Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Колебания в линейных молекулах, потенциальные функции

Энергия молекулы в отсутствие внешнего поля равна сумме кинетической энергии, которая, как известно из механики, представляет собой однородную квадратичную функцию импульсов адр/р (коэффициенты а-,к в общем случае зависят от обобщенных координат qi), и потенциальной энергии взаимодействия атомов, (Мы будем в дальнейшем пользоваться известным условием Эйнштейна — по дважды повторяющимся индексам подразумевается суммирование.) Внутреннее движение атомов в молекуле после исключения поступательного и вращательного движений молекулы как целого представляет собой малые колебания около положения равновесия, в котором потенциальная энергия имеет минимум. Поэтому потенциальная энергия вблизи от равновесия представляет собой однородную квадратичную функцию обобщенных координат, характеризующих конфигурацию молекулы, т, е, всех координат за вычетом тех, которые описывают положение и ориентацию молекулы как целого. При этом 1/тш принимается за начало отсчета потенциальной энергии и точка равновесия — за начало отсчета координат ql. Для л-атомной молекулы число этих внутренних координат равно Зл — 5, если молекула линейна (положения равновесия атомов находятся на одной прямой), и Зл — 6, если молекула нелинейна. Действительно, в случае линейной молекулы ее положение полностью задается тремя координатами Хц, уц, 2ц центра инерции и двумя углами, В случае же нелинейной молекулы ее ориентация в пространстве задается тремя углами. Таким образом, для потенциальной энергии имеем выражение где — постоянные коэффи-  [c.211]


Более полезными будут графики, подобные представленным фиг. 166 и 167. Например, на фиг. 169, а потенциальная энергия НгО показана контурными линиями как функция расстояния И — Н (л ) и расстояния ядра О от линии Н —Н (г/) в предположении, что это ядро в любой момент времени расположено симметрично по отношению к обоим атомам Н. Возможность антисимметричного движения (колебания) не принимается во внимание точно так же, как это делалось при построении графика на фиг. 167 для линейной молекулы. Минимум, соответствующий равновесному положению, лежит теперь, конечно, над осью х, а не на ней, как в случае линейной молекулы. Два симметричных нормальных движения около положения равновесия опять представляются движениями фигуративной точки в направлениях максимума и минимума кривизны в потенциальной яме (аа и ЬЬ на фиг. 169, а).  [c.455]

Простая потенциальная поверхность. Непосредственно очевидно, что выражение для потенциальной энергии всегда содержит не только члены второй степени смещений атомов из положений равновесия, но и члены более высоких степеней. Так же как и для двухатомных молекул, это следует из того, что при очень больших смещениях потенциальная энергия стремится к некоторой постоянной величине (соответствующей энергии диссоциации). Потенциальная энергия многоатомной энергии зависит от 2>N—6 (или ЗТУ — 5) координат, и поэтому представить ее наглядно значительно труднее, чем в случае двухатомных молекул. Если бы мы захотели найти полное представление потенциальной функции, то даже для трехатомной молекулы было бы необходимо рассматривать трехмерную гиперповерхность в пространстве четырех измерений. Однако, если для линейной симметричной трехатомной молекулы ХУ мы будем пренебрегать, например, возможностью изменения угла (т. е. предположим, что квазиупругая постоянная деформационного колебания бесконечно велика), то потенциальную энергию можно представить как двухмерную поверхность в обычном пространстве трех измерений. Выберем две длины связей X — У г, и Г.2 в качестве двух независимых координат, определяющих потенциальную функцию. Если теперь нанести значения потенциальной энергии для каждой точки плоскости г , г , то мы получим некоторую поверхность форму этой поверхности легко представить себе с помощью модели, изготовленной, например, из гипса (см. Гудив [387]). На фиг. 66, а приведена фотография такой модели для молекулы СО . Другой способ представления такой потенциальной поверхности с помощью контурных линий приведен на фиг. 66,( ).  [c.220]


