D линии натрия.  [c.5]

Применявшийся фазометр позволял регистрировать пульсации фазы в пределах я. Поэтому в случаях больших флуктуаций показателя преломления измерения проводились на малых  [c.418]


Рефрактометрия. Рефрактометр. Рефрактометрией называется метод физикохимического исследования, основанный на измерении показателя преломления.  [c.59]

Прибор, с помощью которого измеряется показатель преломления, называется рефрактометром. Существуют разные методы измерения показателя преломления.  [c.59]

Изучение состояния поляризации можно провести как в отраженном, так и в проходящем свете. В случае металлов преломленная волна практически поглощается в очень тонком поверхностном слое. Поэтому в данном случае целесообразно использовать измерения в отраженном свете. Наоборот, при слабом отражении от диэлектриков основным методом исследования является эллипсометрия в проходящем свете. В тех случаях, когда возможны соответствующие измерения в отраженном и проходящем свете, эллипсометрия в отраженном свете удачно дополняет эллипсометрию в преломленном свете, и наоборот. Следует отметить, что эллипсометрия позволяет не только определять оптические константы чистых поверхностей материалов, она позволяет также, исходя из непосредственно измеряемых параметров эллипса поляризации, определить характеристики тонких поверхностных пленок, возникающих вследствие адсорбции и т. д., например толщину (вплоть до долей ангстрема) и показатель преломления (с точностью до 10" ) поверХНОСТНОГО слоя.  [c.64]

Явление интерференции лежит в основе устройства приборов, называемых интерферометрами . С помощью интерферометров решают с высокой точностью такие технические и физические задачи, как измерение длин п углов, определение показателя преломления и его зависимости от разных внешних факторов и т. д.  [c.109]

Измерение показателя преломления смесей позволяет, вычисляя молекулярную рефракцию смеси и исходя из аддитивности рефракции, провести анализ бинарных смесей.  [c.278]

Итак, используя выражения (13.11), (13.13) и (13.14), можно на основе измерений показателя преломления, постоянной Керра и коэффициента деполяризации рассчитать все три главные поляризуемости молекул газа и пара.  [c.317]

Однако получение дополнительной информации из измерений показателя преломления вблизи линии поглощения требует более подробного обсуждения. Заметим, что исследование зависимости п(Х) в разреженных газах и парах металлов представляет наи-  [c.151]

Обычно с помощью интерферометров решают вполне определенные физические и технические задачи (например, измерение длин или углов, определение показателя преломления и т.д.). Наблюдение интерференционной картины становится не целью исследования, а средством проведения того или иного измерения. Поэтому оптическая схема интерферометра должна удовлетворять ряду дополнительных требований. Для повышения точности часто вводят значительную разность хода между интерферирующими пучками и работают в высоких порядках интерференции. В таких случаях используют относительно высокую степень монохроматичности излучения резко повышаются и требования к юстировке оптической системы. В дальнейшем рассказано также об исследованиях, в которых интерферометры применяют для изучения основных характеристик излучения (степени монохроматичности, длины волнового цуга и др.).  [c.221]


Попробуем провести простую оценку чувствительности метода. Если на пути одного луча вставить в кювету длиной 1, наполненную газом с показателем преломления ni, а на пути другого — эквивалентную кювету, наполненную другим веществом с показателем преломления П2, то появится дополнительная разность хода д = Zi n,i — П2) Следовательно, произойдет сдвиг интерференционных полос. Охарактеризуем этот сдвиг дробью т, показывающей, на какую часть одного порядка интерференции сместились интерференционные полосы. Тогда Д = т Х. Измеряя сдвиг т, определим Д . Например, полосы сдвинулись на 0,1 порядка интерференции, т.е. т = 0,1. Теперь оценим Ап = Д /Zi. Обычно одна из кювет служит контрольной (проводятся относительные измерения). Для простоты будем считать 2=1 (вакуум) и определим Ап из соотношения Д = i(ni — 1) = 1 Ап. При = 10 см т = 0,1 X = 5 10" см получим Ап = т к11 = 5 10 , т.е. можно измерить изменение показателя преломления в шестом знаке после запятой.  [c.223]

В интерферометре Рождественского используются относительно невысокие порядки интерференции. Первоначальная юстировка проводится по нулевой полосе , соответствующей А = 0. Правда, в последующих измерениях дисперсии паров обычно вводят дополнительную разность хода и исследуют интерференционные кривые более высоких порядков. Этот прибор, предназначенный для точных измерений изменения показателя преломления газов или паров вблизи линии поглощения, рассчитан на исследование интерференционной картины в разных длинах волн. Поэтому обычно интерферометр освещают источником непрерывного спек-  [c.224]

