Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Системы — Динамика инерции

Эту задачу можно решить также с помощью уравнения динамики переносного движения. Как известно, переносное поступательное движение системы происходит как движение абсолютное под действием всех внешних сил системы и сил инерции масс в их относительном движении, т. е.  [c.158]

Математическое описание динамики ромбического привода довольно громоздко и запутанно, но этот вопрос очень ясно изложен в докторской диссертации Мейера [49]. Теоретический вывод условий балансировки представлен в приложении Б. Чтобы понять принципы балансировки ромбического приводного механизма, вернемся к рис. 1.18, на котором можно видеть, что этот механизм состоит из двух кривошипов и соединяющих их рычажных передач, смещенных относительно осн двигателя кривошипы вращаются в противоположных направлениях и связаны двумя синхронизирующими шестернями. Рабочий поршень прикреплен к верхней траверсе, а вытеснительный — к нижней. Все соединительные рычаги имеют одинаковую длину, образуя ромб, и механизм обеспечивает полную симметрию в любой момент времени рабочего цикла. Если массы поршней и связанных с ними возвратно-поступательно движущихся деталей равны, то центр тяжести ромба всегда будет расположен в его геометрическом центре, и, когда приводной механизм вращается, центр тяжести перемещается вверх вдоль линии хода. Силы инерции, возникающие при этом движении, можно компенсировать, добавляя к каждой распределительной шестерне вращающуюся массу, равную массе поршня, так, чтобы их центры тяжести периодически перемещались в направлении, обратном направлению движения центра тяжести ромба, и положение центра тяжести всей системы оставалось неизменным. Таким образом достигается идеальная балансировка сил инерции, направленных по вертикали. Чтобы выполнить эти требования, необходимо достаточно точно определить положение уравновешивающих масс и их величину, как описано в приложении Б. Ввиду характерной симметрии системы сумма снл инерции в горизонтальном направлении равна нулю и сумма моментов, обусловленных этими силами, также равна нулю.  [c.277]


В этом случае формально справедливы первый и второй законы динамики, поэтому можно произвести динамический анализ движения тела прямо относительно неинерциальной системы отсчета, для этого необходимо к силам взаимодействия, действующим на данное тело, прибавить еще силы инерции. При поступательном движении неинерциальной системы силы инерции одинаковы во всех точках этой системы отсчета и не зависят от скорости движения тела относительно нее. Во вращающейся системе отсчета силы инерции различны в разных точках неинерциальной системы (центробежные силы) и зависят от относительной скорости движения (кориолисовы силы).  [c.168]

Определение напряжений и перемещений при заданных ускорениях основано на приведении задач динамики к задачам статики с помощью известного из курса теоретической механики принципа Даламбера (метода кинетостатики). Напомним, что этот принцип состоит в следующем если в любой момент времени к каждой материальной точке данной системы приложить силу инерции этой точки, то эти силы инерции будут уравновешиваться заданными силами, действующими на систему, и реакциями связей, т. е. система может рассматриваться как находящаяся в состоянии покоя (или равномерного прямолинейного движения).  [c.469]

Мы видим, что посредством введения фиктивных сил инерции задача о движении механической системы, задача динамики,  [c.163]

Совместный учет действия сил и материальных свойств тел или ючки содержится в аксиомах динамики. Такие аксиомы статики, как аксиома о параллелограмме сил, о равенстве сил действия и противодействия, аксиома связей, справедливы и в динамике. Так как в статике рассматриваются свойства и неравновесных систем сил, под действием которых твердое тело или точка не могут находиться в покое относительно инерциальной системы отсчета, то для оправдания этого в статике можно считать, что эти системы сил являются частями более укрупненных равновесных систем сил, под действием которых тело или материальная точка находится в покое или совершает движение по инерции.  [c.15]

Глава XXI ВВЕДЕНИЕ В ДИНАМИКУ СИСТЕМЫ, МОМЕНТЫ ИНЕРЦИИ  [c.263]

Заметим, что для шарика здесь решалась основная задача динамики (определение закона движения по заданным силам), причем изучалось его относительное движение, но так как значение Т находилось для абсолютного движения системы, то вводить силы инерции не понадобилось для трубки же, наоборот, по заданному движению определялся момент действующей силы (или пары сил).  [c.382]