Классическое ангармоническое движение. Классический учет ангармоничности в двухатомных молекулах приводит просто к небольшому изменению зависимости смеп ения от времени. При этом движение остается строго периодичным, хотя уже не гармоническим (так же как у маятника при больших амплитудах). Однако для многоатомных молекул изменение характера колебаний вследствие ангармоничности значительно более существенно, так как при наличии в выражении потенциальной функции членов, степень которых выше второй, уже нельзя провести строгое разделение колебательного движения на ряд простых движений (нормальных колебаний), при которых все атомы двигаются вдоль прямых линий и имеют одинаковую частоту колебаний. Это легко представить себе совсем наглядно, если рассмотреть потенциальную поверхность фиг. 66, б. В то время как для малых амплитуд два нормальных колебания V, и V, соответствуют простым колебаниям воображаемой точки вдоль прямой СС и вдоль прямой ОО (см. выше), для больших амплитуд подобное соответствие уже неприменимо. Если движение частицы начинается, например, из точки О, то ввиду отсутствия симметрии потенциальной поверхности по отношению к прямой ОО оно будет происходить первоначально вдоль кривой ОЕ (линия наибольшего наклона в точке О) и затем выполнять сложные движения по фигурам Лиссажу, которые в принципе будут заполнять всю площадь потенциальной поверхности для энергий меньших, чем энергия в точке О. Если движение частицы начинается из точки С, то ввиду симметрии потенциальной поверхности по отношению к прямой СС она будет совершать простые колебания однако при малейшем отклонении начальной точки от прямой СС снова возникает сложное движение по фигурам Лиссажу. Для несимметричных (линейных) молекул такой специальный случай будет отсутствовать. При средних амплитудах и небольшой ангармоничности частица, начинающая движение, например, из точки Р, будет совершать вначале, по крайней мере приближенно, простое колебание вдоль прямой ОД и только постепенно отклоняться от нее, двигаясь по фигурам Лиссажу, заполняющим все большую и большую площадь около отрезка РР. Чем меньше амплитуда и ангармония-  [c.222]

Для всех других молекул, помимо симметричных линейных молекул типа ХУа, при наличии двух или нескольких различных междуатомных расстояний их, разумеется, нельзя определить только из одного момента инерции.В этих случаях недостающее уравнение (или уравнения) можно получить, изучая спектры изотопных молекул. При этом можно сделать единственное предположение, что для изотопных молекул остается неизменной потенциальна функция, и следовательно, и междуатомные расстояния. Это предположение оправдалось в большом числе случаев при изучении явления изотопии для колебаний многоатомных молекул (см. гл. II, раздел 6) и особенно при изучении явления изотопии для вращения и колебания двухатомных молекул. Ва всех изотопных двухатомных молекулах, за исключением двухатомных молекул с низкими возбужденными электронными уровнями (для которых теоретически следует ожидать небольшую разницу порядка 0,001 10" см в междуатомных расстояниях), междуатомные расстояния, как и следует ожидать ), равньг в пре делах ошибок измерений ( 0,0002- 10 см). Так как рассматриваемые здесь-линейные многоатомные молекулы не имеют низких электронных уровней, то-можно с уверенностью считать, что междуатомные расстояния изотопных молекул являются одинаковыми с точностью, значительно большей, чем 0,001 Ю см. Следует иметь в виду, что такого точного совпадения можн ожидать только для равновесных расстояний г для средних (эффективных) междуатомных расстояний Го в нижнем колебательном уровне столь точного совпадения не будет, так как различные изотопные молекулы имеют различные амплитуды нулевого колебания. Однако даже и расстояния Гд будут равны с точностью, большей чем 0,002-10 см ).  [c.425]

Магнитное квантовое число 38 Магнитный дипольный момент 259 Матрица дипольного момента 271 индуцированного дипольного момента 275 Матричные элементы составляющих тензора полиризуемости 275. 279, 288, 291, 469 функции возмущения 234, 237 электрического дипольного момента 44, 71, 274, 288, 443 Мгновенная ось вращения асимметричных волчков 57 симметричных волчков 36 сферических иолчков 51 Междуатомные расстояния асимметричных волчков 519 изотопических молекул 424.466 линейных молекул 34, 192, 423 симметричных волчков 428, 466 тетраэдрических молекул 486 Механические модели для решения задачи о колебаниях 176 Миноры векового определителя, определение формы нормального колебания 83,87. 161, 164, 169, 172, 176 Множитель Больцмана 271, 283, 28Э Множитель, обусловленный ядерным спином, во вращательной части статистической суммы 539, 553 Модели молекулы, механические, для изучения колебаний молекулы 78,176 Модель потенциальной поверхности 219 Модификации, не комбинирующие асимметричных волчков 67, 498 влияние на термодинамические функции 538, 544, 553 линейных молекул 29 симметричных волчков 41—43, 444 тетраэдрических молекул 53, 482 Молекулы  [c.604]


Xs, молекулы, плоские, образующие правильный шестиугольник (De/,) 103, 110, 132, 203 Х молекулы точечной группы Dia, предположение о более общей квадратичной потенциальной функции 20Э Х , молекулы точечной группы Of 21 ХоСО, плоские колебания как функция массы X 218, 219 XYa, молекулы, линейные, симметричные влияние ангармоничности на колебательные уровни 230 вращательная постоянная D 26 выражения для основных частот и силовых постоянных 172 в более общей системе сил 204 в системе постоянных валентных сил 190 изотопический эффект 249 колебательный момент количества движения 88, 403 координаты симметрии 172 кориолисово взаимодействие 402, 403 междуатомные расстояния 424, 426  [c.614]