Очевидно, что теория Герца, исходящая из полного увлечения эфира движущимися телами, не имела экспериментального подтверждения. Поэтому нужно было искать возможность проверки теории Лоренца, базирующейся на представлении о неподвижном мировом эфире, в котором движутся исследуемые тела. Особенно интересными представлялись исследования среды с показателем преломления п = 1 (вакуум, воздух), так как в этом случае коэффициент увлечения и = 1 — 1/ = О и как будто открывалась возможность обнаружения абсолютного движения , т.е. использования неподвижного эфира в качестве единой системы отсчета для любых оптических и электрических измерений. Соответствующий контрольный эксперимент, сыгравший громадную роль в развитии физических идей, был впервые поставлен Майкельсоном в 1881 г. и неоднократно воспроизводился в XX в. (вплоть до 1964 г.) с непрерывным улучшением точности измерений.  [c.368]

Во времена Ньютона еще не были сделаны прямые измерения скорости света в разных средах. Поэтому полученный вывод не мог быть проверен непосредственно. Впоследствии такие измерения были выполнены (Фуко, 1850 г.) и показали, что скорость света в плотных средах (вода, например) меньше, чем скорость света в воздухе, тогда как показатель преломления при переходе света из воздуха в воду равен 1,33, т. е. больше единицы. Таким образом, ньютоново толкование показателя преломления оказывается неправильным. Однако более углубленный анализ механизма распространения света в веществе показывает, что этот вопрос не столь прост.  [c.17]

При нагревании вследствие различия в коэффициентах расширения К и R толщина зазора М меняется, благодаря чему происходит смещение интерференционных полос, отмечаемое при помощи метки т. Смещение полос на одну означает изменение разности хода на Я, т. е. изменение воздушного зазора на Х/2. Таким образом, наблюдая за интерференционной картиной, можно точно измерить изменение толщины зазора и отсюда вычислить коэффициент расширения. При точных измерениях этого рода приходится учитывать зависимость показателя преломления воздуха от температуры.  [c.148]

Лабораторные методы определения скорости света, позволяющие производить эти измерения на коротком базисе, дают возможность определять скорость света в различных средах и, следовательно, проверять соотношения теории преломления света. Как уже неоднократно упоминалось, показатель преломления света в теории Ньютона равен п — sin i/sin г = v /v , а в волновой теории п = sin i/sin т = где — скорость света в первой среде,  [c.427]


То обстоятельство, что /г < 1, позволило осуществить в рентгеновской области явление полного внутреннего отражения на границе воздух — стекло. Впоследствии наблюдения были распространены и на другие материалы, и этот метод был даже использован для надежных измерений величины показателя преломления рентгеновских лучей.  [c.563]

Схема опыта для наблюдения н изучения искусственной анизотропии одинакова со схемой для исследования двойного лучепреломления в кристаллах (рис. 19.1). Главные плоскости поляризаторов П] и Пг должны составлять угол 45° с оптической осью анизотропного тела. Обыкновенный и необыкновенный лучи распространяются в наиравлении, перпендикулярном к 00, не расходясь, но с различными скоростями. Для количественного измерения разности показателей преломления Пп—н в схему введена пластинка в четверть длины волны.  [c.64]

Поскольку в газах (парах металлов), характеризующихся резкими линиями поглощения, дисперсионная картина наблюдается наиболее отчетливо, то и проверку теоретических представлений лучше всего проводить для газов, для которых, впрочем, и построение теории значительно проще. Для количественных измерений дисперсии в газах (особенно при малой плотности) применяют интерферометрические методы, позволяющие измерять небольшие изменения показателя преломления.  [c.83]

Сложный характер скорости распространения света позволил объяснить многие экспериментальные результаты. С разработкой методов измерения скорости света V в каком-либо веществе (газообразном или жидком) появилась возможность определить показатель преломления п через отнощение скорости света в вакууме с и веществе V (п = с1о) и сравнить это значение со значением п для данного вещества, полученного при измерениях, основанных на исследовании закона преломления, которые можно провести с большой точностью. Обычно  [c.88]

При сравнении значений показателя преломления п, измеренных в видимой области спектра, со статическим значением фе, определяемым обычными электрическими методами, может оказаться, что эти две величины будут сильно различаться, если у исследуемого вещества имеются интенсивные инфракрасные полосы.  [c.96]