При составлении уравнений движения в данном случае и в последующих мы будем исходить из принципа Д Аламбера, который заключается в том, что к движущейся с ускорением системе могут быть применены соотношения статики при условии, что в число внешних сил включена сила инерции, равная произведению массы на ускорение и направленная против ускорения. Этот, несколько формальный прием, вытекающий из элементарных соотношений динамики, дает особенно ощутимые преимущества при составлении уравнений движения для систем с несколькими степенями свободы.  [c.461]

В дистанционно управляемых копирующих манипуляторах применяют обратимые следящие системы симметричного типа, состоящие из двух взаимосвязанных следящих систем, обеспечивающих активное отражение усилий вариант такой системы, наиболее простой, дан на рис. 11.19, а. При наличии нагрузки на исполнительном звене в виде момента М и движущемся или неподвижном звене управления сельсин на стороне нагрузки развивает момент а сельсин на стороне оператора — равный ему, но противоположный по знаку синхронизирующий момент Мц. В результате оператор ощущает внешнюю нагрузку от объекта манипулирования не только при движении, но и при неподвижном положении схвата манипулятора. Динамика таких систем весьма сложна, уравнения движения составляются и исследуются с помощью чисто механического аналога (динамической модели, рис. 11.19,6). Здесь учитывают внешнюю нагрузку в виде момента М,,, приведенные моменты инерции Vi, У2, /и масс механизмов, связанных с валом оператора, с валом нагрузки и самой нагрузки, угол рассогласования между осями сельсинов в виде некоторой расчетной жесткости с упругой передачи, зависимость динамических синхронизирующих моментов Мц, Мдо, развиваемых сельсинами при вращении, от скорости вра-  [c.336]

Уравнение (117.3) называемое общим уравнением динамики, показывает, что в любой момент времени сумма работ всех задаваемых сил и сил инерции материальных точек несвободной механической системы с двусторонними идеальными связями на любом возможном ее перемещении равна нулю.  [c.319]

Если направление движеиия системы выбрано ошибочно, то искомое ускорение получается со знаком — . В этом случае необходимо изменить направления силы трения и сил инерции и внести соответс вующие поправки в общее уравнение динамики.  [c.281]

Первая аксиома динамики — закон инерции (А. И. Аркуша, 1.42) — объясняет, что равномерное и прямолинейное движение точки или тела происходит лишь в том случае, если на точку (тело) действует уравновешенная система сил. И наоборот, если нужно, чтобы точка или тело двигались равномерно и прямолинейно, то необходимо создать условия для равновесия всех сил, приложенных к данной точке или к данному телу.  [c.284]

Для применения уравнений динамики к материальной точке, движущейся в подвижной системе отсчета, следует внести в них поправки в виде дополнительных слагаемых — сил инерции, которые добавляются к силам приложенным к материальной точке.  [c.123]

Задачи динамики поступательного движения твердого тела решаются посредством теоремы о движении центра инерции системы материальных точек. Действительно, применив эту теорему, мы определим уравнение траектории, скорость и ускорение центра тяжести твердого тела. При поступательном же движении твердого тела траектории всех точек одинаковы, а скорости и ускорения их соответственно равны.  [c.147]

Если при решении задачи динамики движение точки системы разлагается на переносное поступательное вместе с полюсом и относительное по отношению к полюсу, то целесообразно принять за полюс центр инерции системы материальных точек. Тогда, применив теорему о движении центра инерции, можно определить переносное поступательное движение точек системы.  [c.147]

Задачи 269 и 270 были решены двумя способами применением теоремы о движении центра инерции системы материальных точек и с помощью уравнения динамики переносного поступательного движения. Степень трудности решения задач этими способами следует считать примерно равноценной.  [c.165]

Теорема об изменении главного момента количеств движения системы материальных точек (со случаем сохранения) в относительном движении по отнощению к центру инерции системы щироко применяется в задачах динамики плоского движения твердого тела (см. следующий параграф) и движения свободного твердого тела, т, е. в тех случаях, когда движение твердого тела можно разложить на переносное вместе с осями координат, движущимися поступательно С центром инерции, и относительное по отнощению к этим осям.  [c.242]


Для составления общего уравнения динамики следует вычислить сумму работ задаваемых сил и сил инерции на возможных перемещениях точек системы и приравнять эту суМму нулю  [c.418]