Ф и г. 4. Потенциальные функции деформационных колебаний в электронных состояниях 2, П и А линейных молекул. Деформационная координата от.т[ожена по оси абсцисс. Диаграммы в иерхпей части фигур б и в относятся к слабому, а в нижней — к сильному электронно-колебательному взаимодействию.  [c.34]

В трехатомной линейной молекуле может быть только один вид деформационных колебаний. Если молекула несимметрична (XYZ), то изогнутая конфигурация имеет симметрию С , а если симметрична (XY2) —то симметрию Сав- первом случае все вырожденные электронные состояния П, Д,. .. при г Ф О расщепляются каждое на одно состояние А и одно А". Во втором случае типы изогнутых конфигураций различны для разных типов вырожденных состояний. Электронное состояние Ilg расщепляется на А и В2, Пи — на Ах -j- Вх Ag — на Ах г Д на А -]- В . (Более подробно это будет показано в гл. 111, разд. 1.) В каждом случае электронная волновая функция одной компоненты симметрична по отношению к плоскости молекулы, а другой антисимметрична. Принятые обозначения типов А, А" или Ах, В X ИТ. д. можно было бы приписать двум потенциальным функциям F+ и F . Однако, вообще говоря, невозможно сказать, коррелирует F+ с А и F с А" или наоборот. Иногда две компоненты, соответствующие функциям F+ и F , обозначаются П + П " или Д + , Д " и т. д. Эти обозначения не следует путать с П+, П", Д+, А ,. . . , которые используются, чтобы различать две I- или А-компонепть состояния П, А,. ...  [c.35]

Верхнее состояние без устойчивого равновесного положения. Если верхнее состояние не имеет устойчивого равновесного положения (или только очень мелкий минимум), могут возникнуть некоторые дополнительные возможности диссоциации. В качестве примера рассмотрим линейную симметричную молекулу ХУг, для которой верхнее состояние имеет такую нотенциальную поверхность, как показано на фиг. 173. Она состоит, по существу, из двух долин, которые ведут к диагонали, где имеется или хребет, как на фиг. 173, или очень неглубокая яма при больших = Гг. Математическое выражение для такой потенциальной функции, выведенное через функции Морзе для соответствующих двухатомных молекул, было недавно дано Уоллом и Портером [1258]. Если верхнее состояние электронного перехода имеет такую потенциальную функцию, то будет прямая диссоциация на У г ХУ почти для любой точки, достигаемой при поглощении света. Несомненно, из-за кривизны каждой из долин фигуративная точка не будет следовать ио почти прямой линии вдоль низа долины, а будут наблюдаться колебания с одной стороны на другую, когда точка покидает долину, как показано на фиг. 173. Тем не менее этот процесс должен быть все же классифицирован как прямая диссоциация, так как требующееся время, по существу, то же самое, как и в случае, когда нет вторичного колебания. Это вторичное колебание фигуративной точки сохраняется для больших значений Г1 (или Гг) и соответствует колебательной энергии молекулы ХУ, которая образуется в процессе диссоциации.  [c.463]

Обобщение предыдущих результатов. Мы вывели свойства симметрии колебательных собственных функций из свойств симметрии нормальных координат. В действительности, свойства симметрии собственных функций имеют значительно более общий характер и не зависят от предположения о гармоничности колебаний. Потенциальная энергия, даже если она и не является простой квадратичной функцией от составляющих смещений, как в (2,25), должна быть инвариантна по отношению ко всем операциям симметрии, образующим точечную группу, к которой принадлежит молекула. Поэтому уравнение Шредингера (2,40) инвариантно по отношению к этим операциям симметрии и, следовательно, собственная функция относительно этих операций симметрии может либо быть только симметричной, либо антисимметричной, если состояние является невырожденным либо может преобразоваться также и в линейную комбинацию взаимно вырожденных собственных функций, если состояние вырожденно (см. Молекулярные спектры 1, гл. V, 1). Можно показать, что последнему случаю соответствует ортогональное преобразование, при двукратном вырождении имеющее вид (2,75) или (2,76).  [c.118]


Смотреть страницы где упоминается термин Колебания в линейных молекулах, потенциальные функции : [c.607]    [c.117]   
Электронные спектры и строение многоатомных молекул (1969) -- [ c.34 , c.172 ]



ПОИСК



Колебания линейные

Колебания молекул

Линейные молекулы

Линейные молекулы функции потенциальные деформационных колебаний

Линейные функции —

Потенциальная функция молекул

Функция потенциальная



© 2025 Mash-xxl.info Реклама на сайте