Метод вращающегося зеркала (метод Фуко). Метод определения скорости света, разработанный в 1862 г. Фуко, можно отнести к первым лабораторным методам. С помощью этого метода Фуко осуществил измерения скорости света в средах, для которых показатель преломления п> 1.  [c.200]

Наряду с задачадга спектроскопического характера, изучая показатели преломления вещества, можно решать ряд других важных задач. К их числу относятся вопросы определения структуры сложных молекул и типов хидтческой связи между атомами, определения состава и однородности различных смесей, исследования диффузии, определения плотности и т. д. Показатель преломления, измеренный нри определенных условиях, часто используют как характерный параметр данного вещества, выступающий наряду с плотностью, температурами кипения, плавления и т. д. (см. гл. 14). Большое значение имеют сведения по дпсперспи света в веществах, использующихся в оптическом приборостроении для изготовления линз, различного рода призм, отражающих поверхностей и т. п.  [c.459]

Несмотря на эти неудобства, оказывается, можно, предложить методы экспериментального определения оптических параметров металла. Первый метод был предложен Кундтом в 1888 г. Им были приготовлены тонкие призмочки из металлов с малым преломляющим углом, которые позволили пронести прямое измерение вещест-ьешюй и мнимой частей комплексного показателя преломления.  [c.65]

Можно оценить степень точности измерений, выполненных иитерферометралн типа Жамена. Как видно из (5.30), изменение показателя иреломлеиия равно Д/г = пг Х/1. При / 10 см, Шо =0,1, Х 5-10 ° см получим Art 5-10 . Таким образо.м, подобные интерферометры позволяют измерять изменение показателя преломления с точностью до одной миллионной, что свидетельствует  [c.111]

Имеющиеся в настоящее время лучшие рефрактометрические методы позволяют измерять изменение показателя преломления порядка Следовательно, их чувствительность недостаточна для измерения кругового двулучепреломления по разности показателей преломления для света, поляризованного по кругу вправо и влево. Поэтому для измерения оптической активности веществ применяют другую методику и аппаратуру — спектрополяриметр для измерения величины угла вращения плоскости поляризации и дихрограф в виде приставки к сиектрополяриметру или самостоятельного прибора для измерения кругового дихроизма.  [c.299]

В XIX в. появилась возможность точного измерен[ия скорости света и в каком-либо веществе (газообразном или жидком). Из таких измерений можно определить с/и = пи сравнить его с табличным значением показателя преломления для данного вещества, получаемого из основанных на использовании закона преломления измерений, которые можно провести с большой точностью. Обычно значения п ---- sin ф/.sin ср2 хорошо согласуются со значениями, найденными из измерений скорости света, но в некоторых случаях возникают расхождения. Так, например, для показателя преломления сероуглерода вместо п = 1,64 было получено значение 1,76, что выходит за пределы допустимой погрешности измерений. Это является следствием значительных трудностей, неизбежно возникаюпхих при описании движения импульса в среде, в которой показатель преломления зависит от частоты, т. е. в диспергирующей среде. В таком случае кроме фазовой скорости нужно ввести euie групповую скорость, характеризующую скорость распространения всей группы волн, к рассмотрению которой мы переходим.  [c.46]

Опыт показывает, что для благородных газов, а также для Нт, N2, О2, СО2. СО и воздуха наолюдаотс отличное согласие между измеренными на опыте показателями преломления п и вычисленными по формуле п - Vk (табл. 1.1).  [c.54]


В заключение укажем на необходимость различать поглощение (диссипацию) электромагнитной энергии и ее затухание (например, в результате рассеяния до приемника доходит лишь некоторая часть распространяющегося в данном направлении света). Следует учитывать, что истинное поглощение электромагнитной энергии всегда связано с переводом ее в теплоту при совершении работы Ej О. Однако j = dP/dt, а поляризуемость вещества Р = жЕ, где восприимчивость ж связана с диэлектрической постоянной известным соотношением е = 1 + 4пге. Следовательно, дифференцирование dP/dt приводит к дифференцированию е, что связано с умножением ее на ко. Если г — величина комплексная, то поляризационный ток j будет иметь действительную часть (i = —1) и работа сил поля неизбежно приведет к поглощению части световой энергии. Мы видим, что истинное поглощение связано с комплексностью диэлектрической постоянной, которая приводит к комплексному значению показателя преломления п. Но показатель преломления п = Ve может быть комплексным и при действительном, но отрицательном значении е < О. В этом случае работа сил Ej = О и имеет место лишь затухание энергии, а не ее поглощение. В рассмотренном явлении нарушенного полного внутреннего отражения (см. 2.4) мы имеем пример такого ответвления части энергии от исходного направления, где проводилось ее измерение. Аналогичный про-  [c.106]