Применим к данной системе материальных точек общее уравнение динамики, т. е. приравняем нулю сумму работ задаваемых сил (включая силы реакции неидеальных связей) и сил инерции на возможных перемещениях точек системы  [c.420]

Составляем общее уравнение динамики для данной системы, т. е. приравниваем нулю сумму работ задаваемых сил, сил трения и сил инерции на возможных перемещениях точек системы  [c.422]

Составим общее уравнение динамики для данной системы, т. е. приравняем нулю сумму работ всех задаваемых сил и сил инерции  [c.424]

Переходим к составлению общего уравнения динамики. Для этого надо сумму работ задаваемых сил и сил инерции на возможных перемещениях точек системы приравнять нулю. Имеем  [c.432]

Составим общее уравнение динамики, т. е. вычислим сумму работ всех задаваемых сил и сил инерции материальной системы на возможных перемещениях, соответствующих 8Г , и приравняем ее нулю  [c.440]

Составим общее уравнение динамики, т. е., вычислив сумму работ задаваемых сил и сил инерции материальных точек системы на возможном перемещении Ьг, приравняем ее нулю  [c.451]

Поступательное движение твердого тела. Наиболее общим приемом составления уравнений динамики поступательного движения твердого тела является применение теоремы о движении центра инерции системы материальных точек. Теорема преимущественно используется в проекциях на оси декартовых координат. В число данных и искомых величин должны входить массы материальных точек, их уравнения движения, внешние силы системы. Решение обратных задач упрощается в случаях, когда главный вектор внешних сил, приложенных к твердому телу, постоянен либо зависит только от 1) времени, 2) положений точек системы, 3) скоростей точек системы. Труднее решать обратные задачи, в которых главный вектор внешних сил одновременно зависит от времени, положения и скоростей точек системы.  [c.540]

Наиболее общим приемом составления дифференциальных уравнений движения системы материальных точек является применение уравнений Лагранжа или общего уравнения динамики. (Применение общего уравнения динамики является менее удобным и притом формальным методом в связи с использованием сил инерции.)  [c.544]

Инерциальные и неинерциальные системы отсчета. Вопрос об относительном движении материальной точки тесно соприкасается с самыми основными идеями механики. Всякое движение точки (или тела) мы должны рассматривать относительно некоторой системы отсчета. До сих пор мы изучали движение по отношению к так называемой инерциальной системе отсчета (см. 14, п. 2), т. е. система отсчета, в которой справедливы основные законы динамики и по отношению к которой материальная точка, на которую никакие силы не действуют, движется по инерции (равномерно и прямолинейно). Инерциальную систему отсчета называют еще условно неподвижной, а движение по отношению к ней — абсолютным.  [c.438]

Вектор / называют силой инерции, а уравнение (6.1) является уравнением равновесия статики и выражает принцип Даламбера если в каждый данный момент к действующим на тело силам прибавить силу инерции, то полученная система сил будет находиться в равновесии, и для нее справедливы все уравнения статики. Принцип Даламбера позволяет при решении динамических задач составлять уравнения движения в форме уравнений равновесия и решать задачи динамики с помощью более простых законов статики. При этом нужно иметь в виду, что фактически на данное тело действует только сила Р, а сила инерции Д, приложена к другому (ускоряющему) телу, которое воздействует силой Р на ускоряемое тело.  [c.59]

ГЛУБОКО НЕУПРУГИБ ПРОЦЕССЫ (глубоко иеун-ругоо рассеяние) — инклюзивные процессы взаимодействия лептонов и адронов, при к-рых как квадрат передачи 4-импульса лептоном, так и квадрат суммарной полной энергии вторичных адронов в системе их центра инерции значительно превышают характерную энергию покоя адронов ss 1 ГэВ (используется система единиц, в к-рой А=с=1). Благодаря большой передаче импульса Г. н. п. (вследствие неопределенностей соотношения) играют важную роль в исследовании структуры адронов п ядер и выяснении динамики взаимодействия па малых расстояниях.  [c.497]

Таким образом, согласно общему уравнению динамики, в любой момент движения сиетемы с идеальными связями сумма элементарных работ всех активных сил н сил инерции точек системы равна нулю на любом возможном перемещении системы, допускаемом связями. Общее уравнение динамики (24) час го называю г объединенным принципом Да-ламбера Лагранжа. Его можно назвать лакже общим уравнением механики. Оно в случае равновесия системы при обращении в нуль всех сил инер щи точек системы переходит в нринцин возможных перемещений старики, только пока без доказательства его достаточности для равновесия системы.  [c.400]