Во второй половине XIX в. был осуществлен ряд попыток теоретически истолковать явление аномальной дисперсии и найти выражения, связывающие дисперсию и поглощение света. Наиболее успешны были работы Зельмейера, получившего в рамках теории Френеля формулу, достаточно хорошо описывающую изменение показателя преломления в непосредственной близости к линии поглощения. Согласие фо )Мулы Зельмейера с опытом детально исследовалось в работах Д. С. Рождественского. Предложенная им оригинальная методика (метод крюков) позволила проводить эти измерения с большой точностью. В 40-х годах нашего столетия Г.С. Кватер показал, что исследуемая ( юрмула хорошо согласуется с измерениями показателя преломления паров натрия даже на расстоянии всего 0,1 А от центра линии поглощения.  [c.138]

Следовательно, обсуждая применимост . формулы Максвелла в далекой инфракрасной области, где можно пользоваться статическими значениями г., имеет смысл записать показатель преломления в виде (4.23). Ясно, что п этом приближении главную роль играет наличие или отсутствие в спектре данного вещества инфракрасных полос поглошения, так как член часто вносит основной вклад в значение Если сравнивать показатель преломления п, измеренный в видимой области спектра, со статическим значением V г., то у веществ, в спектре которых имеются интенсивные инфракрасные полосы, эти значения неизбежно окажутся совершенно ра,зличными.  [c.149]

Измерение показателя преломления — это особая область метрологии, названная рефрактометрией. Проведенная оценка показывает, что интерференционный метод обеспечивает весьма высокую чувствительность относительных рефрактометрических измерений. Это позволяет использовать такой метод для решения разнообразных задач. Вместе с тем ясно, что реализов 1ть столь высокую чувствительность совсем не просто и, чтобы добиться высокой стабильности интерферометрических измерений, необходимы чрезвычайная аккуратность и тщательность в подготовке эксперимента.  [c.223]

Нарисуйте схему интерферометра Жамена и охарактеризуйте возможности интерференционного метода для измерения показателя преломления вещества.  [c.457]

Кроме упомянутого уже рефрактометра Жамена, для этой цели служат многочисленные интерференционные рефрактометры, имеющие технический характер и приспособленные для измерения небольших вариаций показателя преломления газов и жидкостей, вызванных примесями (например, технический интерферометр для определения состава газов в шахтах или анализа ничтожных количеств солей, растворенных в воде). В последнее время интерферен-  [c.148]

Физо обнаружил, что интерференционные полосы действительно смещаются. Значение, определенное из величины смещения, оказалось равным а = 0,46. Более точные измерения Майкельсопа и Морли, которые воспроизвели опыт Физо в 1886 г., дали а=0,434 0,020, что хорощо совпадает с расчетами Френеля. Повторение опыта Физо с движущимся воздухом не дало никакого смещения, что и следовало ожидать из-за малого отличия показателя преломления воздуха от единицы. Результаты опыта Физо показали несостоятельность теории Герца, которая исходила из представлений о полном увлечении эфира движущимися телами.  [c.207]


Смотреть страницы где упоминается термин Показатель преломления измерение : [c.689]    [c.405]    [c.240]    [c.255]    [c.269]    [c.299]    [c.55]    [c.153]    [c.316]    [c.415]    [c.492]    [c.544]    [c.547]    [c.548]    [c.85]    [c.89]   
Оптика (1976) -- [ c.148 ]



ПОИСК



Автоматические поляриметры для измерения двойного лучепреломления, показателя преломления и спектральных свойств сред

Измерение адиабатической сжимаемости . Измерение температурной зависимости показателя преломления и зависимость показателя преломления от кон центрации

Измерение показателей преломления и дисперсии

Измерение показателя преломления вещества, сжатого в ударной волне

Интерференционные методы измерения показателя преломления

Интерферометры для измерения неоднородностей и показателей преломления прозрачных сред

Использование трехлучевых интерферометров для измерения показателей преломления

МОДЕЛИРОВАНИЕ КОЭФФИЦИЕНТОВ ТУРБУЛЕНТНОГО ОБМЕНА ПО ИЗМЕРЕНИЯМ ФЛУКТУАЦИЙ ПОКАЗАТЕЛЯ ПРЕЛОМЛЕНИЯ СРЕДЫ

Методы измерения показателей преломления и дисперссии интерференционные

Показатели преломления - Методы измерения

Показатель преломления

Преломление



© 2025 Mash-xxl.info Реклама на сайте