При испо пэЗовании об1цего уравнения динамики необходимо уметь вычислягь элементарную работу сил инерции системы на возможных перемещениях. Для этого применяются соответствующие формулы для элементарной работы, полученные  [c.401]


Распределение масс в системе определяется значениями масс mfe ее точек и их взаимными положениями, т, е. их координатами х-и, Ук, Zk- Однако оказывается, что при решении тех задач динамики, которые мы будем рассматривать, в частности динамики твердого тела, для учета распределения масс достаточно знать не все величины OTh, Xh, Ун, 2ft, а некоторые, выражаемые через них суммарные характеристики. Ими являются координаты центра масс (выражаются через суммы произведений масс точек системы на их координаты), осевые моменты инерции (выражаются tfepes суммы произведений масс точек системы на квадраты их координат) и центробежные моменты инерции (выражаются через суммы произведений масс точек системы и двух из их координат). Эти характеристики мы в данной главе и рассмотрим.  [c.264]

Полученными уравнениями можно непосредственно пользоваться для решения задач динамики. Однако процесс составления этих уравнений значительно упростится, если выразить все входящие сюда обобщенные силы инерции через кинетическую энергию системы. Преобразуем сначала соответствующим образом велитану Q". Поскольку сила инерции любой из точек системы Fk=— то первая из формул (122) дает  [c.377]

К системе сил инерции точек твердого тела можно применить метод Пуансо —метод приведения сил к некоторому центру, рассмотренный в статике (ем. ч. I Статика , 27). В динамике за центр приведения сил инерции выбпрагот обычно центр масс тела С. Тогда в результате приведения получится сила Ф, равная главному вектору сил инерции точек тела, и пара сил с моментом М равным главному моменту сил инерции относительно центра масс  [c.284]

Общее уравнение динамики (117.6) позволяет составить дифференциальные уравнения движения любой механической системы. Если механическая система состоит из отдельных твердых тел, то силы и[]ерции точек каждого тела можно привести к силе, приложенной в некоторой точке тела, и паре сил. Сила равна главному вектору сил инерции точек этого тела, а момент пары равен главному моменту этих сил относительно центра приведения (см. 109).  [c.320]

Сделаем предварительно следующее замечание об использовании уравнений Лагранжа для описания относительного движения в неинерциальной системе отсчета. В гл. И было установлено, что второй закон Ньютона (а значит, и основные теоремы динамики) может быть использован и в неинерциальной системе отсчета, если к /-Й точке системы (/=],. .., N) помимо действующих сил приложить силы инерции — переносную, Ji ep = = — miWi ер. и кориолисову, Ji кор = — 2т,- (ш х / o, )-  [c.160]

Аксиома 1 (принцип инерции). Всякая изолированная материальная точка находится в состоянии покоя или равномерного и прямолинейного движения, пока приложенные силы не выведут ее из этого состояния. Это знакомая нам первая аксиома статики (см. 1.2). Принцип инерции лежит в основе статики и динамики потому, что содержит в себе как аксиому инерции покоя (статика), так и аксиому инерции движения (динамика). Таким образом, если на материальное тело (точку) не действуют никакие силы или действует уравновешенная система сил и 2Л1о(/ )=0, то относительно  [c.123]


Смотреть страницы где упоминается термин Системы — Динамика инерции : [c.199]    [c.338]    [c.129]    [c.362]    [c.293]    [c.539]    [c.183]    [c.436]    [c.438]   
Справочник машиностроителя Том 6 Издание 2 (0) -- [ c.3 , c.360 ]



ПОИСК



ДИНАМИКА СИСТЕМЫ И ТВЕРДОГО ТЕЛА Введение в динамику системы. Моменты инерции

ДИНАМИКА СИСТЕМЫ И ТВЕРДОГО ТЕЛА Введение в динамику системы. Моменты инерции твердого тела

Инерция системы

Насть четвертая ДИНАМИКА СИСТЕМ. ОБЩИЕ TEOPFMbI ОБЩИЕ ТЕОРЕМЫ В АБСОЛЮТНОМ ДВИЖЕНИИ Теорема о количестве движения системы и теорема о движении центра инерции

Системы Динамика



© 2025 Mash-xxl.info Реклама на сайте